Properties

Label 425.2.n.f.274.5
Level $425$
Weight $2$
Character 425.274
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 274.5
Character \(\chi\) \(=\) 425.274
Dual form 425.2.n.f.349.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01710 - 1.01710i) q^{2} +(-0.0420595 - 0.101541i) q^{3} -0.0689897i q^{4} +(-0.146056 - 0.0604983i) q^{6} +(0.642174 + 0.265997i) q^{7} +(1.96403 + 1.96403i) q^{8} +(2.11278 - 2.11278i) q^{9} +(-4.48163 - 1.85635i) q^{11} +(-0.00700526 + 0.00290167i) q^{12} +5.63906 q^{13} +(0.923703 - 0.382610i) q^{14} +4.13322 q^{16} +(3.78674 - 1.63113i) q^{17} -4.29782i q^{18} +(1.64241 + 1.64241i) q^{19} -0.0763945i q^{21} +(-6.44637 + 2.67018i) q^{22} +(-1.77445 + 4.28390i) q^{23} +(0.116823 - 0.282035i) q^{24} +(5.73549 - 5.73549i) q^{26} +(-0.608017 - 0.251849i) q^{27} +(0.0183511 - 0.0443034i) q^{28} +(-2.48981 - 6.01093i) q^{29} +(-6.12711 + 2.53793i) q^{31} +(0.275837 - 0.275837i) q^{32} +0.533145i q^{33} +(2.19248 - 5.51052i) q^{34} +(-0.145760 - 0.145760i) q^{36} +(-0.0453958 - 0.109595i) q^{37} +3.34100 q^{38} +(-0.237176 - 0.572593i) q^{39} +(-0.412826 + 0.996650i) q^{41} +(-0.0777010 - 0.0777010i) q^{42} +(-0.453332 - 0.453332i) q^{43} +(-0.128069 + 0.309187i) q^{44} +(2.55237 + 6.16195i) q^{46} -4.93703 q^{47} +(-0.173841 - 0.419690i) q^{48} +(-4.60811 - 4.60811i) q^{49} +(-0.324894 - 0.315904i) q^{51} -0.389037i q^{52} +(-8.47565 + 8.47565i) q^{53} +(-0.874571 + 0.362259i) q^{54} +(0.738824 + 1.78368i) q^{56} +(0.0976925 - 0.235850i) q^{57} +(-8.64611 - 3.58134i) q^{58} +(-7.01329 + 7.01329i) q^{59} +(0.613413 - 1.48091i) q^{61} +(-3.65056 + 8.81322i) q^{62} +(1.91877 - 0.794779i) q^{63} +7.70533i q^{64} +(0.542263 + 0.542263i) q^{66} -2.99411i q^{67} +(-0.112531 - 0.261246i) q^{68} +0.509622 q^{69} +(-4.33163 + 1.79422i) q^{71} +8.29913 q^{72} +(5.08052 - 2.10442i) q^{73} +(-0.157641 - 0.0652972i) q^{74} +(0.113309 - 0.113309i) q^{76} +(-2.38421 - 2.38421i) q^{77} +(-0.823617 - 0.341153i) q^{78} +(13.7140 + 5.68053i) q^{79} -8.89143i q^{81} +(0.593808 + 1.43358i) q^{82} +(3.56033 - 3.56033i) q^{83} -0.00527044 q^{84} -0.922169 q^{86} +(-0.505633 + 0.505633i) q^{87} +(-5.15614 - 12.4480i) q^{88} +2.35657i q^{89} +(3.62126 + 1.49997i) q^{91} +(0.295545 + 0.122419i) q^{92} +(0.515406 + 0.515406i) q^{93} +(-5.02145 + 5.02145i) q^{94} +(-0.0396102 - 0.0164071i) q^{96} +(-2.49522 + 1.03355i) q^{97} -9.37384 q^{98} +(-13.3908 + 5.54664i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} - 40 q^{12} - 16 q^{13} - 24 q^{16} + 8 q^{19} + 24 q^{22} - 8 q^{23} + 8 q^{24} + 16 q^{26} - 16 q^{27} + 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} + 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.01710 1.01710i 0.719199 0.719199i −0.249242 0.968441i \(-0.580181\pi\)
0.968441 + 0.249242i \(0.0801815\pi\)
\(3\) −0.0420595 0.101541i −0.0242831 0.0586245i 0.911273 0.411803i \(-0.135101\pi\)
−0.935556 + 0.353179i \(0.885101\pi\)
\(4\) 0.0689897i 0.0344949i
\(5\) 0 0
\(6\) −0.146056 0.0604983i −0.0596271 0.0246983i
\(7\) 0.642174 + 0.265997i 0.242719 + 0.100538i 0.500727 0.865605i \(-0.333066\pi\)
−0.258008 + 0.966143i \(0.583066\pi\)
\(8\) 1.96403 + 1.96403i 0.694390 + 0.694390i
\(9\) 2.11278 2.11278i 0.704260 0.704260i
\(10\) 0 0
\(11\) −4.48163 1.85635i −1.35126 0.559712i −0.414620 0.909995i \(-0.636085\pi\)
−0.936644 + 0.350283i \(0.886085\pi\)
\(12\) −0.00700526 + 0.00290167i −0.00202224 + 0.000837641i
\(13\) 5.63906 1.56399 0.781996 0.623283i \(-0.214202\pi\)
0.781996 + 0.623283i \(0.214202\pi\)
\(14\) 0.923703 0.382610i 0.246870 0.102257i
\(15\) 0 0
\(16\) 4.13322 1.03330
\(17\) 3.78674 1.63113i 0.918420 0.395606i
\(18\) 4.29782i 1.01301i
\(19\) 1.64241 + 1.64241i 0.376795 + 0.376795i 0.869945 0.493150i \(-0.164154\pi\)
−0.493150 + 0.869945i \(0.664154\pi\)
\(20\) 0 0
\(21\) 0.0763945i 0.0166706i
\(22\) −6.44637 + 2.67018i −1.37437 + 0.569283i
\(23\) −1.77445 + 4.28390i −0.369998 + 0.893255i 0.623751 + 0.781623i \(0.285608\pi\)
−0.993750 + 0.111632i \(0.964392\pi\)
\(24\) 0.116823 0.282035i 0.0238464 0.0575702i
\(25\) 0 0
\(26\) 5.73549 5.73549i 1.12482 1.12482i
\(27\) −0.608017 0.251849i −0.117013 0.0484684i
\(28\) 0.0183511 0.0443034i 0.00346803 0.00837256i
\(29\) −2.48981 6.01093i −0.462346 1.11620i −0.967432 0.253132i \(-0.918539\pi\)
0.505086 0.863069i \(-0.331461\pi\)
\(30\) 0 0
\(31\) −6.12711 + 2.53793i −1.10046 + 0.455826i −0.857643 0.514246i \(-0.828072\pi\)
−0.242819 + 0.970072i \(0.578072\pi\)
\(32\) 0.275837 0.275837i 0.0487616 0.0487616i
\(33\) 0.533145i 0.0928087i
\(34\) 2.19248 5.51052i 0.376008 0.945047i
\(35\) 0 0
\(36\) −0.145760 0.145760i −0.0242933 0.0242933i
\(37\) −0.0453958 0.109595i −0.00746302 0.0180173i 0.920104 0.391674i \(-0.128104\pi\)
−0.927567 + 0.373657i \(0.878104\pi\)
\(38\) 3.34100 0.541981
\(39\) −0.237176 0.572593i −0.0379785 0.0916883i
\(40\) 0 0
\(41\) −0.412826 + 0.996650i −0.0644726 + 0.155651i −0.952832 0.303498i \(-0.901845\pi\)
0.888359 + 0.459149i \(0.151845\pi\)
\(42\) −0.0777010 0.0777010i −0.0119895 0.0119895i
\(43\) −0.453332 0.453332i −0.0691325 0.0691325i 0.671695 0.740828i \(-0.265566\pi\)
−0.740828 + 0.671695i \(0.765566\pi\)
\(44\) −0.128069 + 0.309187i −0.0193072 + 0.0466116i
\(45\) 0 0
\(46\) 2.55237 + 6.16195i 0.376326 + 0.908531i
\(47\) −4.93703 −0.720139 −0.360070 0.932925i \(-0.617247\pi\)
−0.360070 + 0.932925i \(0.617247\pi\)
\(48\) −0.173841 0.419690i −0.0250918 0.0605770i
\(49\) −4.60811 4.60811i −0.658302 0.658302i
\(50\) 0 0
\(51\) −0.324894 0.315904i −0.0454943 0.0442354i
\(52\) 0.389037i 0.0539497i
\(53\) −8.47565 + 8.47565i −1.16422 + 1.16422i −0.180678 + 0.983542i \(0.557829\pi\)
−0.983542 + 0.180678i \(0.942171\pi\)
\(54\) −0.874571 + 0.362259i −0.119014 + 0.0492972i
\(55\) 0 0
\(56\) 0.738824 + 1.78368i 0.0987295 + 0.238354i
\(57\) 0.0976925 0.235850i 0.0129397 0.0312392i
\(58\) −8.64611 3.58134i −1.13529 0.470252i
\(59\) −7.01329 + 7.01329i −0.913053 + 0.913053i −0.996511 0.0834587i \(-0.973403\pi\)
0.0834587 + 0.996511i \(0.473403\pi\)
\(60\) 0 0
\(61\) 0.613413 1.48091i 0.0785394 0.189611i −0.879733 0.475469i \(-0.842278\pi\)
0.958272 + 0.285858i \(0.0922785\pi\)
\(62\) −3.65056 + 8.81322i −0.463621 + 1.11928i
\(63\) 1.91877 0.794779i 0.241742 0.100133i
\(64\) 7.70533i 0.963166i
\(65\) 0 0
\(66\) 0.542263 + 0.542263i 0.0667479 + 0.0667479i
\(67\) 2.99411i 0.365789i −0.983133 0.182894i \(-0.941453\pi\)
0.983133 0.182894i \(-0.0585467\pi\)
\(68\) −0.112531 0.261246i −0.0136464 0.0316808i
\(69\) 0.509622 0.0613513
\(70\) 0 0
\(71\) −4.33163 + 1.79422i −0.514070 + 0.212935i −0.624610 0.780937i \(-0.714742\pi\)
0.110540 + 0.993872i \(0.464742\pi\)
\(72\) 8.29913 0.978062
\(73\) 5.08052 2.10442i 0.594629 0.246304i −0.0650115 0.997885i \(-0.520708\pi\)
0.659641 + 0.751581i \(0.270708\pi\)
\(74\) −0.157641 0.0652972i −0.0183254 0.00759065i
\(75\) 0 0
\(76\) 0.113309 0.113309i 0.0129975 0.0129975i
\(77\) −2.38421 2.38421i −0.271705 0.271705i
\(78\) −0.823617 0.341153i −0.0932563 0.0386280i
\(79\) 13.7140 + 5.68053i 1.54295 + 0.639110i 0.982024 0.188757i \(-0.0604460\pi\)
0.560924 + 0.827867i \(0.310446\pi\)
\(80\) 0 0
\(81\) 8.89143i 0.987937i
\(82\) 0.593808 + 1.43358i 0.0655752 + 0.158312i
\(83\) 3.56033 3.56033i 0.390797 0.390797i −0.484175 0.874971i \(-0.660880\pi\)
0.874971 + 0.484175i \(0.160880\pi\)
\(84\) −0.00527044 −0.000575052
\(85\) 0 0
\(86\) −0.922169 −0.0994400
\(87\) −0.505633 + 0.505633i −0.0542096 + 0.0542096i
\(88\) −5.15614 12.4480i −0.549646 1.32696i
\(89\) 2.35657i 0.249796i 0.992170 + 0.124898i \(0.0398604\pi\)
−0.992170 + 0.124898i \(0.960140\pi\)
\(90\) 0 0
\(91\) 3.62126 + 1.49997i 0.379611 + 0.157240i
\(92\) 0.295545 + 0.122419i 0.0308127 + 0.0127630i
\(93\) 0.515406 + 0.515406i 0.0534452 + 0.0534452i
\(94\) −5.02145 + 5.02145i −0.517924 + 0.517924i
\(95\) 0 0
\(96\) −0.0396102 0.0164071i −0.00404270 0.00167454i
\(97\) −2.49522 + 1.03355i −0.253351 + 0.104941i −0.505745 0.862683i \(-0.668782\pi\)
0.252394 + 0.967625i \(0.418782\pi\)
\(98\) −9.37384 −0.946900
\(99\) −13.3908 + 5.54664i −1.34582 + 0.557458i
\(100\) 0 0
\(101\) −14.3025 −1.42315 −0.711575 0.702610i \(-0.752018\pi\)
−0.711575 + 0.702610i \(0.752018\pi\)
\(102\) −0.651756 + 0.00914379i −0.0645335 + 0.000905370i
\(103\) 10.8963i 1.07365i −0.843694 0.536824i \(-0.819624\pi\)
0.843694 0.536824i \(-0.180376\pi\)
\(104\) 11.0753 + 11.0753i 1.08602 + 1.08602i
\(105\) 0 0
\(106\) 17.2412i 1.67461i
\(107\) 15.3616 6.36300i 1.48507 0.615134i 0.514829 0.857293i \(-0.327855\pi\)
0.970237 + 0.242158i \(0.0778553\pi\)
\(108\) −0.0173750 + 0.0419469i −0.00167191 + 0.00403635i
\(109\) −4.05640 + 9.79302i −0.388533 + 0.938002i 0.601718 + 0.798708i \(0.294483\pi\)
−0.990251 + 0.139293i \(0.955517\pi\)
\(110\) 0 0
\(111\) −0.00921903 + 0.00921903i −0.000875032 + 0.000875032i
\(112\) 2.65425 + 1.09943i 0.250803 + 0.103886i
\(113\) −4.41604 + 10.6613i −0.415426 + 1.00293i 0.568230 + 0.822869i \(0.307628\pi\)
−0.983656 + 0.180057i \(0.942372\pi\)
\(114\) −0.140521 0.339247i −0.0131610 0.0317734i
\(115\) 0 0
\(116\) −0.414692 + 0.171771i −0.0385032 + 0.0159485i
\(117\) 11.9141 11.9141i 1.10146 1.10146i
\(118\) 14.2665i 1.31333i
\(119\) 2.86563 0.0402032i 0.262691 0.00368542i
\(120\) 0 0
\(121\) 8.86082 + 8.86082i 0.805529 + 0.805529i
\(122\) −0.882332 2.13014i −0.0798825 0.192854i
\(123\) 0.118564 0.0106905
\(124\) 0.175091 + 0.422708i 0.0157237 + 0.0379603i
\(125\) 0 0
\(126\) 1.14321 2.75995i 0.101845 0.245876i
\(127\) −0.352520 0.352520i −0.0312811 0.0312811i 0.691293 0.722574i \(-0.257041\pi\)
−0.722574 + 0.691293i \(0.757041\pi\)
\(128\) 8.38878 + 8.38878i 0.741470 + 0.741470i
\(129\) −0.0269647 + 0.0650985i −0.00237411 + 0.00573160i
\(130\) 0 0
\(131\) −7.47537 18.0471i −0.653126 1.57679i −0.808217 0.588885i \(-0.799567\pi\)
0.155091 0.987900i \(-0.450433\pi\)
\(132\) 0.0367815 0.00320142
\(133\) 0.617838 + 1.49159i 0.0535733 + 0.129337i
\(134\) −3.04531 3.04531i −0.263075 0.263075i
\(135\) 0 0
\(136\) 10.6409 + 4.23371i 0.912447 + 0.363037i
\(137\) 3.81724i 0.326129i 0.986615 + 0.163065i \(0.0521379\pi\)
−0.986615 + 0.163065i \(0.947862\pi\)
\(138\) 0.518337 0.518337i 0.0441238 0.0441238i
\(139\) −12.2437 + 5.07150i −1.03850 + 0.430159i −0.835772 0.549076i \(-0.814980\pi\)
−0.202725 + 0.979236i \(0.564980\pi\)
\(140\) 0 0
\(141\) 0.207649 + 0.501309i 0.0174872 + 0.0422178i
\(142\) −2.58080 + 6.23061i −0.216576 + 0.522861i
\(143\) −25.2722 10.4681i −2.11337 0.875385i
\(144\) 8.73258 8.73258i 0.727715 0.727715i
\(145\) 0 0
\(146\) 3.02699 7.30780i 0.250516 0.604798i
\(147\) −0.274096 + 0.661726i −0.0226070 + 0.0545782i
\(148\) −0.00756094 + 0.00313184i −0.000621505 + 0.000257436i
\(149\) 17.4543i 1.42991i −0.699171 0.714955i \(-0.746447\pi\)
0.699171 0.714955i \(-0.253553\pi\)
\(150\) 0 0
\(151\) 7.97016 + 7.97016i 0.648602 + 0.648602i 0.952655 0.304053i \(-0.0983400\pi\)
−0.304053 + 0.952655i \(0.598340\pi\)
\(152\) 6.45150i 0.523286i
\(153\) 4.55435 11.4468i 0.368197 0.925416i
\(154\) −4.84996 −0.390821
\(155\) 0 0
\(156\) −0.0395030 + 0.0163627i −0.00316277 + 0.00131006i
\(157\) −6.14541 −0.490457 −0.245229 0.969465i \(-0.578863\pi\)
−0.245229 + 0.969465i \(0.578863\pi\)
\(158\) 19.7262 8.17087i 1.56933 0.650039i
\(159\) 1.21710 + 0.504141i 0.0965227 + 0.0399810i
\(160\) 0 0
\(161\) −2.27901 + 2.27901i −0.179611 + 0.179611i
\(162\) −9.04348 9.04348i −0.710523 0.710523i
\(163\) 10.3485 + 4.28650i 0.810560 + 0.335745i 0.749177 0.662369i \(-0.230449\pi\)
0.0613824 + 0.998114i \(0.480449\pi\)
\(164\) 0.0687586 + 0.0284808i 0.00536915 + 0.00222397i
\(165\) 0 0
\(166\) 7.24243i 0.562121i
\(167\) 2.18360 + 5.27168i 0.168972 + 0.407935i 0.985569 0.169273i \(-0.0541420\pi\)
−0.816597 + 0.577208i \(0.804142\pi\)
\(168\) 0.150041 0.150041i 0.0115759 0.0115759i
\(169\) 18.7989 1.44607
\(170\) 0 0
\(171\) 6.94010 0.530723
\(172\) −0.0312752 + 0.0312752i −0.00238471 + 0.00238471i
\(173\) −1.73644 4.19214i −0.132019 0.318722i 0.844022 0.536309i \(-0.180182\pi\)
−0.976041 + 0.217586i \(0.930182\pi\)
\(174\) 1.02856i 0.0779750i
\(175\) 0 0
\(176\) −18.5236 7.67272i −1.39627 0.578353i
\(177\) 1.00711 + 0.417158i 0.0756990 + 0.0313555i
\(178\) 2.39687 + 2.39687i 0.179653 + 0.179653i
\(179\) 12.9935 12.9935i 0.971179 0.971179i −0.0284174 0.999596i \(-0.509047\pi\)
0.999596 + 0.0284174i \(0.00904677\pi\)
\(180\) 0 0
\(181\) −9.90234 4.10168i −0.736035 0.304876i −0.0170058 0.999855i \(-0.505413\pi\)
−0.719029 + 0.694980i \(0.755413\pi\)
\(182\) 5.20881 2.15756i 0.386103 0.159929i
\(183\) −0.176172 −0.0130230
\(184\) −11.8988 + 4.92864i −0.877191 + 0.363344i
\(185\) 0 0
\(186\) 1.04844 0.0768754
\(187\) −19.9987 + 0.280571i −1.46245 + 0.0205174i
\(188\) 0.340604i 0.0248411i
\(189\) −0.323462 0.323462i −0.0235284 0.0235284i
\(190\) 0 0
\(191\) 18.5397i 1.34149i 0.741690 + 0.670743i \(0.234024\pi\)
−0.741690 + 0.670743i \(0.765976\pi\)
\(192\) 0.782404 0.324082i 0.0564652 0.0233886i
\(193\) −3.78317 + 9.13339i −0.272319 + 0.657435i −0.999582 0.0289235i \(-0.990792\pi\)
0.727263 + 0.686359i \(0.240792\pi\)
\(194\) −1.48666 + 3.58912i −0.106736 + 0.257684i
\(195\) 0 0
\(196\) −0.317912 + 0.317912i −0.0227080 + 0.0227080i
\(197\) −12.8913 5.33973i −0.918464 0.380440i −0.127173 0.991881i \(-0.540590\pi\)
−0.791291 + 0.611440i \(0.790590\pi\)
\(198\) −7.97827 + 19.2613i −0.566991 + 1.36884i
\(199\) −4.87410 11.7671i −0.345516 0.834148i −0.997138 0.0756048i \(-0.975911\pi\)
0.651622 0.758544i \(-0.274089\pi\)
\(200\) 0 0
\(201\) −0.304024 + 0.125931i −0.0214442 + 0.00888248i
\(202\) −14.5471 + 14.5471i −1.02353 + 1.02353i
\(203\) 4.52235i 0.317407i
\(204\) −0.0217941 + 0.0224143i −0.00152589 + 0.00156932i
\(205\) 0 0
\(206\) −11.0827 11.0827i −0.772167 0.772167i
\(207\) 5.30191 + 12.8000i 0.368509 + 0.889658i
\(208\) 23.3075 1.61608
\(209\) −4.31179 10.4096i −0.298253 0.720046i
\(210\) 0 0
\(211\) 4.92813 11.8976i 0.339266 0.819061i −0.658520 0.752563i \(-0.728817\pi\)
0.997787 0.0664982i \(-0.0211827\pi\)
\(212\) 0.584733 + 0.584733i 0.0401596 + 0.0401596i
\(213\) 0.364372 + 0.364372i 0.0249664 + 0.0249664i
\(214\) 9.15253 22.0962i 0.625654 1.51046i
\(215\) 0 0
\(216\) −0.699526 1.68881i −0.0475967 0.114909i
\(217\) −4.60976 −0.312931
\(218\) 5.83472 + 14.0863i 0.395177 + 0.954042i
\(219\) −0.427368 0.427368i −0.0288788 0.0288788i
\(220\) 0 0
\(221\) 21.3537 9.19801i 1.43640 0.618725i
\(222\) 0.0187534i 0.00125864i
\(223\) −14.4397 + 14.4397i −0.966952 + 0.966952i −0.999471 0.0325195i \(-0.989647\pi\)
0.0325195 + 0.999471i \(0.489647\pi\)
\(224\) 0.250507 0.103764i 0.0167377 0.00693300i
\(225\) 0 0
\(226\) 6.35202 + 15.3351i 0.422530 + 1.02008i
\(227\) 0.466985 1.12740i 0.0309949 0.0748282i −0.907624 0.419784i \(-0.862106\pi\)
0.938619 + 0.344955i \(0.112106\pi\)
\(228\) −0.0162713 0.00673977i −0.00107759 0.000446352i
\(229\) 2.48862 2.48862i 0.164453 0.164453i −0.620083 0.784536i \(-0.712901\pi\)
0.784536 + 0.620083i \(0.212901\pi\)
\(230\) 0 0
\(231\) −0.141815 + 0.342372i −0.00933076 + 0.0225264i
\(232\) 6.91560 16.6957i 0.454031 1.09613i
\(233\) 26.7949 11.0988i 1.75539 0.727107i 0.758215 0.652005i \(-0.226072\pi\)
0.997176 0.0751019i \(-0.0239282\pi\)
\(234\) 24.2356i 1.58433i
\(235\) 0 0
\(236\) 0.483845 + 0.483845i 0.0314956 + 0.0314956i
\(237\) 1.63145i 0.105974i
\(238\) 2.87374 2.95552i 0.186277 0.191578i
\(239\) −7.87133 −0.509154 −0.254577 0.967053i \(-0.581936\pi\)
−0.254577 + 0.967053i \(0.581936\pi\)
\(240\) 0 0
\(241\) 10.7419 4.44945i 0.691947 0.286614i −0.00886385 0.999961i \(-0.502821\pi\)
0.700811 + 0.713347i \(0.252821\pi\)
\(242\) 18.0247 1.15867
\(243\) −2.72689 + 1.12952i −0.174930 + 0.0724585i
\(244\) −0.102167 0.0423192i −0.00654060 0.00270921i
\(245\) 0 0
\(246\) 0.120591 0.120591i 0.00768862 0.00768862i
\(247\) 9.26165 + 9.26165i 0.589305 + 0.589305i
\(248\) −17.0184 7.04926i −1.08067 0.447629i
\(249\) −0.511263 0.211772i −0.0324000 0.0134205i
\(250\) 0 0
\(251\) 7.94692i 0.501605i 0.968038 + 0.250803i \(0.0806945\pi\)
−0.968038 + 0.250803i \(0.919306\pi\)
\(252\) −0.0548316 0.132375i −0.00345406 0.00833885i
\(253\) 15.9049 15.9049i 0.999930 0.999930i
\(254\) −0.717097 −0.0449947
\(255\) 0 0
\(256\) 1.65381 0.103363
\(257\) −5.60542 + 5.60542i −0.349657 + 0.349657i −0.859982 0.510325i \(-0.829525\pi\)
0.510325 + 0.859982i \(0.329525\pi\)
\(258\) 0.0387860 + 0.0936376i 0.00241471 + 0.00582962i
\(259\) 0.0824544i 0.00512347i
\(260\) 0 0
\(261\) −17.9602 7.43935i −1.11171 0.460484i
\(262\) −25.9590 10.7526i −1.60375 0.664295i
\(263\) −6.03602 6.03602i −0.372197 0.372197i 0.496080 0.868277i \(-0.334772\pi\)
−0.868277 + 0.496080i \(0.834772\pi\)
\(264\) −1.04711 + 1.04711i −0.0644454 + 0.0644454i
\(265\) 0 0
\(266\) 2.14550 + 0.888696i 0.131549 + 0.0544895i
\(267\) 0.239288 0.0991163i 0.0146442 0.00606582i
\(268\) −0.206563 −0.0126178
\(269\) 14.7662 6.11636i 0.900311 0.372921i 0.115971 0.993253i \(-0.463002\pi\)
0.784340 + 0.620331i \(0.213002\pi\)
\(270\) 0 0
\(271\) 22.5289 1.36853 0.684266 0.729232i \(-0.260123\pi\)
0.684266 + 0.729232i \(0.260123\pi\)
\(272\) 15.6514 6.74180i 0.949008 0.408782i
\(273\) 0.430793i 0.0260728i
\(274\) 3.88252 + 3.88252i 0.234552 + 0.234552i
\(275\) 0 0
\(276\) 0.0351587i 0.00211630i
\(277\) 6.37672 2.64132i 0.383140 0.158702i −0.182796 0.983151i \(-0.558515\pi\)
0.565936 + 0.824449i \(0.308515\pi\)
\(278\) −7.29484 + 17.6113i −0.437516 + 1.05626i
\(279\) −7.58314 + 18.3073i −0.453991 + 1.09603i
\(280\) 0 0
\(281\) 6.63310 6.63310i 0.395698 0.395698i −0.481015 0.876712i \(-0.659732\pi\)
0.876712 + 0.481015i \(0.159732\pi\)
\(282\) 0.721082 + 0.298682i 0.0429398 + 0.0177862i
\(283\) −7.87443 + 19.0106i −0.468086 + 1.13006i 0.496911 + 0.867802i \(0.334468\pi\)
−0.964997 + 0.262259i \(0.915532\pi\)
\(284\) 0.123783 + 0.298838i 0.00734515 + 0.0177328i
\(285\) 0 0
\(286\) −36.3515 + 15.0573i −2.14951 + 0.890355i
\(287\) −0.530213 + 0.530213i −0.0312975 + 0.0312975i
\(288\) 1.16557i 0.0686816i
\(289\) 11.6789 12.3533i 0.686992 0.726665i
\(290\) 0 0
\(291\) 0.209895 + 0.209895i 0.0123043 + 0.0123043i
\(292\) −0.145183 0.350503i −0.00849620 0.0205117i
\(293\) 23.4539 1.37019 0.685097 0.728452i \(-0.259760\pi\)
0.685097 + 0.728452i \(0.259760\pi\)
\(294\) 0.394259 + 0.951825i 0.0229936 + 0.0555116i
\(295\) 0 0
\(296\) 0.126090 0.304407i 0.00732881 0.0176933i
\(297\) 2.25739 + 2.25739i 0.130987 + 0.130987i
\(298\) −17.7528 17.7528i −1.02839 1.02839i
\(299\) −10.0062 + 24.1572i −0.578675 + 1.39704i
\(300\) 0 0
\(301\) −0.170533 0.411703i −0.00982936 0.0237302i
\(302\) 16.2129 0.932948
\(303\) 0.601555 + 1.45228i 0.0345585 + 0.0834315i
\(304\) 6.78845 + 6.78845i 0.389344 + 0.389344i
\(305\) 0 0
\(306\) −7.01028 16.2747i −0.400751 0.930365i
\(307\) 30.4260i 1.73650i −0.496126 0.868251i \(-0.665244\pi\)
0.496126 0.868251i \(-0.334756\pi\)
\(308\) −0.164486 + 0.164486i −0.00937244 + 0.00937244i
\(309\) −1.10642 + 0.458294i −0.0629421 + 0.0260715i
\(310\) 0 0
\(311\) 0.413255 + 0.997685i 0.0234335 + 0.0565735i 0.935163 0.354217i \(-0.115253\pi\)
−0.911730 + 0.410791i \(0.865253\pi\)
\(312\) 0.658771 1.59041i 0.0372955 0.0900394i
\(313\) 3.34956 + 1.38743i 0.189328 + 0.0784224i 0.475333 0.879806i \(-0.342327\pi\)
−0.286005 + 0.958228i \(0.592327\pi\)
\(314\) −6.25051 + 6.25051i −0.352737 + 0.352737i
\(315\) 0 0
\(316\) 0.391898 0.946126i 0.0220460 0.0532238i
\(317\) −3.36564 + 8.12537i −0.189033 + 0.456366i −0.989774 0.142645i \(-0.954439\pi\)
0.800741 + 0.599011i \(0.204439\pi\)
\(318\) 1.75068 0.725156i 0.0981733 0.0406647i
\(319\) 31.5607i 1.76706i
\(320\) 0 0
\(321\) −1.29221 1.29221i −0.0721239 0.0721239i
\(322\) 4.63597i 0.258353i
\(323\) 8.89837 + 3.54041i 0.495119 + 0.196994i
\(324\) −0.613417 −0.0340787
\(325\) 0 0
\(326\) 14.8853 6.16570i 0.824421 0.341486i
\(327\) 1.16500 0.0644246
\(328\) −2.76826 + 1.14665i −0.152851 + 0.0633132i
\(329\) −3.17043 1.31324i −0.174792 0.0724010i
\(330\) 0 0
\(331\) −24.8643 + 24.8643i −1.36666 + 1.36666i −0.501515 + 0.865149i \(0.667224\pi\)
−0.865149 + 0.501515i \(0.832776\pi\)
\(332\) −0.245626 0.245626i −0.0134805 0.0134805i
\(333\) −0.327462 0.135639i −0.0179448 0.00743297i
\(334\) 7.58278 + 3.14089i 0.414911 + 0.171862i
\(335\) 0 0
\(336\) 0.315755i 0.0172259i
\(337\) 12.0603 + 29.1162i 0.656968 + 1.58606i 0.802463 + 0.596702i \(0.203523\pi\)
−0.145494 + 0.989359i \(0.546477\pi\)
\(338\) 19.1204 19.1204i 1.04001 1.04001i
\(339\) 1.26829 0.0688839
\(340\) 0 0
\(341\) 32.1708 1.74214
\(342\) 7.05879 7.05879i 0.381696 0.381696i
\(343\) −3.59545 8.68018i −0.194136 0.468686i
\(344\) 1.78072i 0.0960098i
\(345\) 0 0
\(346\) −6.02997 2.49769i −0.324173 0.134277i
\(347\) 0.406795 + 0.168500i 0.0218379 + 0.00904556i 0.393576 0.919292i \(-0.371238\pi\)
−0.371738 + 0.928338i \(0.621238\pi\)
\(348\) 0.0348835 + 0.0348835i 0.00186995 + 0.00186995i
\(349\) 8.78380 8.78380i 0.470186 0.470186i −0.431789 0.901975i \(-0.642117\pi\)
0.901975 + 0.431789i \(0.142117\pi\)
\(350\) 0 0
\(351\) −3.42864 1.42019i −0.183007 0.0758041i
\(352\) −1.74825 + 0.724150i −0.0931821 + 0.0385973i
\(353\) −7.38055 −0.392827 −0.196414 0.980521i \(-0.562929\pi\)
−0.196414 + 0.980521i \(0.562929\pi\)
\(354\) 1.44862 0.600040i 0.0769935 0.0318918i
\(355\) 0 0
\(356\) 0.162579 0.00861668
\(357\) −0.124609 0.289286i −0.00659501 0.0153107i
\(358\) 26.4314i 1.39694i
\(359\) 4.98636 + 4.98636i 0.263170 + 0.263170i 0.826341 0.563171i \(-0.190419\pi\)
−0.563171 + 0.826341i \(0.690419\pi\)
\(360\) 0 0
\(361\) 13.6050i 0.716051i
\(362\) −14.2435 + 5.89986i −0.748622 + 0.310090i
\(363\) 0.527051 1.27241i 0.0276630 0.0667844i
\(364\) 0.103483 0.249830i 0.00542397 0.0130946i
\(365\) 0 0
\(366\) −0.179185 + 0.179185i −0.00936615 + 0.00936615i
\(367\) 15.0747 + 6.24413i 0.786891 + 0.325941i 0.739693 0.672945i \(-0.234971\pi\)
0.0471982 + 0.998886i \(0.484971\pi\)
\(368\) −7.33419 + 17.7063i −0.382321 + 0.923005i
\(369\) 1.23349 + 2.97791i 0.0642130 + 0.155024i
\(370\) 0 0
\(371\) −7.69735 + 3.18835i −0.399626 + 0.165531i
\(372\) 0.0355577 0.0355577i 0.00184358 0.00184358i
\(373\) 18.3821i 0.951787i 0.879503 + 0.475893i \(0.157875\pi\)
−0.879503 + 0.475893i \(0.842125\pi\)
\(374\) −20.0554 + 20.6261i −1.03704 + 1.06655i
\(375\) 0 0
\(376\) −9.69648 9.69648i −0.500058 0.500058i
\(377\) −14.0402 33.8960i −0.723105 1.74573i
\(378\) −0.657987 −0.0338432
\(379\) 6.31254 + 15.2398i 0.324253 + 0.782817i 0.998998 + 0.0447652i \(0.0142540\pi\)
−0.674744 + 0.738052i \(0.735746\pi\)
\(380\) 0 0
\(381\) −0.0209683 + 0.0506219i −0.00107424 + 0.00259344i
\(382\) 18.8567 + 18.8567i 0.964795 + 0.964795i
\(383\) −25.6981 25.6981i −1.31311 1.31311i −0.919110 0.394002i \(-0.871090\pi\)
−0.394002 0.919110i \(-0.628910\pi\)
\(384\) 0.498974 1.20463i 0.0254631 0.0614735i
\(385\) 0 0
\(386\) 5.44171 + 13.1374i 0.276976 + 0.668678i
\(387\) −1.91558 −0.0973744
\(388\) 0.0713045 + 0.172144i 0.00361994 + 0.00873930i
\(389\) 4.50312 + 4.50312i 0.228317 + 0.228317i 0.811989 0.583672i \(-0.198385\pi\)
−0.583672 + 0.811989i \(0.698385\pi\)
\(390\) 0 0
\(391\) 0.268192 + 19.1164i 0.0135631 + 0.966757i
\(392\) 18.1010i 0.914237i
\(393\) −1.51811 + 1.51811i −0.0765784 + 0.0765784i
\(394\) −18.5428 + 7.68066i −0.934171 + 0.386946i
\(395\) 0 0
\(396\) 0.382661 + 0.923825i 0.0192294 + 0.0464240i
\(397\) −12.7731 + 30.8370i −0.641065 + 1.54767i 0.184181 + 0.982892i \(0.441037\pi\)
−0.825245 + 0.564774i \(0.808963\pi\)
\(398\) −16.9258 7.01089i −0.848413 0.351424i
\(399\) 0.125471 0.125471i 0.00628142 0.00628142i
\(400\) 0 0
\(401\) −4.49654 + 10.8556i −0.224547 + 0.542104i −0.995497 0.0947914i \(-0.969782\pi\)
0.770950 + 0.636895i \(0.219782\pi\)
\(402\) −0.181139 + 0.437307i −0.00903438 + 0.0218109i
\(403\) −34.5511 + 14.3115i −1.72111 + 0.712909i
\(404\) 0.986724i 0.0490914i
\(405\) 0 0
\(406\) −4.59968 4.59968i −0.228278 0.228278i
\(407\) 0.575436i 0.0285233i
\(408\) −0.0176567 1.25855i −0.000874139 0.0623074i
\(409\) −12.6834 −0.627154 −0.313577 0.949563i \(-0.601527\pi\)
−0.313577 + 0.949563i \(0.601527\pi\)
\(410\) 0 0
\(411\) 0.387605 0.160551i 0.0191192 0.00791941i
\(412\) −0.751735 −0.0370353
\(413\) −6.36927 + 2.63824i −0.313411 + 0.129819i
\(414\) 18.4114 + 7.62626i 0.904872 + 0.374810i
\(415\) 0 0
\(416\) 1.55546 1.55546i 0.0762627 0.0762627i
\(417\) 1.02993 + 1.02993i 0.0504358 + 0.0504358i
\(418\) −14.9731 6.20207i −0.732359 0.303353i
\(419\) −32.3564 13.4025i −1.58072 0.654754i −0.592189 0.805799i \(-0.701736\pi\)
−0.988527 + 0.151045i \(0.951736\pi\)
\(420\) 0 0
\(421\) 10.0231i 0.488497i 0.969713 + 0.244248i \(0.0785412\pi\)
−0.969713 + 0.244248i \(0.921459\pi\)
\(422\) −7.08861 17.1134i −0.345068 0.833068i
\(423\) −10.4308 + 10.4308i −0.507165 + 0.507165i
\(424\) −33.2929 −1.61685
\(425\) 0 0
\(426\) 0.741207 0.0359116
\(427\) 0.787836 0.787836i 0.0381260 0.0381260i
\(428\) −0.438982 1.05980i −0.0212190 0.0512271i
\(429\) 3.00643i 0.145152i
\(430\) 0 0
\(431\) 21.9385 + 9.08724i 1.05674 + 0.437717i 0.842294 0.539019i \(-0.181205\pi\)
0.214448 + 0.976735i \(0.431205\pi\)
\(432\) −2.51307 1.04095i −0.120910 0.0500826i
\(433\) 22.8337 + 22.8337i 1.09732 + 1.09732i 0.994724 + 0.102592i \(0.0327135\pi\)
0.102592 + 0.994724i \(0.467286\pi\)
\(434\) −4.68859 + 4.68859i −0.225059 + 0.225059i
\(435\) 0 0
\(436\) 0.675618 + 0.279850i 0.0323562 + 0.0134024i
\(437\) −9.95030 + 4.12155i −0.475987 + 0.197160i
\(438\) −0.869353 −0.0415393
\(439\) 19.7035 8.16145i 0.940396 0.389525i 0.140783 0.990040i \(-0.455038\pi\)
0.799613 + 0.600515i \(0.205038\pi\)
\(440\) 0 0
\(441\) −19.4719 −0.927231
\(442\) 12.3635 31.0741i 0.588073 1.47805i
\(443\) 13.8187i 0.656546i −0.944583 0.328273i \(-0.893533\pi\)
0.944583 0.328273i \(-0.106467\pi\)
\(444\) 0.000636019 0 0.000636019i 3.01841e−5 0 3.01841e-5i
\(445\) 0 0
\(446\) 29.3732i 1.39086i
\(447\) −1.77232 + 0.734118i −0.0838277 + 0.0347226i
\(448\) −2.04960 + 4.94817i −0.0968344 + 0.233779i
\(449\) 2.53099 6.11035i 0.119445 0.288365i −0.852837 0.522177i \(-0.825120\pi\)
0.972282 + 0.233812i \(0.0751199\pi\)
\(450\) 0 0
\(451\) 3.70027 3.70027i 0.174239 0.174239i
\(452\) 0.735517 + 0.304661i 0.0345958 + 0.0143301i
\(453\) 0.474074 1.14452i 0.0222739 0.0537740i
\(454\) −0.671710 1.62165i −0.0315249 0.0761079i
\(455\) 0 0
\(456\) 0.655089 0.271347i 0.0306774 0.0127070i
\(457\) −3.54288 + 3.54288i −0.165729 + 0.165729i −0.785099 0.619370i \(-0.787388\pi\)
0.619370 + 0.785099i \(0.287388\pi\)
\(458\) 5.06236i 0.236548i
\(459\) −2.71320 + 0.0380648i −0.126641 + 0.00177671i
\(460\) 0 0
\(461\) 11.5839 + 11.5839i 0.539518 + 0.539518i 0.923387 0.383869i \(-0.125409\pi\)
−0.383869 + 0.923387i \(0.625409\pi\)
\(462\) 0.203987 + 0.492468i 0.00949032 + 0.0229117i
\(463\) 27.3768 1.27231 0.636153 0.771563i \(-0.280525\pi\)
0.636153 + 0.771563i \(0.280525\pi\)
\(464\) −10.2909 24.8445i −0.477744 1.15338i
\(465\) 0 0
\(466\) 15.9645 38.5417i 0.739541 1.78541i
\(467\) −0.457032 0.457032i −0.0211489 0.0211489i 0.696453 0.717602i \(-0.254760\pi\)
−0.717602 + 0.696453i \(0.754760\pi\)
\(468\) −0.821949 0.821949i −0.0379946 0.0379946i
\(469\) 0.796426 1.92274i 0.0367755 0.0887840i
\(470\) 0 0
\(471\) 0.258473 + 0.624009i 0.0119098 + 0.0287528i
\(472\) −27.5487 −1.26803
\(473\) 1.19012 + 2.87321i 0.0547219 + 0.132110i
\(474\) −1.65935 1.65935i −0.0762165 0.0762165i
\(475\) 0 0
\(476\) −0.00277360 0.197699i −0.000127128 0.00906150i
\(477\) 35.8144i 1.63983i
\(478\) −8.00594 + 8.00594i −0.366183 + 0.366183i
\(479\) 12.5323 5.19106i 0.572616 0.237185i −0.0775357 0.996990i \(-0.524705\pi\)
0.650152 + 0.759804i \(0.274705\pi\)
\(480\) 0 0
\(481\) −0.255989 0.618013i −0.0116721 0.0281790i
\(482\) 6.40008 15.4511i 0.291515 0.703781i
\(483\) 0.327266 + 0.135558i 0.0148911 + 0.00616811i
\(484\) 0.611305 0.611305i 0.0277866 0.0277866i
\(485\) 0 0
\(486\) −1.62469 + 3.92236i −0.0736976 + 0.177922i
\(487\) −11.1108 + 26.8238i −0.503478 + 1.21550i 0.444099 + 0.895978i \(0.353524\pi\)
−0.947577 + 0.319527i \(0.896476\pi\)
\(488\) 4.11332 1.70379i 0.186201 0.0771270i
\(489\) 1.23108i 0.0556716i
\(490\) 0 0
\(491\) −9.28419 9.28419i −0.418990 0.418990i 0.465866 0.884855i \(-0.345743\pi\)
−0.884855 + 0.465866i \(0.845743\pi\)
\(492\) 0.00817968i 0.000368768i
\(493\) −19.2328 18.7007i −0.866204 0.842235i
\(494\) 18.8401 0.847655
\(495\) 0 0
\(496\) −25.3247 + 10.4898i −1.13711 + 0.471007i
\(497\) −3.25892 −0.146183
\(498\) −0.735400 + 0.304613i −0.0329541 + 0.0136500i
\(499\) −10.4777 4.34000i −0.469045 0.194285i 0.135626 0.990760i \(-0.456695\pi\)
−0.604671 + 0.796475i \(0.706695\pi\)
\(500\) 0 0
\(501\) 0.443449 0.443449i 0.0198118 0.0198118i
\(502\) 8.08282 + 8.08282i 0.360754 + 0.360754i
\(503\) 18.9798 + 7.86171i 0.846269 + 0.350536i 0.763322 0.646018i \(-0.223567\pi\)
0.0829468 + 0.996554i \(0.473567\pi\)
\(504\) 5.32949 + 2.20755i 0.237394 + 0.0983320i
\(505\) 0 0
\(506\) 32.3537i 1.43830i
\(507\) −0.790674 1.90886i −0.0351151 0.0847753i
\(508\) −0.0243203 + 0.0243203i −0.00107904 + 0.00107904i
\(509\) 8.40900 0.372722 0.186361 0.982481i \(-0.440331\pi\)
0.186361 + 0.982481i \(0.440331\pi\)
\(510\) 0 0
\(511\) 3.82235 0.169091
\(512\) −15.0955 + 15.0955i −0.667132 + 0.667132i
\(513\) −0.584975 1.41225i −0.0258273 0.0623525i
\(514\) 11.4026i 0.502946i
\(515\) 0 0
\(516\) 0.00449113 + 0.00186029i 0.000197711 + 8.18945e-5i
\(517\) 22.1259 + 9.16486i 0.973098 + 0.403070i
\(518\) −0.0838644 0.0838644i −0.00368479 0.00368479i
\(519\) −0.352639 + 0.352639i −0.0154791 + 0.0154791i
\(520\) 0 0
\(521\) −19.7304 8.17262i −0.864406 0.358049i −0.0939770 0.995574i \(-0.529958\pi\)
−0.770429 + 0.637526i \(0.779958\pi\)
\(522\) −25.8339 + 10.7007i −1.13072 + 0.468359i
\(523\) −24.4644 −1.06975 −0.534877 0.844930i \(-0.679642\pi\)
−0.534877 + 0.844930i \(0.679642\pi\)
\(524\) −1.24507 + 0.515723i −0.0543910 + 0.0225295i
\(525\) 0 0
\(526\) −12.2785 −0.535367
\(527\) −19.0621 + 19.6046i −0.830359 + 0.853989i
\(528\) 2.20361i 0.0958996i
\(529\) 1.06033 + 1.06033i 0.0461012 + 0.0461012i
\(530\) 0 0
\(531\) 29.6351i 1.28605i
\(532\) 0.102904 0.0426244i 0.00446148 0.00184800i
\(533\) −2.32795 + 5.62017i −0.100835 + 0.243436i
\(534\) 0.142569 0.344191i 0.00616955 0.0148946i
\(535\) 0 0
\(536\) 5.88053 5.88053i 0.254000 0.254000i
\(537\) −1.86587 0.772867i −0.0805181 0.0333517i
\(538\) 8.79776 21.2397i 0.379299 0.915708i
\(539\) 12.0976 + 29.2062i 0.521080 + 1.25800i
\(540\) 0 0
\(541\) 1.77760 0.736307i 0.0764251 0.0316563i −0.344143 0.938917i \(-0.611831\pi\)
0.420569 + 0.907261i \(0.361831\pi\)
\(542\) 22.9142 22.9142i 0.984248 0.984248i
\(543\) 1.17800i 0.0505530i
\(544\) 0.594600 1.49445i 0.0254932 0.0640740i
\(545\) 0 0
\(546\) −0.438160 0.438160i −0.0187515 0.0187515i
\(547\) −5.63393 13.6015i −0.240890 0.581559i 0.756482 0.654014i \(-0.226916\pi\)
−0.997372 + 0.0724556i \(0.976916\pi\)
\(548\) 0.263350 0.0112498
\(549\) −1.83283 4.42484i −0.0782232 0.188847i
\(550\) 0 0
\(551\) 5.78313 13.9617i 0.246369 0.594789i
\(552\) 1.00092 + 1.00092i 0.0426018 + 0.0426018i
\(553\) 7.29579 + 7.29579i 0.310248 + 0.310248i
\(554\) 3.79928 9.17226i 0.161416 0.389692i
\(555\) 0 0
\(556\) 0.349882 + 0.844689i 0.0148383 + 0.0358228i
\(557\) 24.3617 1.03224 0.516119 0.856517i \(-0.327376\pi\)
0.516119 + 0.856517i \(0.327376\pi\)
\(558\) 10.9076 + 26.3332i 0.461754 + 1.11477i
\(559\) −2.55636 2.55636i −0.108123 0.108123i
\(560\) 0 0
\(561\) 0.869627 + 2.01888i 0.0367157 + 0.0852374i
\(562\) 13.4931i 0.569171i
\(563\) 21.7224 21.7224i 0.915488 0.915488i −0.0812090 0.996697i \(-0.525878\pi\)
0.996697 + 0.0812090i \(0.0258781\pi\)
\(564\) 0.0345851 0.0143256i 0.00145630 0.000603218i
\(565\) 0 0
\(566\) 11.3266 + 27.3448i 0.476091 + 1.14939i
\(567\) 2.36510 5.70985i 0.0993247 0.239791i
\(568\) −12.0314 4.98356i −0.504825 0.209105i
\(569\) 3.78820 3.78820i 0.158809 0.158809i −0.623230 0.782039i \(-0.714180\pi\)
0.782039 + 0.623230i \(0.214180\pi\)
\(570\) 0 0
\(571\) 13.7904 33.2930i 0.577110 1.39327i −0.318285 0.947995i \(-0.603107\pi\)
0.895395 0.445272i \(-0.146893\pi\)
\(572\) −0.722190 + 1.74352i −0.0301963 + 0.0729003i
\(573\) 1.88253 0.779770i 0.0786439 0.0325754i
\(574\) 1.07856i 0.0450182i
\(575\) 0 0
\(576\) 16.2797 + 16.2797i 0.678319 + 0.678319i
\(577\) 39.5472i 1.64637i −0.567772 0.823186i \(-0.692194\pi\)
0.567772 0.823186i \(-0.307806\pi\)
\(578\) −0.685983 24.4431i −0.0285331 1.01670i
\(579\) 1.08653 0.0451546
\(580\) 0 0
\(581\) 3.23339 1.33931i 0.134144 0.0555641i
\(582\) 0.426969 0.0176984
\(583\) 53.7186 22.2510i 2.22480 0.921541i
\(584\) 14.1114 + 5.84515i 0.583936 + 0.241874i
\(585\) 0 0
\(586\) 23.8550 23.8550i 0.985442 0.985442i
\(587\) −12.6771 12.6771i −0.523242 0.523242i 0.395307 0.918549i \(-0.370638\pi\)
−0.918549 + 0.395307i \(0.870638\pi\)
\(588\) 0.0456523 + 0.0189098i 0.00188267 + 0.000779827i
\(589\) −14.2316 5.89491i −0.586401 0.242895i
\(590\) 0 0
\(591\) 1.53357i 0.0630827i
\(592\) −0.187631 0.452981i −0.00771158 0.0186174i
\(593\) −10.8169 + 10.8169i −0.444199 + 0.444199i −0.893420 0.449222i \(-0.851701\pi\)
0.449222 + 0.893420i \(0.351701\pi\)
\(594\) 4.59199 0.188412
\(595\) 0 0
\(596\) −1.20416 −0.0493245
\(597\) −0.989838 + 0.989838i −0.0405114 + 0.0405114i
\(598\) 14.3929 + 34.7476i 0.588571 + 1.42094i
\(599\) 34.6498i 1.41575i −0.706336 0.707877i \(-0.749653\pi\)
0.706336 0.707877i \(-0.250347\pi\)
\(600\) 0 0
\(601\) −14.8154 6.13675i −0.604333 0.250323i 0.0594701 0.998230i \(-0.481059\pi\)
−0.663804 + 0.747907i \(0.731059\pi\)
\(602\) −0.592193 0.245294i −0.0241360 0.00999746i
\(603\) −6.32590 6.32590i −0.257610 0.257610i
\(604\) 0.549859 0.549859i 0.0223734 0.0223734i
\(605\) 0 0
\(606\) 2.08896 + 0.865276i 0.0848583 + 0.0351494i
\(607\) 33.7326 13.9725i 1.36916 0.567126i 0.427602 0.903967i \(-0.359359\pi\)
0.941561 + 0.336841i \(0.109359\pi\)
\(608\) 0.906076 0.0367462
\(609\) −0.459202 + 0.190208i −0.0186078 + 0.00770760i
\(610\) 0 0
\(611\) −27.8402 −1.12629
\(612\) −0.789709 0.314203i −0.0319221 0.0127009i
\(613\) 33.2758i 1.34400i 0.740553 + 0.671998i \(0.234564\pi\)
−0.740553 + 0.671998i \(0.765436\pi\)
\(614\) −30.9463 30.9463i −1.24889 1.24889i
\(615\) 0 0
\(616\) 9.36532i 0.377339i
\(617\) 29.2948 12.1343i 1.17936 0.488508i 0.295086 0.955471i \(-0.404652\pi\)
0.884277 + 0.466963i \(0.154652\pi\)
\(618\) −0.659210 + 1.59147i −0.0265173 + 0.0640185i
\(619\) 15.6250 37.7222i 0.628023 1.51618i −0.214052 0.976822i \(-0.568666\pi\)
0.842075 0.539360i \(-0.181334\pi\)
\(620\) 0 0
\(621\) 2.15779 2.15779i 0.0865892 0.0865892i
\(622\) 1.43507 + 0.594425i 0.0575410 + 0.0238343i
\(623\) −0.626842 + 1.51333i −0.0251139 + 0.0606303i
\(624\) −0.980300 2.36665i −0.0392434 0.0947420i
\(625\) 0 0
\(626\) 4.81800 1.99568i 0.192566 0.0797635i
\(627\) −0.875644 + 0.875644i −0.0349698 + 0.0349698i
\(628\) 0.423970i 0.0169183i
\(629\) −0.350666 0.340963i −0.0139820 0.0135951i
\(630\) 0 0
\(631\) −11.1724 11.1724i −0.444764 0.444764i 0.448845 0.893610i \(-0.351835\pi\)
−0.893610 + 0.448845i \(0.851835\pi\)
\(632\) 15.7780 + 38.0915i 0.627616 + 1.51520i
\(633\) −1.41536 −0.0562555
\(634\) 4.84113 + 11.6875i 0.192266 + 0.464171i
\(635\) 0 0
\(636\) 0.0347806 0.0839677i 0.00137914 0.00332954i
\(637\) −25.9854 25.9854i −1.02958 1.02958i
\(638\) 32.1005 + 32.1005i 1.27087 + 1.27087i
\(639\) −5.36099 + 12.9426i −0.212077 + 0.512000i
\(640\) 0 0
\(641\) 9.54180 + 23.0359i 0.376878 + 0.909865i 0.992547 + 0.121860i \(0.0388859\pi\)
−0.615669 + 0.788005i \(0.711114\pi\)
\(642\) −2.62861 −0.103743
\(643\) 9.19057 + 22.1880i 0.362441 + 0.875009i 0.994942 + 0.100450i \(0.0320283\pi\)
−0.632501 + 0.774559i \(0.717972\pi\)
\(644\) 0.157228 + 0.157228i 0.00619567 + 0.00619567i
\(645\) 0 0
\(646\) 12.6515 5.44959i 0.497767 0.214411i
\(647\) 23.8307i 0.936882i 0.883495 + 0.468441i \(0.155184\pi\)
−0.883495 + 0.468441i \(0.844816\pi\)
\(648\) 17.4631 17.4631i 0.686014 0.686014i
\(649\) 44.4501 18.4119i 1.74482 0.722728i
\(650\) 0 0
\(651\) 0.193884 + 0.468078i 0.00759892 + 0.0183454i
\(652\) 0.295725 0.713942i 0.0115815 0.0279601i
\(653\) 15.2616 + 6.32157i 0.597234 + 0.247382i 0.660759 0.750598i \(-0.270234\pi\)
−0.0635255 + 0.997980i \(0.520234\pi\)
\(654\) 1.18492 1.18492i 0.0463341 0.0463341i
\(655\) 0 0
\(656\) −1.70630 + 4.11938i −0.0666199 + 0.160835i
\(657\) 6.28783 15.1802i 0.245312 0.592235i
\(658\) −4.56034 + 1.88896i −0.177781 + 0.0736392i
\(659\) 10.2510i 0.399324i 0.979865 + 0.199662i \(0.0639843\pi\)
−0.979865 + 0.199662i \(0.936016\pi\)
\(660\) 0 0
\(661\) 15.0908 + 15.0908i 0.586962 + 0.586962i 0.936808 0.349845i \(-0.113766\pi\)
−0.349845 + 0.936808i \(0.613766\pi\)
\(662\) 50.5790i 1.96581i
\(663\) −1.83210 1.78140i −0.0711527 0.0691839i
\(664\) 13.9852 0.542731
\(665\) 0 0
\(666\) −0.471020 + 0.195103i −0.0182517 + 0.00756009i
\(667\) 30.1683 1.16812
\(668\) 0.363692 0.150646i 0.0140717 0.00582867i
\(669\) 2.07354 + 0.858887i 0.0801676 + 0.0332065i
\(670\) 0 0
\(671\) −5.49818 + 5.49818i −0.212255 + 0.212255i
\(672\) −0.0210724 0.0210724i −0.000812887 0.000812887i
\(673\) −25.4214 10.5299i −0.979924 0.405898i −0.165526 0.986205i \(-0.552932\pi\)
−0.814397 + 0.580308i \(0.802932\pi\)
\(674\) 41.8807 + 17.3476i 1.61319 + 0.668203i
\(675\) 0 0
\(676\) 1.29693i 0.0498821i
\(677\) −6.52233 15.7463i −0.250674 0.605180i 0.747585 0.664166i \(-0.231213\pi\)
−0.998259 + 0.0589863i \(0.981213\pi\)
\(678\) 1.28998 1.28998i 0.0495412 0.0495412i
\(679\) −1.87729 −0.0720437
\(680\) 0 0
\(681\) −0.134118 −0.00513942
\(682\) 32.7209 32.7209i 1.25295 1.25295i
\(683\) −1.19505 2.88510i −0.0457273 0.110395i 0.899366 0.437198i \(-0.144029\pi\)
−0.945093 + 0.326802i \(0.894029\pi\)
\(684\) 0.478796i 0.0183072i
\(685\) 0 0
\(686\) −12.4856 5.17169i −0.476701 0.197456i
\(687\) −0.357366 0.148026i −0.0136344 0.00564754i
\(688\) −1.87372 1.87372i −0.0714349 0.0714349i
\(689\) −47.7947 + 47.7947i −1.82083 + 1.82083i
\(690\) 0 0
\(691\) −33.3778 13.8255i −1.26975 0.525948i −0.356862 0.934157i \(-0.616153\pi\)
−0.912888 + 0.408210i \(0.866153\pi\)
\(692\) −0.289214 + 0.119797i −0.0109943 + 0.00455398i
\(693\) −10.0746 −0.382702
\(694\) 0.585134 0.242370i 0.0222114 0.00920025i
\(695\) 0 0
\(696\) −1.98616 −0.0752852
\(697\) 0.0623950 + 4.44743i 0.00236338 + 0.168458i
\(698\) 17.8680i 0.676315i
\(699\) −2.25396 2.25396i −0.0852525 0.0852525i
\(700\) 0 0
\(701\) 18.1677i 0.686185i −0.939302 0.343093i \(-0.888526\pi\)
0.939302 0.343093i \(-0.111474\pi\)
\(702\) −4.93175 + 2.04280i −0.186137 + 0.0771005i
\(703\) 0.105442 0.254559i 0.00397681 0.00960087i
\(704\) 14.3038 34.5325i 0.539095 1.30149i
\(705\) 0 0
\(706\) −7.50677 + 7.50677i −0.282521 + 0.282521i
\(707\) −9.18469 3.80442i −0.345426 0.143080i
\(708\) 0.0287796 0.0694802i 0.00108160 0.00261123i
\(709\) −4.44086 10.7212i −0.166780 0.402643i 0.818288 0.574809i \(-0.194923\pi\)
−0.985068 + 0.172166i \(0.944923\pi\)
\(710\) 0 0
\(711\) 40.9764 16.9730i 1.53674 0.636536i
\(712\) −4.62839 + 4.62839i −0.173456 + 0.173456i
\(713\) 30.7514i 1.15165i
\(714\) −0.420974 0.167494i −0.0157545 0.00626829i
\(715\) 0 0
\(716\) −0.896417 0.896417i −0.0335007 0.0335007i
\(717\) 0.331064 + 0.799260i 0.0123638 + 0.0298489i
\(718\) 10.1433 0.378543
\(719\) 9.86790 + 23.8232i 0.368011 + 0.888456i 0.994076 + 0.108686i \(0.0346642\pi\)
−0.626066 + 0.779770i \(0.715336\pi\)
\(720\) 0 0
\(721\) 2.89840 6.99735i 0.107942 0.260595i
\(722\) −13.8376 13.8376i −0.514983 0.514983i
\(723\) −0.903599 0.903599i −0.0336052 0.0336052i
\(724\) −0.282974 + 0.683160i −0.0105166 + 0.0253894i
\(725\) 0 0
\(726\) −0.758110 1.83024i −0.0281361 0.0679265i
\(727\) −17.7430 −0.658051 −0.329025 0.944321i \(-0.606720\pi\)
−0.329025 + 0.944321i \(0.606720\pi\)
\(728\) 4.16627 + 10.0583i 0.154412 + 0.372784i
\(729\) −18.6322 18.6322i −0.690081 0.690081i
\(730\) 0 0
\(731\) −2.45609 0.977211i −0.0908419 0.0361434i
\(732\) 0.0121541i 0.000449227i
\(733\) 18.9661 18.9661i 0.700527 0.700527i −0.263996 0.964524i \(-0.585041\pi\)
0.964524 + 0.263996i \(0.0850407\pi\)
\(734\) 21.6834 8.98155i 0.800348 0.331515i
\(735\) 0 0
\(736\) 0.692200 + 1.67112i 0.0255148 + 0.0615982i
\(737\) −5.55813 + 13.4185i −0.204736 + 0.494277i
\(738\) 4.28342 + 1.77425i 0.157675 + 0.0653111i
\(739\) 0.319229 0.319229i 0.0117430 0.0117430i −0.701211 0.712954i \(-0.747357\pi\)
0.712954 + 0.701211i \(0.247357\pi\)
\(740\) 0 0
\(741\) 0.550893 1.32997i 0.0202376 0.0488578i
\(742\) −4.58611 + 11.0719i −0.168361 + 0.406460i
\(743\) −19.0750 + 7.90111i −0.699793 + 0.289864i −0.704073 0.710127i \(-0.748637\pi\)
0.00428071 + 0.999991i \(0.498637\pi\)
\(744\) 2.02455i 0.0742236i
\(745\) 0 0
\(746\) 18.6964 + 18.6964i 0.684524 + 0.684524i
\(747\) 15.0444i 0.550445i
\(748\) 0.0193565 + 1.37971i 0.000707745 + 0.0504471i
\(749\) 11.5574 0.422298
\(750\) 0 0
\(751\) 24.6731 10.2199i 0.900333 0.372930i 0.115985 0.993251i \(-0.462998\pi\)
0.784348 + 0.620321i \(0.212998\pi\)
\(752\) −20.4058 −0.744123
\(753\) 0.806935 0.334243i 0.0294064 0.0121805i
\(754\) −48.7559 20.1953i −1.77558 0.735471i
\(755\) 0 0
\(756\) −0.0223155 + 0.0223155i −0.000811609 + 0.000811609i
\(757\) −13.6672 13.6672i −0.496742 0.496742i 0.413680 0.910422i \(-0.364243\pi\)
−0.910422 + 0.413680i \(0.864243\pi\)
\(758\) 21.9209 + 9.07995i 0.796204 + 0.329799i
\(759\) −2.28394 0.946039i −0.0829018 0.0343390i
\(760\) 0 0
\(761\) 9.52382i 0.345238i 0.984989 + 0.172619i \(0.0552230\pi\)
−0.984989 + 0.172619i \(0.944777\pi\)
\(762\) 0.0301607 + 0.0728145i 0.00109261 + 0.00263779i
\(763\) −5.20984 + 5.20984i −0.188609 + 0.188609i
\(764\) 1.27905 0.0462743
\(765\) 0 0
\(766\) −52.2751 −1.88878
\(767\) −39.5483 + 39.5483i −1.42801 + 1.42801i
\(768\) −0.0695582 0.167928i −0.00250997 0.00605960i
\(769\) 21.8393i 0.787544i −0.919208 0.393772i \(-0.871170\pi\)
0.919208 0.393772i \(-0.128830\pi\)
\(770\) 0 0
\(771\) 0.804939 + 0.333417i 0.0289892 + 0.0120077i
\(772\) 0.630110 + 0.261000i 0.0226781 + 0.00939359i
\(773\) 12.8920 + 12.8920i 0.463693 + 0.463693i 0.899864 0.436171i \(-0.143666\pi\)
−0.436171 + 0.899864i \(0.643666\pi\)
\(774\) −1.94834 + 1.94834i −0.0700316 + 0.0700316i
\(775\) 0 0
\(776\) −6.93062 2.87076i −0.248795 0.103054i
\(777\) −0.00837247 + 0.00346799i −0.000300361 + 0.000124413i
\(778\) 9.16025 0.328411
\(779\) −2.31494 + 0.958880i −0.0829413 + 0.0343554i
\(780\) 0 0
\(781\) 22.7435 0.813826
\(782\) 19.7161 + 19.1705i 0.705045 + 0.685536i
\(783\) 4.28180i 0.153019i
\(784\) −19.0463 19.0463i −0.680227 0.680227i
\(785\) 0 0
\(786\) 3.08814i 0.110150i
\(787\) 9.32964 3.86446i 0.332566 0.137753i −0.210151 0.977669i \(-0.567396\pi\)
0.542717 + 0.839916i \(0.317396\pi\)
\(788\) −0.368387 + 0.889364i −0.0131232 + 0.0316823i
\(789\) −0.359029 + 0.866773i −0.0127818 + 0.0308579i
\(790\) 0 0
\(791\) −5.67173 + 5.67173i −0.201664 + 0.201664i
\(792\) −37.1937 15.4061i −1.32162 0.547433i
\(793\) 3.45907 8.35093i 0.122835 0.296550i
\(794\) 18.3728 + 44.3559i 0.652028 + 1.57413i
\(795\) 0 0
\(796\) −0.811810 + 0.336263i −0.0287738 + 0.0119185i
\(797\) 21.3651 21.3651i 0.756792 0.756792i −0.218945 0.975737i \(-0.570262\pi\)
0.975737 + 0.218945i \(0.0702615\pi\)
\(798\) 0.255234i 0.00903518i
\(799\) −18.6953 + 8.05291i −0.661390 + 0.284891i
\(800\) 0 0
\(801\) 4.97892 + 4.97892i 0.175921 + 0.175921i
\(802\) 6.46782 + 15.6147i 0.228387 + 0.551374i
\(803\) −26.6756 −0.941360
\(804\) 0.00868793 + 0.0209745i 0.000306400 + 0.000739714i
\(805\) 0 0
\(806\) −20.5857 + 49.6983i −0.725100 + 1.75055i
\(807\) −1.24212 1.24212i −0.0437246 0.0437246i
\(808\) −28.0905 28.0905i −0.988222 0.988222i
\(809\) −9.87604 + 23.8429i −0.347223 + 0.838270i 0.649723 + 0.760171i \(0.274885\pi\)
−0.996946 + 0.0780990i \(0.975115\pi\)
\(810\) 0 0
\(811\) −18.0534 43.5848i −0.633941 1.53047i −0.834628 0.550814i \(-0.814317\pi\)
0.200686 0.979656i \(-0.435683\pi\)
\(812\) −0.311995 −0.0109489
\(813\) −0.947554 2.28760i −0.0332322 0.0802296i
\(814\) 0.585277 + 0.585277i 0.0205139 + 0.0205139i
\(815\) 0 0
\(816\) −1.34286 1.30570i −0.0470095 0.0457087i
\(817\) 1.48911i 0.0520975i
\(818\) −12.9003 + 12.9003i −0.451049 + 0.451049i
\(819\) 10.8200 4.48180i 0.378082 0.156607i
\(820\) 0 0
\(821\) −13.3232 32.1651i −0.464983 1.12257i −0.966326 0.257320i \(-0.917161\pi\)
0.501343 0.865249i \(-0.332839\pi\)
\(822\) 0.230937 0.557531i 0.00805484 0.0194461i
\(823\) 11.0211 + 4.56508i 0.384171 + 0.159129i 0.566406 0.824126i \(-0.308333\pi\)
−0.182236 + 0.983255i \(0.558333\pi\)
\(824\) 21.4008 21.4008i 0.745531 0.745531i
\(825\) 0 0
\(826\) −3.79484 + 9.16155i −0.132039 + 0.318771i
\(827\) −2.90175 + 7.00545i −0.100904 + 0.243603i −0.966267 0.257541i \(-0.917088\pi\)
0.865363 + 0.501145i \(0.167088\pi\)
\(828\) 0.883065 0.365778i 0.0306886 0.0127116i
\(829\) 24.5064i 0.851141i 0.904925 + 0.425570i \(0.139927\pi\)
−0.904925 + 0.425570i \(0.860073\pi\)
\(830\) 0 0
\(831\) −0.536403 0.536403i −0.0186076 0.0186076i
\(832\) 43.4508i 1.50639i
\(833\) −24.9662 9.93334i −0.865026 0.344170i
\(834\) 2.09508 0.0725467
\(835\) 0 0
\(836\) −0.718154 + 0.297469i −0.0248379 + 0.0102882i
\(837\) 4.36456 0.150861
\(838\) −46.5415 + 19.2781i −1.60775 + 0.665951i
\(839\) 12.9110 + 5.34790i 0.445737 + 0.184630i 0.594250 0.804280i \(-0.297449\pi\)
−0.148514 + 0.988910i \(0.547449\pi\)
\(840\) 0 0
\(841\) −9.42601 + 9.42601i −0.325035 + 0.325035i
\(842\) 10.1945 + 10.1945i 0.351326 + 0.351326i
\(843\) −0.952514 0.394544i −0.0328063 0.0135888i
\(844\) −0.820809 0.339990i −0.0282534 0.0117029i
\(845\) 0 0
\(846\) 21.2184i 0.729505i
\(847\) 3.33324 + 8.04714i 0.114531 + 0.276503i
\(848\) −35.0317 + 35.0317i −1.20299 + 1.20299i
\(849\) 2.26154 0.0776158
\(850\) 0 0
\(851\) 0.550047 0.0188554
\(852\) 0.0251379 0.0251379i 0.000861212 0.000861212i
\(853\) −2.83189 6.83679i −0.0969621 0.234087i 0.867955 0.496644i \(-0.165434\pi\)
−0.964917 + 0.262556i \(0.915434\pi\)
\(854\) 1.60262i 0.0548404i
\(855\) 0 0
\(856\) 42.6679 + 17.6736i 1.45836 + 0.604072i
\(857\) −44.6404 18.4907i −1.52489 0.631629i −0.546324 0.837574i \(-0.683973\pi\)
−0.978564 + 0.205944i \(0.933973\pi\)
\(858\) 3.05785 + 3.05785i 0.104393 + 0.104393i
\(859\) 3.68462 3.68462i 0.125718 0.125718i −0.641448 0.767166i \(-0.721666\pi\)
0.767166 + 0.641448i \(0.221666\pi\)
\(860\) 0 0
\(861\) 0.0761386 + 0.0315377i 0.00259480 + 0.00107480i
\(862\) 31.5564 13.0711i 1.07481 0.445202i
\(863\) 7.90307 0.269024 0.134512 0.990912i \(-0.457053\pi\)
0.134512 + 0.990912i \(0.457053\pi\)
\(864\) −0.237183 + 0.0982444i −0.00806913 + 0.00334234i
\(865\) 0 0
\(866\) 46.4483 1.57838
\(867\) −1.74557 0.666305i −0.0592827 0.0226289i
\(868\) 0.318026i 0.0107945i
\(869\) −50.9161 50.9161i −1.72721 1.72721i
\(870\) 0 0
\(871\) 16.8840i 0.572091i
\(872\) −27.2007 + 11.2669i −0.921133 + 0.381546i
\(873\) −3.08817 + 7.45551i −0.104519 + 0.252331i
\(874\) −5.92843 + 14.3125i −0.200532 + 0.484127i
\(875\) 0 0
\(876\) −0.0294840 + 0.0294840i −0.000996172 + 0.000996172i
\(877\) 25.4126 + 10.5262i 0.858121 + 0.355445i 0.767972 0.640483i \(-0.221266\pi\)
0.0901488 + 0.995928i \(0.471266\pi\)
\(878\) 11.7394 28.3415i 0.396186 0.956478i
\(879\) −0.986461 2.38153i −0.0332725 0.0803269i
\(880\) 0 0
\(881\) 18.2295 7.55089i 0.614166 0.254396i −0.0538426 0.998549i \(-0.517147\pi\)
0.668009 + 0.744154i \(0.267147\pi\)
\(882\) −19.8048 + 19.8048i −0.666864 + 0.666864i
\(883\) 21.8566i 0.735534i −0.929918 0.367767i \(-0.880122\pi\)
0.929918 0.367767i \(-0.119878\pi\)
\(884\) −0.634568 1.47318i −0.0213428 0.0495485i
\(885\) 0 0
\(886\) −14.0550 14.0550i −0.472187 0.472187i
\(887\) −1.06338 2.56722i −0.0357048 0.0861989i 0.905021 0.425366i \(-0.139855\pi\)
−0.940726 + 0.339167i \(0.889855\pi\)
\(888\) −0.0362130 −0.00121523
\(889\) −0.132610 0.320149i −0.00444759 0.0107374i
\(890\) 0 0
\(891\) −16.5056 + 39.8481i −0.552960 + 1.33496i
\(892\) 0.996188 + 0.996188i 0.0333549 + 0.0333549i
\(893\) −8.10863 8.10863i −0.271345 0.271345i
\(894\) −1.05595 + 2.54930i −0.0353164 + 0.0852613i
\(895\) 0 0
\(896\) 3.15567 + 7.61845i 0.105423 + 0.254515i
\(897\) 2.87379 0.0959530
\(898\) −3.64057 8.78912i −0.121488 0.293297i
\(899\) 30.5107 + 30.5107i 1.01759 + 1.01759i
\(900\) 0 0
\(901\) −18.2703 + 45.9200i −0.608671 + 1.52982i
\(902\) 7.52710i 0.250625i
\(903\) −0.0346321 + 0.0346321i −0.00115248 + 0.00115248i
\(904\) −29.6123 + 12.2658i −0.984890 + 0.407955i
\(905\) 0 0
\(906\) −0.681907 1.64627i −0.0226548 0.0546936i
\(907\) 16.2552 39.2435i 0.539745 1.30306i −0.385156 0.922851i \(-0.625853\pi\)
0.924901 0.380208i \(-0.124147\pi\)
\(908\) −0.0777791 0.0322171i −0.00258119 0.00106916i
\(909\) −30.2180 + 30.2180i −1.00227 + 1.00227i
\(910\) 0 0
\(911\) −22.6043 + 54.5717i −0.748915 + 1.80804i −0.183933 + 0.982939i \(0.558883\pi\)
−0.564982 + 0.825103i \(0.691117\pi\)
\(912\) 0.403784 0.974822i 0.0133706 0.0322796i
\(913\) −22.5653 + 9.34686i −0.746803 + 0.309336i
\(914\) 7.20694i 0.238384i
\(915\) 0 0
\(916\) −0.171689 0.171689i −0.00567277 0.00567277i
\(917\) 13.5778i 0.448380i
\(918\) −2.72089 + 2.79832i −0.0898026 + 0.0923582i
\(919\) −26.5657 −0.876323 −0.438161 0.898896i \(-0.644370\pi\)
−0.438161 + 0.898896i \(0.644370\pi\)
\(920\) 0 0
\(921\) −3.08947 + 1.27970i −0.101802 + 0.0421676i
\(922\) 23.5641 0.776042
\(923\) −24.4263 + 10.1177i −0.804001 + 0.333028i
\(924\) 0.0236202 + 0.00978379i 0.000777046 + 0.000321863i
\(925\) 0 0
\(926\) 27.8450 27.8450i 0.915042 0.915042i
\(927\) −23.0215 23.0215i −0.756127 0.756127i
\(928\) −2.34482 0.971255i −0.0769724 0.0318830i
\(929\) −36.0284 14.9234i −1.18205 0.489622i −0.296894 0.954911i \(-0.595951\pi\)
−0.885159 + 0.465288i \(0.845951\pi\)
\(930\) 0 0
\(931\) 15.1368i 0.496090i
\(932\) −0.765703 1.84857i −0.0250814 0.0605519i
\(933\) 0.0839243 0.0839243i 0.00274756 0.00274756i
\(934\) −0.929695 −0.0304206
\(935\) 0 0
\(936\) 46.7993 1.52968
\(937\) 6.93328 6.93328i 0.226500 0.226500i −0.584729 0.811229i \(-0.698799\pi\)
0.811229 + 0.584729i \(0.198799\pi\)
\(938\) −1.14558 2.76567i −0.0374044 0.0903023i
\(939\) 0.398471i 0.0130036i
\(940\) 0 0
\(941\) −45.4770 18.8372i −1.48251 0.614075i −0.512837 0.858486i \(-0.671405\pi\)
−0.969672 + 0.244411i \(0.921405\pi\)
\(942\) 0.897574 + 0.371787i 0.0292445 + 0.0121135i
\(943\) −3.53701 3.53701i −0.115181 0.115181i
\(944\) −28.9875 + 28.9875i −0.943462 + 0.943462i
\(945\) 0 0
\(946\) 4.13282 + 1.71187i 0.134370 + 0.0556577i
\(947\) 16.8123 6.96387i 0.546326 0.226295i −0.0924110 0.995721i \(-0.529457\pi\)
0.638737 + 0.769425i \(0.279457\pi\)
\(948\) −0.112553 −0.00365556
\(949\) 28.6493 11.8669i 0.929996 0.385217i
\(950\) 0 0
\(951\) 0.966612 0.0313445
\(952\) 5.70714 + 5.54922i 0.184970 + 0.179851i
\(953\) 5.23591i 0.169608i −0.996398 0.0848039i \(-0.972974\pi\)
0.996398 0.0848039i \(-0.0270264\pi\)
\(954\) 36.4268 + 36.4268i 1.17936 + 1.17936i
\(955\) 0 0
\(956\) 0.543041i 0.0175632i
\(957\) 3.20470 1.32743i 0.103593 0.0429097i
\(958\) 7.46681 18.0265i 0.241242 0.582409i
\(959\) −1.01538 + 2.45134i −0.0327882 + 0.0791578i
\(960\) 0 0
\(961\) 9.18007 9.18007i 0.296131 0.296131i
\(962\) −0.888949 0.368215i −0.0286609 0.0118717i
\(963\) 19.0121 45.8994i 0.612658 1.47909i
\(964\) −0.306966 0.741081i −0.00988671 0.0238686i
\(965\) 0 0
\(966\) 0.470740 0.194987i 0.0151458 0.00627359i
\(967\) −2.25894 + 2.25894i −0.0726426 + 0.0726426i −0.742495 0.669852i \(-0.766358\pi\)
0.669852 + 0.742495i \(0.266358\pi\)
\(968\) 34.8059i 1.11870i
\(969\) −0.0147654 1.05245i −0.000474332 0.0338097i
\(970\) 0 0
\(971\) −19.2766 19.2766i −0.618617 0.618617i 0.326560 0.945176i \(-0.394110\pi\)
−0.945176 + 0.326560i \(0.894110\pi\)
\(972\) 0.0779250 + 0.188128i 0.00249944 + 0.00603419i
\(973\) −9.21160 −0.295310
\(974\) 15.9818 + 38.5834i 0.512089 + 1.23629i
\(975\) 0 0
\(976\) 2.53537 6.12092i 0.0811552 0.195926i
\(977\) 5.66117 + 5.66117i 0.181117 + 0.181117i 0.791842 0.610726i \(-0.209122\pi\)
−0.610726 + 0.791842i \(0.709122\pi\)
\(978\) −1.25214 1.25214i −0.0400390 0.0400390i
\(979\) 4.37463 10.5613i 0.139814 0.337540i
\(980\) 0 0
\(981\) 12.1202 + 29.2608i 0.386969 + 0.934225i
\(982\) −18.8859 −0.602674
\(983\) 4.18902 + 10.1132i 0.133609 + 0.322561i 0.976498 0.215527i \(-0.0691469\pi\)
−0.842889 + 0.538088i \(0.819147\pi\)
\(984\) 0.232863 + 0.232863i 0.00742341 + 0.00742341i
\(985\) 0 0
\(986\) −38.5822 + 0.541287i −1.22871 + 0.0172381i
\(987\) 0.377162i 0.0120052i
\(988\) 0.638958 0.638958i 0.0203280 0.0203280i
\(989\) 2.74644 1.13761i 0.0873318 0.0361740i
\(990\) 0 0
\(991\) −11.1297 26.8695i −0.353547 0.853539i −0.996177 0.0873614i \(-0.972157\pi\)
0.642629 0.766177i \(-0.277843\pi\)
\(992\) −0.990028 + 2.39014i −0.0314334 + 0.0758870i
\(993\) 3.57051 + 1.47895i 0.113307 + 0.0469332i
\(994\) −3.31465 + 3.31465i −0.105134 + 0.105134i
\(995\) 0 0
\(996\) −0.0146101 + 0.0352719i −0.000462939 + 0.00111763i
\(997\) 5.24110 12.6531i 0.165987 0.400728i −0.818898 0.573940i \(-0.805414\pi\)
0.984885 + 0.173211i \(0.0554144\pi\)
\(998\) −15.0711 + 6.24264i −0.477067 + 0.197607i
\(999\) 0.0780686i 0.00246998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.f.274.5 24
5.2 odd 4 85.2.l.a.36.5 yes 24
5.3 odd 4 425.2.m.b.376.2 24
5.4 even 2 425.2.n.c.274.2 24
15.2 even 4 765.2.be.b.631.2 24
17.9 even 8 425.2.n.c.349.2 24
85.3 even 16 7225.2.a.bq.1.3 12
85.9 even 8 inner 425.2.n.f.349.5 24
85.12 even 16 1445.2.d.j.866.6 24
85.22 even 16 1445.2.d.j.866.5 24
85.37 even 16 1445.2.a.q.1.10 12
85.43 odd 8 425.2.m.b.26.2 24
85.48 even 16 7225.2.a.bs.1.3 12
85.77 odd 8 85.2.l.a.26.5 24
85.82 even 16 1445.2.a.p.1.10 12
255.77 even 8 765.2.be.b.451.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.5 24 85.77 odd 8
85.2.l.a.36.5 yes 24 5.2 odd 4
425.2.m.b.26.2 24 85.43 odd 8
425.2.m.b.376.2 24 5.3 odd 4
425.2.n.c.274.2 24 5.4 even 2
425.2.n.c.349.2 24 17.9 even 8
425.2.n.f.274.5 24 1.1 even 1 trivial
425.2.n.f.349.5 24 85.9 even 8 inner
765.2.be.b.451.2 24 255.77 even 8
765.2.be.b.631.2 24 15.2 even 4
1445.2.a.p.1.10 12 85.82 even 16
1445.2.a.q.1.10 12 85.37 even 16
1445.2.d.j.866.5 24 85.22 even 16
1445.2.d.j.866.6 24 85.12 even 16
7225.2.a.bq.1.3 12 85.3 even 16
7225.2.a.bs.1.3 12 85.48 even 16