Properties

Label 1445.2.d.j.866.6
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.6
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.j.866.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.43840 q^{2} +0.109907i q^{3} +0.0689897 q^{4} +1.00000i q^{5} -0.158090i q^{6} +0.695085i q^{7} +2.77756 q^{8} +2.98792 q^{9} -1.43840i q^{10} +4.85089i q^{11} +0.00758244i q^{12} +5.63906 q^{13} -0.999809i q^{14} -0.109907 q^{15} -4.13322 q^{16} -4.29782 q^{18} +2.32272 q^{19} +0.0689897i q^{20} -0.0763945 q^{21} -6.97750i q^{22} +4.63686i q^{23} +0.305273i q^{24} -1.00000 q^{25} -8.11121 q^{26} +0.658113i q^{27} +0.0479537i q^{28} -6.50618i q^{29} +0.158090 q^{30} -6.63194i q^{31} +0.390093 q^{32} -0.533145 q^{33} -0.695085 q^{35} +0.206136 q^{36} -0.118625i q^{37} -3.34100 q^{38} +0.619770i q^{39} +2.77756i q^{40} +1.07877i q^{41} +0.109886 q^{42} +0.641108 q^{43} +0.334661i q^{44} +2.98792i q^{45} -6.66965i q^{46} +4.93703 q^{47} -0.454269i q^{48} +6.51686 q^{49} +1.43840 q^{50} +0.389037 q^{52} -11.9864 q^{53} -0.946629i q^{54} -4.85089 q^{55} +1.93064i q^{56} +0.255283i q^{57} +9.35848i q^{58} +9.91829 q^{59} -0.00758244 q^{60} +1.60292i q^{61} +9.53937i q^{62} +2.07686i q^{63} +7.70533 q^{64} +5.63906i q^{65} +0.766875 q^{66} -2.99411 q^{67} -0.509622 q^{69} +0.999809 q^{70} +4.68852i q^{71} +8.29913 q^{72} -5.49911i q^{73} +0.170630i q^{74} -0.109907i q^{75} +0.160244 q^{76} -3.37178 q^{77} -0.891477i q^{78} +14.8439i q^{79} -4.13322i q^{80} +8.89143 q^{81} -1.55170i q^{82} -5.03506 q^{83} -0.00527044 q^{84} -0.922169 q^{86} +0.715073 q^{87} +13.4736i q^{88} -2.35657 q^{89} -4.29782i q^{90} +3.91962i q^{91} +0.319896i q^{92} +0.728895 q^{93} -7.10141 q^{94} +2.32272i q^{95} +0.0428738i q^{96} +2.70080i q^{97} -9.37384 q^{98} +14.4941i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{2} + 24 q^{4} + 24 q^{8} - 24 q^{9} - 16 q^{13} + 16 q^{15} + 24 q^{16} + 8 q^{18} + 32 q^{21} - 24 q^{25} - 32 q^{26} - 16 q^{30} + 56 q^{32} - 32 q^{35} - 24 q^{36} - 48 q^{38} + 32 q^{43}+ \cdots - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.43840 −1.01710 −0.508551 0.861032i \(-0.669819\pi\)
−0.508551 + 0.861032i \(0.669819\pi\)
\(3\) 0.109907i 0.0634547i 0.999497 + 0.0317274i \(0.0101008\pi\)
−0.999497 + 0.0317274i \(0.989899\pi\)
\(4\) 0.0689897 0.0344949
\(5\) 1.00000i 0.447214i
\(6\) − 0.158090i − 0.0645399i
\(7\) 0.695085i 0.262717i 0.991335 + 0.131359i \(0.0419339\pi\)
−0.991335 + 0.131359i \(0.958066\pi\)
\(8\) 2.77756 0.982016
\(9\) 2.98792 0.995974
\(10\) − 1.43840i − 0.454861i
\(11\) 4.85089i 1.46260i 0.682058 + 0.731298i \(0.261085\pi\)
−0.682058 + 0.731298i \(0.738915\pi\)
\(12\) 0.00758244i 0.00218886i
\(13\) 5.63906 1.56399 0.781996 0.623283i \(-0.214202\pi\)
0.781996 + 0.623283i \(0.214202\pi\)
\(14\) − 0.999809i − 0.267210i
\(15\) −0.109907 −0.0283778
\(16\) −4.13322 −1.03330
\(17\) 0 0
\(18\) −4.29782 −1.01301
\(19\) 2.32272 0.532869 0.266434 0.963853i \(-0.414154\pi\)
0.266434 + 0.963853i \(0.414154\pi\)
\(20\) 0.0689897i 0.0154266i
\(21\) −0.0763945 −0.0166706
\(22\) − 6.97750i − 1.48761i
\(23\) 4.63686i 0.966852i 0.875385 + 0.483426i \(0.160608\pi\)
−0.875385 + 0.483426i \(0.839392\pi\)
\(24\) 0.305273i 0.0623136i
\(25\) −1.00000 −0.200000
\(26\) −8.11121 −1.59074
\(27\) 0.658113i 0.126654i
\(28\) 0.0479537i 0.00906240i
\(29\) − 6.50618i − 1.20817i −0.796921 0.604084i \(-0.793539\pi\)
0.796921 0.604084i \(-0.206461\pi\)
\(30\) 0.158090 0.0288631
\(31\) − 6.63194i − 1.19113i −0.803307 0.595565i \(-0.796928\pi\)
0.803307 0.595565i \(-0.203072\pi\)
\(32\) 0.390093 0.0689593
\(33\) −0.533145 −0.0928087
\(34\) 0 0
\(35\) −0.695085 −0.117491
\(36\) 0.206136 0.0343560
\(37\) − 0.118625i − 0.0195018i −0.999952 0.00975091i \(-0.996896\pi\)
0.999952 0.00975091i \(-0.00310386\pi\)
\(38\) −3.34100 −0.541981
\(39\) 0.619770i 0.0992427i
\(40\) 2.77756i 0.439171i
\(41\) 1.07877i 0.168475i 0.996446 + 0.0842375i \(0.0268454\pi\)
−0.996446 + 0.0842375i \(0.973155\pi\)
\(42\) 0.109886 0.0169557
\(43\) 0.641108 0.0977681 0.0488840 0.998804i \(-0.484434\pi\)
0.0488840 + 0.998804i \(0.484434\pi\)
\(44\) 0.334661i 0.0504521i
\(45\) 2.98792i 0.445413i
\(46\) − 6.66965i − 0.983386i
\(47\) 4.93703 0.720139 0.360070 0.932925i \(-0.382753\pi\)
0.360070 + 0.932925i \(0.382753\pi\)
\(48\) − 0.454269i − 0.0655681i
\(49\) 6.51686 0.930980
\(50\) 1.43840 0.203420
\(51\) 0 0
\(52\) 0.389037 0.0539497
\(53\) −11.9864 −1.64646 −0.823228 0.567711i \(-0.807829\pi\)
−0.823228 + 0.567711i \(0.807829\pi\)
\(54\) − 0.946629i − 0.128820i
\(55\) −4.85089 −0.654093
\(56\) 1.93064i 0.257993i
\(57\) 0.255283i 0.0338130i
\(58\) 9.35848i 1.22883i
\(59\) 9.91829 1.29125 0.645626 0.763654i \(-0.276597\pi\)
0.645626 + 0.763654i \(0.276597\pi\)
\(60\) −0.00758244 −0.000978888 0
\(61\) 1.60292i 0.205233i 0.994721 + 0.102617i \(0.0327215\pi\)
−0.994721 + 0.102617i \(0.967278\pi\)
\(62\) 9.53937i 1.21150i
\(63\) 2.07686i 0.261659i
\(64\) 7.70533 0.963166
\(65\) 5.63906i 0.699439i
\(66\) 0.766875 0.0943958
\(67\) −2.99411 −0.365789 −0.182894 0.983133i \(-0.558547\pi\)
−0.182894 + 0.983133i \(0.558547\pi\)
\(68\) 0 0
\(69\) −0.509622 −0.0613513
\(70\) 0.999809 0.119500
\(71\) 4.68852i 0.556425i 0.960520 + 0.278213i \(0.0897420\pi\)
−0.960520 + 0.278213i \(0.910258\pi\)
\(72\) 8.29913 0.978062
\(73\) − 5.49911i − 0.643622i −0.946804 0.321811i \(-0.895708\pi\)
0.946804 0.321811i \(-0.104292\pi\)
\(74\) 0.170630i 0.0198353i
\(75\) − 0.109907i − 0.0126909i
\(76\) 0.160244 0.0183812
\(77\) −3.37178 −0.384250
\(78\) − 0.891477i − 0.100940i
\(79\) 14.8439i 1.67007i 0.550193 + 0.835037i \(0.314554\pi\)
−0.550193 + 0.835037i \(0.685446\pi\)
\(80\) − 4.13322i − 0.462108i
\(81\) 8.89143 0.987937
\(82\) − 1.55170i − 0.171356i
\(83\) −5.03506 −0.552670 −0.276335 0.961061i \(-0.589120\pi\)
−0.276335 + 0.961061i \(0.589120\pi\)
\(84\) −0.00527044 −0.000575052 0
\(85\) 0 0
\(86\) −0.922169 −0.0994400
\(87\) 0.715073 0.0766639
\(88\) 13.4736i 1.43629i
\(89\) −2.35657 −0.249796 −0.124898 0.992170i \(-0.539860\pi\)
−0.124898 + 0.992170i \(0.539860\pi\)
\(90\) − 4.29782i − 0.453030i
\(91\) 3.91962i 0.410888i
\(92\) 0.319896i 0.0333514i
\(93\) 0.728895 0.0755829
\(94\) −7.10141 −0.732454
\(95\) 2.32272i 0.238306i
\(96\) 0.0428738i 0.00437579i
\(97\) 2.70080i 0.274225i 0.990555 + 0.137113i \(0.0437822\pi\)
−0.990555 + 0.137113i \(0.956218\pi\)
\(98\) −9.37384 −0.946900
\(99\) 14.4941i 1.45671i
\(100\) −0.0689897 −0.00689897
\(101\) 14.3025 1.42315 0.711575 0.702610i \(-0.247982\pi\)
0.711575 + 0.702610i \(0.247982\pi\)
\(102\) 0 0
\(103\) −10.8963 −1.07365 −0.536824 0.843694i \(-0.680376\pi\)
−0.536824 + 0.843694i \(0.680376\pi\)
\(104\) 15.6628 1.53587
\(105\) − 0.0763945i − 0.00745534i
\(106\) 17.2412 1.67461
\(107\) 16.6273i 1.60742i 0.595019 + 0.803712i \(0.297145\pi\)
−0.595019 + 0.803712i \(0.702855\pi\)
\(108\) 0.0454030i 0.00436891i
\(109\) − 10.5999i − 1.01529i −0.861568 0.507643i \(-0.830517\pi\)
0.861568 0.507643i \(-0.169483\pi\)
\(110\) 6.97750 0.665279
\(111\) 0.0130377 0.00123748
\(112\) − 2.87294i − 0.271467i
\(113\) − 11.5397i − 1.08556i −0.839875 0.542780i \(-0.817372\pi\)
0.839875 0.542780i \(-0.182628\pi\)
\(114\) − 0.367198i − 0.0343913i
\(115\) −4.63686 −0.432389
\(116\) − 0.448860i − 0.0416756i
\(117\) 16.8490 1.55770
\(118\) −14.2665 −1.31333
\(119\) 0 0
\(120\) −0.305273 −0.0278675
\(121\) −12.5311 −1.13919
\(122\) − 2.30564i − 0.208743i
\(123\) −0.118564 −0.0106905
\(124\) − 0.457535i − 0.0410879i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 2.98735i − 0.266134i
\(127\) 0.498539 0.0442381 0.0221191 0.999755i \(-0.492959\pi\)
0.0221191 + 0.999755i \(0.492959\pi\)
\(128\) −11.8635 −1.04860
\(129\) 0.0704621i 0.00620384i
\(130\) − 8.11121i − 0.711400i
\(131\) 19.5341i 1.70670i 0.521338 + 0.853350i \(0.325433\pi\)
−0.521338 + 0.853350i \(0.674567\pi\)
\(132\) −0.0367815 −0.00320142
\(133\) 1.61449i 0.139994i
\(134\) 4.30672 0.372044
\(135\) −0.658113 −0.0566414
\(136\) 0 0
\(137\) −3.81724 −0.326129 −0.163065 0.986615i \(-0.552138\pi\)
−0.163065 + 0.986615i \(0.552138\pi\)
\(138\) 0.733040 0.0624005
\(139\) − 13.2525i − 1.12406i −0.827117 0.562030i \(-0.810020\pi\)
0.827117 0.562030i \(-0.189980\pi\)
\(140\) −0.0479537 −0.00405283
\(141\) 0.542613i 0.0456962i
\(142\) − 6.74396i − 0.565941i
\(143\) 27.3544i 2.28749i
\(144\) −12.3497 −1.02914
\(145\) 6.50618 0.540309
\(146\) 7.90991i 0.654629i
\(147\) 0.716247i 0.0590750i
\(148\) − 0.00818390i 0 0.000672712i
\(149\) −17.4543 −1.42991 −0.714955 0.699171i \(-0.753553\pi\)
−0.714955 + 0.699171i \(0.753553\pi\)
\(150\) 0.158090i 0.0129080i
\(151\) 11.2715 0.917262 0.458631 0.888627i \(-0.348340\pi\)
0.458631 + 0.888627i \(0.348340\pi\)
\(152\) 6.45150 0.523286
\(153\) 0 0
\(154\) 4.84996 0.390821
\(155\) 6.63194 0.532690
\(156\) 0.0427578i 0.00342336i
\(157\) −6.14541 −0.490457 −0.245229 0.969465i \(-0.578863\pi\)
−0.245229 + 0.969465i \(0.578863\pi\)
\(158\) − 21.3515i − 1.69863i
\(159\) − 1.31738i − 0.104475i
\(160\) 0.390093i 0.0308395i
\(161\) −3.22301 −0.254009
\(162\) −12.7894 −1.00483
\(163\) 11.2012i 0.877344i 0.898647 + 0.438672i \(0.144551\pi\)
−0.898647 + 0.438672i \(0.855449\pi\)
\(164\) 0.0744238i 0.00581152i
\(165\) − 0.533145i − 0.0415053i
\(166\) 7.24243 0.562121
\(167\) − 5.70603i − 0.441546i −0.975325 0.220773i \(-0.929142\pi\)
0.975325 0.220773i \(-0.0708580\pi\)
\(168\) −0.212190 −0.0163709
\(169\) 18.7989 1.44607
\(170\) 0 0
\(171\) 6.94010 0.530723
\(172\) 0.0442299 0.00337250
\(173\) 4.53754i 0.344983i 0.985011 + 0.172491i \(0.0551817\pi\)
−0.985011 + 0.172491i \(0.944818\pi\)
\(174\) −1.02856 −0.0779750
\(175\) − 0.695085i − 0.0525435i
\(176\) − 20.0498i − 1.51131i
\(177\) 1.09009i 0.0819360i
\(178\) 3.38969 0.254068
\(179\) 18.3756 1.37345 0.686727 0.726915i \(-0.259047\pi\)
0.686727 + 0.726915i \(0.259047\pi\)
\(180\) 0.206136i 0.0153645i
\(181\) 10.7182i 0.796679i 0.917238 + 0.398339i \(0.130413\pi\)
−0.917238 + 0.398339i \(0.869587\pi\)
\(182\) − 5.63798i − 0.417915i
\(183\) −0.176172 −0.0130230
\(184\) 12.8792i 0.949465i
\(185\) 0.118625 0.00872148
\(186\) −1.04844 −0.0768754
\(187\) 0 0
\(188\) 0.340604 0.0248411
\(189\) −0.457444 −0.0332742
\(190\) − 3.34100i − 0.242381i
\(191\) 18.5397 1.34149 0.670743 0.741690i \(-0.265976\pi\)
0.670743 + 0.741690i \(0.265976\pi\)
\(192\) 0.846868i 0.0611174i
\(193\) 9.88591i 0.711603i 0.934562 + 0.355802i \(0.115792\pi\)
−0.934562 + 0.355802i \(0.884208\pi\)
\(194\) − 3.88483i − 0.278915i
\(195\) −0.619770 −0.0443827
\(196\) 0.449596 0.0321140
\(197\) 13.9534i 0.994138i 0.867711 + 0.497069i \(0.165590\pi\)
−0.867711 + 0.497069i \(0.834410\pi\)
\(198\) − 20.8482i − 1.48162i
\(199\) − 12.7366i − 0.902876i −0.892303 0.451438i \(-0.850911\pi\)
0.892303 0.451438i \(-0.149089\pi\)
\(200\) −2.77756 −0.196403
\(201\) − 0.329073i − 0.0232110i
\(202\) −20.5727 −1.44749
\(203\) 4.52235 0.317407
\(204\) 0 0
\(205\) −1.07877 −0.0753443
\(206\) 15.6733 1.09201
\(207\) 13.8546i 0.962959i
\(208\) −23.3075 −1.61608
\(209\) 11.2672i 0.779372i
\(210\) 0.109886i 0.00758284i
\(211\) − 12.8778i − 0.886545i −0.896387 0.443273i \(-0.853817\pi\)
0.896387 0.443273i \(-0.146183\pi\)
\(212\) −0.826937 −0.0567943
\(213\) −0.515300 −0.0353078
\(214\) − 23.9167i − 1.63491i
\(215\) 0.641108i 0.0437232i
\(216\) 1.82795i 0.124376i
\(217\) 4.60976 0.312931
\(218\) 15.2469i 1.03265i
\(219\) 0.604389 0.0408409
\(220\) −0.334661 −0.0225629
\(221\) 0 0
\(222\) −0.0187534 −0.00125864
\(223\) −20.4208 −1.36748 −0.683738 0.729728i \(-0.739647\pi\)
−0.683738 + 0.729728i \(0.739647\pi\)
\(224\) 0.271147i 0.0181168i
\(225\) −2.98792 −0.199195
\(226\) 16.5986i 1.10412i
\(227\) 1.22029i 0.0809935i 0.999180 + 0.0404968i \(0.0128940\pi\)
−0.999180 + 0.0404968i \(0.987106\pi\)
\(228\) 0.0176119i 0.00116638i
\(229\) −3.51944 −0.232571 −0.116286 0.993216i \(-0.537099\pi\)
−0.116286 + 0.993216i \(0.537099\pi\)
\(230\) 6.66965 0.439784
\(231\) − 0.370581i − 0.0243824i
\(232\) − 18.0713i − 1.18644i
\(233\) 29.0026i 1.90002i 0.312218 + 0.950011i \(0.398928\pi\)
−0.312218 + 0.950011i \(0.601072\pi\)
\(234\) −24.2356 −1.58433
\(235\) 4.93703i 0.322056i
\(236\) 0.684260 0.0445415
\(237\) −1.63145 −0.105974
\(238\) 0 0
\(239\) 7.87133 0.509154 0.254577 0.967053i \(-0.418064\pi\)
0.254577 + 0.967053i \(0.418064\pi\)
\(240\) 0.454269 0.0293229
\(241\) − 11.6270i − 0.748959i −0.927235 0.374479i \(-0.877821\pi\)
0.927235 0.374479i \(-0.122179\pi\)
\(242\) 18.0247 1.15867
\(243\) 2.95157i 0.189343i
\(244\) 0.110585i 0.00707950i
\(245\) 6.51686i 0.416347i
\(246\) 0.170542 0.0108734
\(247\) 13.0979 0.833403
\(248\) − 18.4206i − 1.16971i
\(249\) − 0.553388i − 0.0350695i
\(250\) 1.43840i 0.0909723i
\(251\) −7.94692 −0.501605 −0.250803 0.968038i \(-0.580694\pi\)
−0.250803 + 0.968038i \(0.580694\pi\)
\(252\) 0.143282i 0.00902591i
\(253\) −22.4929 −1.41411
\(254\) −0.717097 −0.0449947
\(255\) 0 0
\(256\) 1.65381 0.103363
\(257\) 7.92727 0.494489 0.247245 0.968953i \(-0.420475\pi\)
0.247245 + 0.968953i \(0.420475\pi\)
\(258\) − 0.101353i − 0.00630994i
\(259\) 0.0824544 0.00512347
\(260\) 0.389037i 0.0241270i
\(261\) − 19.4400i − 1.20330i
\(262\) − 28.0978i − 1.73589i
\(263\) −8.53622 −0.526366 −0.263183 0.964746i \(-0.584772\pi\)
−0.263183 + 0.964746i \(0.584772\pi\)
\(264\) −1.48084 −0.0911396
\(265\) − 11.9864i − 0.736318i
\(266\) − 2.32228i − 0.142388i
\(267\) − 0.259003i − 0.0158507i
\(268\) −0.206563 −0.0126178
\(269\) − 15.9828i − 0.974490i −0.873265 0.487245i \(-0.838002\pi\)
0.873265 0.487245i \(-0.161998\pi\)
\(270\) 0.946629 0.0576100
\(271\) −22.5289 −1.36853 −0.684266 0.729232i \(-0.739877\pi\)
−0.684266 + 0.729232i \(0.739877\pi\)
\(272\) 0 0
\(273\) −0.430793 −0.0260728
\(274\) 5.49072 0.331706
\(275\) − 4.85089i − 0.292519i
\(276\) −0.0351587 −0.00211630
\(277\) 6.90211i 0.414708i 0.978266 + 0.207354i \(0.0664851\pi\)
−0.978266 + 0.207354i \(0.933515\pi\)
\(278\) 19.0623i 1.14328i
\(279\) − 19.8157i − 1.18633i
\(280\) −1.93064 −0.115378
\(281\) −9.38062 −0.559601 −0.279801 0.960058i \(-0.590268\pi\)
−0.279801 + 0.960058i \(0.590268\pi\)
\(282\) − 0.780493i − 0.0464777i
\(283\) − 20.5769i − 1.22317i −0.791179 0.611584i \(-0.790532\pi\)
0.791179 0.611584i \(-0.209468\pi\)
\(284\) 0.323460i 0.0191938i
\(285\) −0.255283 −0.0151216
\(286\) − 39.3465i − 2.32661i
\(287\) −0.749834 −0.0442613
\(288\) 1.16557 0.0686816
\(289\) 0 0
\(290\) −9.35848 −0.549549
\(291\) −0.296837 −0.0174009
\(292\) − 0.379382i − 0.0222017i
\(293\) −23.4539 −1.37019 −0.685097 0.728452i \(-0.740240\pi\)
−0.685097 + 0.728452i \(0.740240\pi\)
\(294\) − 1.03025i − 0.0600853i
\(295\) 9.91829i 0.577465i
\(296\) − 0.329488i − 0.0191511i
\(297\) −3.19243 −0.185244
\(298\) 25.1062 1.45436
\(299\) 26.1475i 1.51215i
\(300\) − 0.00758244i 0 0.000437772i
\(301\) 0.445624i 0.0256854i
\(302\) −16.2129 −0.932948
\(303\) 1.57194i 0.0903056i
\(304\) −9.60031 −0.550616
\(305\) −1.60292 −0.0917832
\(306\) 0 0
\(307\) 30.4260 1.73650 0.868251 0.496126i \(-0.165244\pi\)
0.868251 + 0.496126i \(0.165244\pi\)
\(308\) −0.232618 −0.0132546
\(309\) − 1.19758i − 0.0681280i
\(310\) −9.53937 −0.541800
\(311\) 1.07989i 0.0612348i 0.999531 + 0.0306174i \(0.00974734\pi\)
−0.999531 + 0.0306174i \(0.990253\pi\)
\(312\) 1.72145i 0.0974580i
\(313\) − 3.62554i − 0.204928i −0.994737 0.102464i \(-0.967327\pi\)
0.994737 0.102464i \(-0.0326726\pi\)
\(314\) 8.83955 0.498845
\(315\) −2.07686 −0.117018
\(316\) 1.02408i 0.0576090i
\(317\) 8.79483i 0.493967i 0.969020 + 0.246984i \(0.0794394\pi\)
−0.969020 + 0.246984i \(0.920561\pi\)
\(318\) 1.89492i 0.106262i
\(319\) 31.5607 1.76706
\(320\) 7.70533i 0.430741i
\(321\) −1.82746 −0.101999
\(322\) 4.63597 0.258353
\(323\) 0 0
\(324\) 0.613417 0.0340787
\(325\) −5.63906 −0.312799
\(326\) − 16.1117i − 0.892347i
\(327\) 1.16500 0.0644246
\(328\) 2.99634i 0.165445i
\(329\) 3.43165i 0.189193i
\(330\) 0.766875i 0.0422151i
\(331\) −35.1634 −1.93275 −0.966377 0.257128i \(-0.917224\pi\)
−0.966377 + 0.257128i \(0.917224\pi\)
\(332\) −0.347368 −0.0190643
\(333\) − 0.354442i − 0.0194233i
\(334\) 8.20754i 0.449097i
\(335\) − 2.99411i − 0.163586i
\(336\) 0.315755 0.0172259
\(337\) − 31.5152i − 1.71674i −0.513031 0.858370i \(-0.671477\pi\)
0.513031 0.858370i \(-0.328523\pi\)
\(338\) −27.0404 −1.47080
\(339\) 1.26829 0.0688839
\(340\) 0 0
\(341\) 32.1708 1.74214
\(342\) −9.98263 −0.539799
\(343\) 9.39536i 0.507302i
\(344\) 1.78072 0.0960098
\(345\) − 0.509622i − 0.0274371i
\(346\) − 6.52679i − 0.350882i
\(347\) 0.440312i 0.0236372i 0.999930 + 0.0118186i \(0.00376206\pi\)
−0.999930 + 0.0118186i \(0.996238\pi\)
\(348\) 0.0493327 0.00264451
\(349\) 12.4222 0.664944 0.332472 0.943113i \(-0.392117\pi\)
0.332472 + 0.943113i \(0.392117\pi\)
\(350\) 0.999809i 0.0534420i
\(351\) 3.71114i 0.198086i
\(352\) 1.89229i 0.100860i
\(353\) −7.38055 −0.392827 −0.196414 0.980521i \(-0.562929\pi\)
−0.196414 + 0.980521i \(0.562929\pi\)
\(354\) − 1.56798i − 0.0833372i
\(355\) −4.68852 −0.248841
\(356\) −0.162579 −0.00861668
\(357\) 0 0
\(358\) −26.4314 −1.39694
\(359\) 7.05177 0.372178 0.186089 0.982533i \(-0.440419\pi\)
0.186089 + 0.982533i \(0.440419\pi\)
\(360\) 8.29913i 0.437403i
\(361\) −13.6050 −0.716051
\(362\) − 15.4171i − 0.810303i
\(363\) − 1.37725i − 0.0722869i
\(364\) 0.270414i 0.0141735i
\(365\) 5.49911 0.287837
\(366\) 0.253406 0.0132457
\(367\) − 16.3167i − 0.851725i −0.904788 0.425862i \(-0.859971\pi\)
0.904788 0.425862i \(-0.140029\pi\)
\(368\) − 19.1652i − 0.999053i
\(369\) 3.22327i 0.167797i
\(370\) −0.170630 −0.00887063
\(371\) − 8.33155i − 0.432552i
\(372\) 0.0502862 0.00260722
\(373\) −18.3821 −0.951787 −0.475893 0.879503i \(-0.657875\pi\)
−0.475893 + 0.879503i \(0.657875\pi\)
\(374\) 0 0
\(375\) 0.109907 0.00567556
\(376\) 13.7129 0.707189
\(377\) − 36.6887i − 1.88957i
\(378\) 0.657987 0.0338432
\(379\) − 16.4955i − 0.847315i −0.905822 0.423657i \(-0.860746\pi\)
0.905822 0.423657i \(-0.139254\pi\)
\(380\) 0.160244i 0.00822033i
\(381\) 0.0547928i 0.00280712i
\(382\) −26.6675 −1.36443
\(383\) 36.3426 1.85702 0.928510 0.371307i \(-0.121090\pi\)
0.928510 + 0.371307i \(0.121090\pi\)
\(384\) − 1.30388i − 0.0665384i
\(385\) − 3.37178i − 0.171842i
\(386\) − 14.2199i − 0.723772i
\(387\) 1.91558 0.0973744
\(388\) 0.186328i 0.00945935i
\(389\) −6.36837 −0.322889 −0.161445 0.986882i \(-0.551615\pi\)
−0.161445 + 0.986882i \(0.551615\pi\)
\(390\) 0.891477 0.0451417
\(391\) 0 0
\(392\) 18.1010 0.914237
\(393\) −2.14693 −0.108298
\(394\) − 20.0705i − 1.01114i
\(395\) −14.8439 −0.746880
\(396\) 0.999941i 0.0502489i
\(397\) − 33.3778i − 1.67518i −0.546298 0.837591i \(-0.683963\pi\)
0.546298 0.837591i \(-0.316037\pi\)
\(398\) 18.3203i 0.918316i
\(399\) −0.177443 −0.00888327
\(400\) 4.13322 0.206661
\(401\) − 11.7500i − 0.586769i −0.955995 0.293384i \(-0.905218\pi\)
0.955995 0.293384i \(-0.0947816\pi\)
\(402\) 0.473338i 0.0236080i
\(403\) − 37.3979i − 1.86292i
\(404\) 0.986724 0.0490914
\(405\) 8.89143i 0.441819i
\(406\) −6.50494 −0.322835
\(407\) 0.575436 0.0285233
\(408\) 0 0
\(409\) 12.6834 0.627154 0.313577 0.949563i \(-0.398473\pi\)
0.313577 + 0.949563i \(0.398473\pi\)
\(410\) 1.55170 0.0766328
\(411\) − 0.419541i − 0.0206944i
\(412\) −0.751735 −0.0370353
\(413\) 6.89405i 0.339234i
\(414\) − 19.9284i − 0.979427i
\(415\) − 5.03506i − 0.247162i
\(416\) 2.19975 0.107852
\(417\) 1.45654 0.0713269
\(418\) − 16.2068i − 0.792700i
\(419\) − 35.0224i − 1.71095i −0.517840 0.855477i \(-0.673264\pi\)
0.517840 0.855477i \(-0.326736\pi\)
\(420\) − 0.00527044i 0 0.000257171i
\(421\) −10.0231 −0.488497 −0.244248 0.969713i \(-0.578541\pi\)
−0.244248 + 0.969713i \(0.578541\pi\)
\(422\) 18.5234i 0.901706i
\(423\) 14.7514 0.717240
\(424\) −33.2929 −1.61685
\(425\) 0 0
\(426\) 0.741207 0.0359116
\(427\) −1.11417 −0.0539184
\(428\) 1.14711i 0.0554479i
\(429\) −3.00643 −0.145152
\(430\) − 0.922169i − 0.0444709i
\(431\) 23.7461i 1.14381i 0.820320 + 0.571905i \(0.193795\pi\)
−0.820320 + 0.571905i \(0.806205\pi\)
\(432\) − 2.72013i − 0.130872i
\(433\) 32.2917 1.55184 0.775919 0.630832i \(-0.217286\pi\)
0.775919 + 0.630832i \(0.217286\pi\)
\(434\) −6.63067 −0.318282
\(435\) 0.715073i 0.0342851i
\(436\) − 0.731283i − 0.0350221i
\(437\) 10.7701i 0.515205i
\(438\) −0.869353 −0.0415393
\(439\) − 21.3269i − 1.01788i −0.860803 0.508939i \(-0.830038\pi\)
0.860803 0.508939i \(-0.169962\pi\)
\(440\) −13.4736 −0.642330
\(441\) 19.4719 0.927231
\(442\) 0 0
\(443\) −13.8187 −0.656546 −0.328273 0.944583i \(-0.606467\pi\)
−0.328273 + 0.944583i \(0.606467\pi\)
\(444\) 0.000899466 0 4.26868e−5 0
\(445\) − 2.35657i − 0.111712i
\(446\) 29.3732 1.39086
\(447\) − 1.91834i − 0.0907345i
\(448\) 5.35586i 0.253040i
\(449\) 6.61380i 0.312125i 0.987747 + 0.156062i \(0.0498801\pi\)
−0.987747 + 0.156062i \(0.950120\pi\)
\(450\) 4.29782 0.202601
\(451\) −5.23297 −0.246411
\(452\) − 0.796118i − 0.0374462i
\(453\) 1.23881i 0.0582046i
\(454\) − 1.75526i − 0.0823786i
\(455\) −3.91962 −0.183755
\(456\) 0.709063i 0.0332049i
\(457\) −5.01039 −0.234376 −0.117188 0.993110i \(-0.537388\pi\)
−0.117188 + 0.993110i \(0.537388\pi\)
\(458\) 5.06236 0.236548
\(459\) 0 0
\(460\) −0.319896 −0.0149152
\(461\) −16.3822 −0.762994 −0.381497 0.924370i \(-0.624591\pi\)
−0.381497 + 0.924370i \(0.624591\pi\)
\(462\) 0.533043i 0.0247994i
\(463\) −27.3768 −1.27231 −0.636153 0.771563i \(-0.719475\pi\)
−0.636153 + 0.771563i \(0.719475\pi\)
\(464\) 26.8915i 1.24841i
\(465\) 0.728895i 0.0338017i
\(466\) − 41.7172i − 1.93251i
\(467\) 0.646341 0.0299091 0.0149545 0.999888i \(-0.495240\pi\)
0.0149545 + 0.999888i \(0.495240\pi\)
\(468\) 1.16241 0.0537325
\(469\) − 2.08116i − 0.0960991i
\(470\) − 7.10141i − 0.327564i
\(471\) − 0.675423i − 0.0311218i
\(472\) 27.5487 1.26803
\(473\) 3.10994i 0.142995i
\(474\) 2.34668 0.107786
\(475\) −2.32272 −0.106574
\(476\) 0 0
\(477\) −35.8144 −1.63983
\(478\) −11.3221 −0.517861
\(479\) 13.5649i 0.619795i 0.950770 + 0.309898i \(0.100295\pi\)
−0.950770 + 0.309898i \(0.899705\pi\)
\(480\) −0.0428738 −0.00195691
\(481\) − 0.668933i − 0.0305007i
\(482\) 16.7242i 0.761767i
\(483\) − 0.354231i − 0.0161181i
\(484\) −0.864516 −0.0392962
\(485\) −2.70080 −0.122637
\(486\) − 4.24553i − 0.192581i
\(487\) 29.0339i 1.31565i 0.753170 + 0.657826i \(0.228524\pi\)
−0.753170 + 0.657826i \(0.771476\pi\)
\(488\) 4.45222i 0.201543i
\(489\) −1.23108 −0.0556716
\(490\) − 9.37384i − 0.423467i
\(491\) −13.1298 −0.592541 −0.296271 0.955104i \(-0.595743\pi\)
−0.296271 + 0.955104i \(0.595743\pi\)
\(492\) −0.00817968 −0.000368768 0
\(493\) 0 0
\(494\) −18.8401 −0.847655
\(495\) −14.4941 −0.651460
\(496\) 27.4113i 1.23080i
\(497\) −3.25892 −0.146183
\(498\) 0.795992i 0.0356692i
\(499\) 11.3410i 0.507691i 0.967245 + 0.253846i \(0.0816955\pi\)
−0.967245 + 0.253846i \(0.918305\pi\)
\(500\) − 0.0689897i − 0.00308531i
\(501\) 0.627131 0.0280182
\(502\) 11.4308 0.510183
\(503\) 20.5436i 0.915995i 0.888953 + 0.457998i \(0.151433\pi\)
−0.888953 + 0.457998i \(0.848567\pi\)
\(504\) 5.76860i 0.256954i
\(505\) 14.3025i 0.636452i
\(506\) 32.3537 1.43830
\(507\) 2.06613i 0.0917601i
\(508\) 0.0343940 0.00152599
\(509\) 8.40900 0.372722 0.186361 0.982481i \(-0.440331\pi\)
0.186361 + 0.982481i \(0.440331\pi\)
\(510\) 0 0
\(511\) 3.82235 0.169091
\(512\) 21.3482 0.943467
\(513\) 1.52861i 0.0674899i
\(514\) −11.4026 −0.502946
\(515\) − 10.8963i − 0.480150i
\(516\) 0.00486116i 0 0.000214001i
\(517\) 23.9489i 1.05327i
\(518\) −0.118602 −0.00521108
\(519\) −0.498706 −0.0218908
\(520\) 15.6628i 0.686860i
\(521\) 21.3561i 0.935627i 0.883827 + 0.467813i \(0.154958\pi\)
−0.883827 + 0.467813i \(0.845042\pi\)
\(522\) 27.9624i 1.22388i
\(523\) −24.4644 −1.06975 −0.534877 0.844930i \(-0.679642\pi\)
−0.534877 + 0.844930i \(0.679642\pi\)
\(524\) 1.34765i 0.0588724i
\(525\) 0.0763945 0.00333413
\(526\) 12.2785 0.535367
\(527\) 0 0
\(528\) 2.20361 0.0958996
\(529\) 1.49953 0.0651969
\(530\) 17.2412i 0.748909i
\(531\) 29.6351 1.28605
\(532\) 0.111383i 0.00482907i
\(533\) 6.08323i 0.263494i
\(534\) 0.372550i 0.0161218i
\(535\) −16.6273 −0.718862
\(536\) −8.31633 −0.359211
\(537\) 2.01960i 0.0871521i
\(538\) 22.9897i 0.991155i
\(539\) 31.6125i 1.36165i
\(540\) −0.0454030 −0.00195384
\(541\) 1.92406i 0.0827219i 0.999144 + 0.0413610i \(0.0131694\pi\)
−0.999144 + 0.0413610i \(0.986831\pi\)
\(542\) 32.4055 1.39194
\(543\) −1.17800 −0.0505530
\(544\) 0 0
\(545\) 10.5999 0.454049
\(546\) 0.619652 0.0265186
\(547\) − 14.7222i − 0.629475i −0.949179 0.314737i \(-0.898084\pi\)
0.949179 0.314737i \(-0.101916\pi\)
\(548\) −0.263350 −0.0112498
\(549\) 4.78941i 0.204407i
\(550\) 6.97750i 0.297522i
\(551\) − 15.1120i − 0.643794i
\(552\) −1.41551 −0.0602480
\(553\) −10.3178 −0.438757
\(554\) − 9.92798i − 0.421800i
\(555\) 0.0130377i 0 0.000553419i
\(556\) − 0.914285i − 0.0387743i
\(557\) −24.3617 −1.03224 −0.516119 0.856517i \(-0.672624\pi\)
−0.516119 + 0.856517i \(0.672624\pi\)
\(558\) 28.5029i 1.20662i
\(559\) 3.61524 0.152909
\(560\) 2.87294 0.121404
\(561\) 0 0
\(562\) 13.4931 0.569171
\(563\) 30.7200 1.29470 0.647348 0.762195i \(-0.275878\pi\)
0.647348 + 0.762195i \(0.275878\pi\)
\(564\) 0.0374347i 0.00157628i
\(565\) 11.5397 0.485477
\(566\) 29.5978i 1.24409i
\(567\) 6.18030i 0.259548i
\(568\) 13.0227i 0.546419i
\(569\) −5.35732 −0.224590 −0.112295 0.993675i \(-0.535820\pi\)
−0.112295 + 0.993675i \(0.535820\pi\)
\(570\) 0.367198 0.0153802
\(571\) 36.0360i 1.50806i 0.656839 + 0.754031i \(0.271893\pi\)
−0.656839 + 0.754031i \(0.728107\pi\)
\(572\) 1.88717i 0.0789067i
\(573\) 2.03764i 0.0851235i
\(574\) 1.07856 0.0450182
\(575\) − 4.63686i − 0.193370i
\(576\) 23.0229 0.959288
\(577\) −39.5472 −1.64637 −0.823186 0.567772i \(-0.807806\pi\)
−0.823186 + 0.567772i \(0.807806\pi\)
\(578\) 0 0
\(579\) −1.08653 −0.0451546
\(580\) 0.448860 0.0186379
\(581\) − 3.49979i − 0.145196i
\(582\) 0.426969 0.0176984
\(583\) − 58.1446i − 2.40810i
\(584\) − 15.2741i − 0.632048i
\(585\) 16.8490i 0.696622i
\(586\) 33.7361 1.39363
\(587\) −17.9282 −0.739975 −0.369988 0.929037i \(-0.620638\pi\)
−0.369988 + 0.929037i \(0.620638\pi\)
\(588\) 0.0494137i 0.00203778i
\(589\) − 15.4041i − 0.634716i
\(590\) − 14.2665i − 0.587341i
\(591\) −1.53357 −0.0630827
\(592\) 0.490303i 0.0201513i
\(593\) 15.2975 0.628192 0.314096 0.949391i \(-0.398299\pi\)
0.314096 + 0.949391i \(0.398299\pi\)
\(594\) 4.59199 0.188412
\(595\) 0 0
\(596\) −1.20416 −0.0493245
\(597\) 1.39984 0.0572917
\(598\) − 37.6105i − 1.53801i
\(599\) 34.6498 1.41575 0.707877 0.706336i \(-0.249653\pi\)
0.707877 + 0.706336i \(0.249653\pi\)
\(600\) − 0.305273i − 0.0124627i
\(601\) − 16.0361i − 0.654126i −0.945003 0.327063i \(-0.893941\pi\)
0.945003 0.327063i \(-0.106059\pi\)
\(602\) − 0.640985i − 0.0261246i
\(603\) −8.94617 −0.364316
\(604\) 0.777618 0.0316408
\(605\) − 12.5311i − 0.509461i
\(606\) − 2.26108i − 0.0918499i
\(607\) − 36.5119i − 1.48197i −0.671521 0.740986i \(-0.734359\pi\)
0.671521 0.740986i \(-0.265641\pi\)
\(608\) 0.906076 0.0367462
\(609\) 0.497037i 0.0201409i
\(610\) 2.30564 0.0933528
\(611\) 27.8402 1.12629
\(612\) 0 0
\(613\) 33.2758 1.34400 0.671998 0.740553i \(-0.265436\pi\)
0.671998 + 0.740553i \(0.265436\pi\)
\(614\) −43.7647 −1.76620
\(615\) − 0.118564i − 0.00478095i
\(616\) −9.36532 −0.377339
\(617\) 31.7084i 1.27653i 0.769815 + 0.638267i \(0.220348\pi\)
−0.769815 + 0.638267i \(0.779652\pi\)
\(618\) 1.72260i 0.0692931i
\(619\) 40.8302i 1.64110i 0.571572 + 0.820552i \(0.306334\pi\)
−0.571572 + 0.820552i \(0.693666\pi\)
\(620\) 0.457535 0.0183751
\(621\) −3.05158 −0.122456
\(622\) − 1.55331i − 0.0622820i
\(623\) − 1.63802i − 0.0656258i
\(624\) − 2.56165i − 0.102548i
\(625\) 1.00000 0.0400000
\(626\) 5.21497i 0.208432i
\(627\) −1.23835 −0.0494548
\(628\) −0.423970 −0.0169183
\(629\) 0 0
\(630\) 2.98735 0.119019
\(631\) 15.8001 0.628992 0.314496 0.949259i \(-0.398165\pi\)
0.314496 + 0.949259i \(0.398165\pi\)
\(632\) 41.2300i 1.64004i
\(633\) 1.41536 0.0562555
\(634\) − 12.6505i − 0.502415i
\(635\) 0.498539i 0.0197839i
\(636\) − 0.0908860i − 0.00360386i
\(637\) 36.7489 1.45605
\(638\) −45.3969 −1.79728
\(639\) 14.0089i 0.554185i
\(640\) − 11.8635i − 0.468947i
\(641\) − 24.9339i − 0.984831i −0.870360 0.492415i \(-0.836114\pi\)
0.870360 0.492415i \(-0.163886\pi\)
\(642\) 2.62861 0.103743
\(643\) 24.0161i 0.947103i 0.880766 + 0.473552i \(0.157028\pi\)
−0.880766 + 0.473552i \(0.842972\pi\)
\(644\) −0.222355 −0.00876200
\(645\) −0.0704621 −0.00277444
\(646\) 0 0
\(647\) −23.8307 −0.936882 −0.468441 0.883495i \(-0.655184\pi\)
−0.468441 + 0.883495i \(0.655184\pi\)
\(648\) 24.6965 0.970170
\(649\) 48.1125i 1.88858i
\(650\) 8.11121 0.318148
\(651\) 0.506644i 0.0198569i
\(652\) 0.772766i 0.0302638i
\(653\) − 16.5191i − 0.646441i −0.946324 0.323221i \(-0.895234\pi\)
0.946324 0.323221i \(-0.104766\pi\)
\(654\) −1.67573 −0.0655264
\(655\) −19.5341 −0.763260
\(656\) − 4.45878i − 0.174086i
\(657\) − 16.4309i − 0.641031i
\(658\) − 4.93608i − 0.192428i
\(659\) 10.2510 0.399324 0.199662 0.979865i \(-0.436016\pi\)
0.199662 + 0.979865i \(0.436016\pi\)
\(660\) − 0.0367815i − 0.00143172i
\(661\) 21.3416 0.830090 0.415045 0.909801i \(-0.363766\pi\)
0.415045 + 0.909801i \(0.363766\pi\)
\(662\) 50.5790 1.96581
\(663\) 0 0
\(664\) −13.9852 −0.542731
\(665\) −1.61449 −0.0626071
\(666\) 0.509829i 0.0197555i
\(667\) 30.1683 1.16812
\(668\) − 0.393657i − 0.0152311i
\(669\) − 2.24438i − 0.0867728i
\(670\) 4.30672i 0.166383i
\(671\) −7.77560 −0.300174
\(672\) −0.0298009 −0.00114960
\(673\) − 27.5159i − 1.06066i −0.847791 0.530331i \(-0.822068\pi\)
0.847791 0.530331i \(-0.177932\pi\)
\(674\) 45.3314i 1.74610i
\(675\) − 0.658113i − 0.0253308i
\(676\) 1.29693 0.0498821
\(677\) 17.0437i 0.655042i 0.944844 + 0.327521i \(0.106213\pi\)
−0.944844 + 0.327521i \(0.893787\pi\)
\(678\) −1.82430 −0.0700619
\(679\) −1.87729 −0.0720437
\(680\) 0 0
\(681\) −0.134118 −0.00513942
\(682\) −46.2744 −1.77194
\(683\) 3.12281i 0.119491i 0.998214 + 0.0597456i \(0.0190289\pi\)
−0.998214 + 0.0597456i \(0.980971\pi\)
\(684\) 0.478796 0.0183072
\(685\) − 3.81724i − 0.145849i
\(686\) − 13.5143i − 0.515977i
\(687\) − 0.386810i − 0.0147577i
\(688\) −2.64984 −0.101024
\(689\) −67.5919 −2.57505
\(690\) 0.733040i 0.0279064i
\(691\) 36.1278i 1.37437i 0.726484 + 0.687184i \(0.241153\pi\)
−0.726484 + 0.687184i \(0.758847\pi\)
\(692\) 0.313044i 0.0119001i
\(693\) −10.0746 −0.382702
\(694\) − 0.633344i − 0.0240414i
\(695\) 13.2525 0.502695
\(696\) 1.98616 0.0752852
\(697\) 0 0
\(698\) −17.8680 −0.676315
\(699\) −3.18758 −0.120565
\(700\) − 0.0479537i − 0.00181248i
\(701\) −18.1677 −0.686185 −0.343093 0.939302i \(-0.611474\pi\)
−0.343093 + 0.939302i \(0.611474\pi\)
\(702\) − 5.33809i − 0.201473i
\(703\) − 0.275533i − 0.0103919i
\(704\) 37.3777i 1.40872i
\(705\) −0.542613 −0.0204360
\(706\) 10.6162 0.399545
\(707\) 9.94144i 0.373886i
\(708\) 0.0752048i 0.00282637i
\(709\) − 11.6045i − 0.435817i −0.975969 0.217909i \(-0.930077\pi\)
0.975969 0.217909i \(-0.0699235\pi\)
\(710\) 6.74396 0.253096
\(711\) 44.3525i 1.66335i
\(712\) −6.54553 −0.245304
\(713\) 30.7514 1.15165
\(714\) 0 0
\(715\) −27.3544 −1.02300
\(716\) 1.26772 0.0473771
\(717\) 0.865112i 0.0323082i
\(718\) −10.1433 −0.378543
\(719\) − 25.7861i − 0.961658i −0.876814 0.480829i \(-0.840336\pi\)
0.876814 0.480829i \(-0.159664\pi\)
\(720\) − 12.3497i − 0.460247i
\(721\) − 7.57388i − 0.282066i
\(722\) 19.5694 0.728296
\(723\) 1.27788 0.0475249
\(724\) 0.739447i 0.0274813i
\(725\) 6.50618i 0.241634i
\(726\) 1.98104i 0.0735231i
\(727\) 17.7430 0.658051 0.329025 0.944321i \(-0.393280\pi\)
0.329025 + 0.944321i \(0.393280\pi\)
\(728\) 10.8870i 0.403499i
\(729\) 26.3499 0.975922
\(730\) −7.90991 −0.292759
\(731\) 0 0
\(732\) −0.0121541 −0.000449227 0
\(733\) 26.8221 0.990695 0.495348 0.868695i \(-0.335041\pi\)
0.495348 + 0.868695i \(0.335041\pi\)
\(734\) 23.4699i 0.866290i
\(735\) −0.716247 −0.0264192
\(736\) 1.80880i 0.0666734i
\(737\) − 14.5241i − 0.535002i
\(738\) − 4.63634i − 0.170666i
\(739\) −0.451458 −0.0166071 −0.00830357 0.999966i \(-0.502643\pi\)
−0.00830357 + 0.999966i \(0.502643\pi\)
\(740\) 0.00818390 0.000300846 0
\(741\) 1.43955i 0.0528833i
\(742\) 11.9841i 0.439950i
\(743\) − 20.6466i − 0.757450i −0.925509 0.378725i \(-0.876363\pi\)
0.925509 0.378725i \(-0.123637\pi\)
\(744\) 2.02455 0.0742236
\(745\) − 17.4543i − 0.639475i
\(746\) 26.4407 0.968063
\(747\) −15.0444 −0.550445
\(748\) 0 0
\(749\) −11.5574 −0.422298
\(750\) −0.158090 −0.00577262
\(751\) − 26.7059i − 0.974514i −0.873259 0.487257i \(-0.837998\pi\)
0.873259 0.487257i \(-0.162002\pi\)
\(752\) −20.4058 −0.744123
\(753\) − 0.873420i − 0.0318292i
\(754\) 52.7730i 1.92188i
\(755\) 11.2715i 0.410212i
\(756\) −0.0315589 −0.00114779
\(757\) −19.3283 −0.702499 −0.351250 0.936282i \(-0.614243\pi\)
−0.351250 + 0.936282i \(0.614243\pi\)
\(758\) 23.7270i 0.861805i
\(759\) − 2.47212i − 0.0897322i
\(760\) 6.45150i 0.234020i
\(761\) −9.52382 −0.345238 −0.172619 0.984989i \(-0.555223\pi\)
−0.172619 + 0.984989i \(0.555223\pi\)
\(762\) − 0.0788138i − 0.00285512i
\(763\) 7.36782 0.266733
\(764\) 1.27905 0.0462743
\(765\) 0 0
\(766\) −52.2751 −1.88878
\(767\) 55.9298 2.01951
\(768\) 0.181764i 0.00655886i
\(769\) 21.8393 0.787544 0.393772 0.919208i \(-0.371170\pi\)
0.393772 + 0.919208i \(0.371170\pi\)
\(770\) 4.84996i 0.174780i
\(771\) 0.871260i 0.0313777i
\(772\) 0.682026i 0.0245466i
\(773\) 18.2320 0.655760 0.327880 0.944719i \(-0.393666\pi\)
0.327880 + 0.944719i \(0.393666\pi\)
\(774\) −2.75537 −0.0990396
\(775\) 6.63194i 0.238226i
\(776\) 7.50165i 0.269294i
\(777\) 0.00906229i 0 0.000325108i
\(778\) 9.16025 0.328411
\(779\) 2.50567i 0.0897751i
\(780\) −0.0427578 −0.00153097
\(781\) −22.7435 −0.813826
\(782\) 0 0
\(783\) 4.28180 0.153019
\(784\) −26.9356 −0.961986
\(785\) − 6.14541i − 0.219339i
\(786\) 3.08814 0.110150
\(787\) 10.0983i 0.359967i 0.983670 + 0.179983i \(0.0576044\pi\)
−0.983670 + 0.179983i \(0.942396\pi\)
\(788\) 0.962641i 0.0342927i
\(789\) − 0.938188i − 0.0334004i
\(790\) 21.3515 0.759653
\(791\) 8.02104 0.285195
\(792\) 40.2581i 1.43051i
\(793\) 9.03898i 0.320984i
\(794\) 48.0105i 1.70383i
\(795\) 1.31738 0.0467228
\(796\) − 0.878696i − 0.0311446i
\(797\) 30.2149 1.07027 0.535133 0.844768i \(-0.320262\pi\)
0.535133 + 0.844768i \(0.320262\pi\)
\(798\) 0.255234 0.00903518
\(799\) 0 0
\(800\) −0.390093 −0.0137919
\(801\) −7.04125 −0.248790
\(802\) 16.9012i 0.596803i
\(803\) 26.6756 0.941360
\(804\) − 0.0227027i 0 0.000800661i
\(805\) − 3.22301i − 0.113596i
\(806\) 53.7930i 1.89478i
\(807\) 1.75662 0.0618360
\(808\) 39.7260 1.39756
\(809\) 25.8073i 0.907337i 0.891170 + 0.453669i \(0.149885\pi\)
−0.891170 + 0.453669i \(0.850115\pi\)
\(810\) − 12.7894i − 0.449374i
\(811\) 47.1759i 1.65657i 0.560308 + 0.828284i \(0.310683\pi\)
−0.560308 + 0.828284i \(0.689317\pi\)
\(812\) 0.311995 0.0109489
\(813\) − 2.47608i − 0.0868399i
\(814\) −0.827706 −0.0290111
\(815\) −11.2012 −0.392360
\(816\) 0 0
\(817\) 1.48911 0.0520975
\(818\) −18.2438 −0.637880
\(819\) 11.7115i 0.409233i
\(820\) −0.0744238 −0.00259899
\(821\) − 34.8152i − 1.21506i −0.794297 0.607530i \(-0.792161\pi\)
0.794297 0.607530i \(-0.207839\pi\)
\(822\) 0.603467i 0.0210483i
\(823\) − 11.9291i − 0.415823i −0.978148 0.207912i \(-0.933333\pi\)
0.978148 0.207912i \(-0.0666666\pi\)
\(824\) −30.2652 −1.05434
\(825\) 0.533145 0.0185617
\(826\) − 9.91639i − 0.345035i
\(827\) 7.58265i 0.263674i 0.991271 + 0.131837i \(0.0420876\pi\)
−0.991271 + 0.131837i \(0.957912\pi\)
\(828\) 0.955823i 0.0332171i
\(829\) 24.5064 0.851141 0.425570 0.904925i \(-0.360073\pi\)
0.425570 + 0.904925i \(0.360073\pi\)
\(830\) 7.24243i 0.251388i
\(831\) −0.758589 −0.0263152
\(832\) 43.4508 1.50639
\(833\) 0 0
\(834\) −2.09508 −0.0725467
\(835\) 5.70603 0.197465
\(836\) 0.777324i 0.0268843i
\(837\) 4.36456 0.150861
\(838\) 50.3761i 1.74021i
\(839\) − 13.9747i − 0.482462i −0.970468 0.241231i \(-0.922449\pi\)
0.970468 0.241231i \(-0.0775511\pi\)
\(840\) − 0.212190i − 0.00732127i
\(841\) −13.3304 −0.459669
\(842\) 14.4172 0.496850
\(843\) − 1.03099i − 0.0355093i
\(844\) − 0.888437i − 0.0305813i
\(845\) 18.7989i 0.646703i
\(846\) −21.2184 −0.729505
\(847\) − 8.71017i − 0.299285i
\(848\) 49.5423 1.70129
\(849\) 2.26154 0.0776158
\(850\) 0 0
\(851\) 0.550047 0.0188554
\(852\) −0.0355504 −0.00121794
\(853\) 7.40009i 0.253374i 0.991943 + 0.126687i \(0.0404344\pi\)
−0.991943 + 0.126687i \(0.959566\pi\)
\(854\) 1.60262 0.0548404
\(855\) 6.94010i 0.237347i
\(856\) 46.1834i 1.57852i
\(857\) − 48.3185i − 1.65053i −0.564748 0.825264i \(-0.691027\pi\)
0.564748 0.825264i \(-0.308973\pi\)
\(858\) 4.32445 0.147634
\(859\) 5.21085 0.177792 0.0888959 0.996041i \(-0.471666\pi\)
0.0888959 + 0.996041i \(0.471666\pi\)
\(860\) 0.0442299i 0.00150823i
\(861\) − 0.0824119i − 0.00280859i
\(862\) − 34.1563i − 1.16337i
\(863\) 7.90307 0.269024 0.134512 0.990912i \(-0.457053\pi\)
0.134512 + 0.990912i \(0.457053\pi\)
\(864\) 0.256725i 0.00873396i
\(865\) −4.53754 −0.154281
\(866\) −46.4483 −1.57838
\(867\) 0 0
\(868\) 0.318026 0.0107945
\(869\) −72.0063 −2.44265
\(870\) − 1.02856i − 0.0348715i
\(871\) −16.8840 −0.572091
\(872\) − 29.4419i − 0.997027i
\(873\) 8.06979i 0.273121i
\(874\) − 15.4917i − 0.524016i
\(875\) 0.695085 0.0234982
\(876\) 0.0416967 0.00140880
\(877\) − 27.5064i − 0.928824i −0.885619 0.464412i \(-0.846266\pi\)
0.885619 0.464412i \(-0.153734\pi\)
\(878\) 30.6766i 1.03528i
\(879\) − 2.57775i − 0.0869452i
\(880\) 20.0498 0.675878
\(881\) 19.7314i 0.664769i 0.943144 + 0.332384i \(0.107853\pi\)
−0.943144 + 0.332384i \(0.892147\pi\)
\(882\) −28.0083 −0.943088
\(883\) 21.8566 0.735534 0.367767 0.929918i \(-0.380122\pi\)
0.367767 + 0.929918i \(0.380122\pi\)
\(884\) 0 0
\(885\) −1.09009 −0.0366429
\(886\) 19.8768 0.667774
\(887\) − 2.77874i − 0.0933011i −0.998911 0.0466505i \(-0.985145\pi\)
0.998911 0.0466505i \(-0.0148547\pi\)
\(888\) 0.0362130 0.00121523
\(889\) 0.346526i 0.0116221i
\(890\) 3.38969i 0.113623i
\(891\) 43.1313i 1.44495i
\(892\) −1.40882 −0.0471709
\(893\) 11.4673 0.383740
\(894\) 2.75934i 0.0922861i
\(895\) 18.3756i 0.614227i
\(896\) − 8.24615i − 0.275485i
\(897\) −2.87379 −0.0959530
\(898\) − 9.51328i − 0.317462i
\(899\) −43.1486 −1.43909
\(900\) −0.206136 −0.00687119
\(901\) 0 0
\(902\) 7.52710 0.250625
\(903\) −0.0489771 −0.00162986
\(904\) − 32.0521i − 1.06604i
\(905\) −10.7182 −0.356286
\(906\) − 1.78191i − 0.0592000i
\(907\) 42.4769i 1.41042i 0.708998 + 0.705210i \(0.249147\pi\)
−0.708998 + 0.705210i \(0.750853\pi\)
\(908\) 0.0841875i 0.00279386i
\(909\) 42.7347 1.41742
\(910\) 5.63798 0.186897
\(911\) − 59.0680i − 1.95701i −0.206223 0.978505i \(-0.566117\pi\)
0.206223 0.978505i \(-0.433883\pi\)
\(912\) − 1.05514i − 0.0349392i
\(913\) − 24.4245i − 0.808333i
\(914\) 7.20694 0.238384
\(915\) − 0.176172i − 0.00582407i
\(916\) −0.242805 −0.00802251
\(917\) −13.5778 −0.448380
\(918\) 0 0
\(919\) 26.5657 0.876323 0.438161 0.898896i \(-0.355630\pi\)
0.438161 + 0.898896i \(0.355630\pi\)
\(920\) −12.8792 −0.424614
\(921\) 3.34402i 0.110189i
\(922\) 23.5641 0.776042
\(923\) 26.4388i 0.870245i
\(924\) − 0.0255663i 0 0.000841069i
\(925\) 0.118625i 0.00390036i
\(926\) 39.3787 1.29406
\(927\) −32.5574 −1.06932
\(928\) − 2.53801i − 0.0833144i
\(929\) − 38.9968i − 1.27944i −0.768606 0.639722i \(-0.779049\pi\)
0.768606 0.639722i \(-0.220951\pi\)
\(930\) − 1.04844i − 0.0343797i
\(931\) 15.1368 0.496090
\(932\) 2.00088i 0.0655410i
\(933\) −0.118687 −0.00388563
\(934\) −0.929695 −0.0304206
\(935\) 0 0
\(936\) 46.7993 1.52968
\(937\) −9.80514 −0.320320 −0.160160 0.987091i \(-0.551201\pi\)
−0.160160 + 0.987091i \(0.551201\pi\)
\(938\) 2.99354i 0.0977425i
\(939\) 0.398471 0.0130036
\(940\) 0.340604i 0.0111093i
\(941\) − 49.2240i − 1.60466i −0.596884 0.802328i \(-0.703595\pi\)
0.596884 0.802328i \(-0.296405\pi\)
\(942\) 0.971527i 0.0316540i
\(943\) −5.00209 −0.162890
\(944\) −40.9945 −1.33426
\(945\) − 0.457444i − 0.0148807i
\(946\) − 4.47333i − 0.145441i
\(947\) − 18.1975i − 0.591339i −0.955290 0.295669i \(-0.904457\pi\)
0.955290 0.295669i \(-0.0955426\pi\)
\(948\) −0.112553 −0.00365556
\(949\) − 31.0098i − 1.00662i
\(950\) 3.34100 0.108396
\(951\) −0.966612 −0.0313445
\(952\) 0 0
\(953\) −5.23591 −0.169608 −0.0848039 0.996398i \(-0.527026\pi\)
−0.0848039 + 0.996398i \(0.527026\pi\)
\(954\) 51.5153 1.66787
\(955\) 18.5397i 0.599930i
\(956\) 0.543041 0.0175632
\(957\) 3.46874i 0.112128i
\(958\) − 19.5117i − 0.630395i
\(959\) − 2.65331i − 0.0856797i
\(960\) −0.846868 −0.0273326
\(961\) −12.9826 −0.418793
\(962\) 0.962191i 0.0310223i
\(963\) 49.6811i 1.60095i
\(964\) − 0.802141i − 0.0258352i
\(965\) −9.88591 −0.318239
\(966\) 0.509525i 0.0163937i
\(967\) −3.19462 −0.102732 −0.0513661 0.998680i \(-0.516358\pi\)
−0.0513661 + 0.998680i \(0.516358\pi\)
\(968\) −34.8059 −1.11870
\(969\) 0 0
\(970\) 3.88483 0.124734
\(971\) 27.2613 0.874856 0.437428 0.899253i \(-0.355890\pi\)
0.437428 + 0.899253i \(0.355890\pi\)
\(972\) 0.203628i 0.00653136i
\(973\) 9.21160 0.295310
\(974\) − 41.7623i − 1.33815i
\(975\) − 0.619770i − 0.0198485i
\(976\) − 6.62524i − 0.212069i
\(977\) −8.00610 −0.256138 −0.128069 0.991765i \(-0.540878\pi\)
−0.128069 + 0.991765i \(0.540878\pi\)
\(978\) 1.77079 0.0566236
\(979\) − 11.4315i − 0.365351i
\(980\) 0.449596i 0.0143618i
\(981\) − 31.6716i − 1.01120i
\(982\) 18.8859 0.602674
\(983\) 10.9464i 0.349137i 0.984645 + 0.174569i \(0.0558531\pi\)
−0.984645 + 0.174569i \(0.944147\pi\)
\(984\) −0.329318 −0.0104983
\(985\) −13.9534 −0.444592
\(986\) 0 0
\(987\) −0.377162 −0.0120052
\(988\) 0.903624 0.0287481
\(989\) 2.97273i 0.0945273i
\(990\) 20.8482 0.662600
\(991\) − 29.0834i − 0.923863i −0.886915 0.461932i \(-0.847157\pi\)
0.886915 0.461932i \(-0.152843\pi\)
\(992\) − 2.58707i − 0.0821395i
\(993\) − 3.86470i − 0.122642i
\(994\) 4.68762 0.148682
\(995\) 12.7366 0.403778
\(996\) − 0.0381780i − 0.00120972i
\(997\) − 13.6956i − 0.433745i −0.976200 0.216873i \(-0.930414\pi\)
0.976200 0.216873i \(-0.0695856\pi\)
\(998\) − 16.3128i − 0.516373i
\(999\) 0.0780686 0.00246998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.j.866.6 24
17.4 even 4 1445.2.a.p.1.10 12
17.5 odd 16 85.2.l.a.26.5 24
17.10 odd 16 85.2.l.a.36.5 yes 24
17.13 even 4 1445.2.a.q.1.10 12
17.16 even 2 inner 1445.2.d.j.866.5 24
51.5 even 16 765.2.be.b.451.2 24
51.44 even 16 765.2.be.b.631.2 24
85.4 even 4 7225.2.a.bs.1.3 12
85.22 even 16 425.2.n.f.349.5 24
85.27 even 16 425.2.n.c.274.2 24
85.39 odd 16 425.2.m.b.26.2 24
85.44 odd 16 425.2.m.b.376.2 24
85.64 even 4 7225.2.a.bq.1.3 12
85.73 even 16 425.2.n.c.349.2 24
85.78 even 16 425.2.n.f.274.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.5 24 17.5 odd 16
85.2.l.a.36.5 yes 24 17.10 odd 16
425.2.m.b.26.2 24 85.39 odd 16
425.2.m.b.376.2 24 85.44 odd 16
425.2.n.c.274.2 24 85.27 even 16
425.2.n.c.349.2 24 85.73 even 16
425.2.n.f.274.5 24 85.78 even 16
425.2.n.f.349.5 24 85.22 even 16
765.2.be.b.451.2 24 51.5 even 16
765.2.be.b.631.2 24 51.44 even 16
1445.2.a.p.1.10 12 17.4 even 4
1445.2.a.q.1.10 12 17.13 even 4
1445.2.d.j.866.5 24 17.16 even 2 inner
1445.2.d.j.866.6 24 1.1 even 1 trivial
7225.2.a.bq.1.3 12 85.64 even 4
7225.2.a.bs.1.3 12 85.4 even 4