Properties

Label 1449.4.a.h.1.6
Level $1449$
Weight $4$
Character 1449.1
Self dual yes
Analytic conductor $85.494$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1449,4,Mod(1,1449)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1449, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1449.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1449.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.4937675983\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 34x^{5} + 7x^{4} + 295x^{3} + 84x^{2} - 524x - 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.01159\) of defining polynomial
Character \(\chi\) \(=\) 1449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.01159 q^{2} +8.09283 q^{4} -9.29066 q^{5} +7.00000 q^{7} +0.372383 q^{8} -37.2703 q^{10} +26.0262 q^{11} +0.0530670 q^{13} +28.0811 q^{14} -63.2488 q^{16} +107.068 q^{17} -37.1814 q^{19} -75.1877 q^{20} +104.406 q^{22} -23.0000 q^{23} -38.6836 q^{25} +0.212883 q^{26} +56.6498 q^{28} +270.783 q^{29} -215.781 q^{31} -256.707 q^{32} +429.513 q^{34} -65.0346 q^{35} +186.628 q^{37} -149.157 q^{38} -3.45969 q^{40} -10.8910 q^{41} +205.043 q^{43} +210.626 q^{44} -92.2665 q^{46} +471.928 q^{47} +49.0000 q^{49} -155.183 q^{50} +0.429462 q^{52} -267.226 q^{53} -241.801 q^{55} +2.60668 q^{56} +1086.27 q^{58} +30.0157 q^{59} +539.671 q^{61} -865.624 q^{62} -523.812 q^{64} -0.493028 q^{65} +679.592 q^{67} +866.484 q^{68} -260.892 q^{70} +1111.20 q^{71} -182.981 q^{73} +748.673 q^{74} -300.903 q^{76} +182.184 q^{77} +162.187 q^{79} +587.623 q^{80} -43.6901 q^{82} +740.972 q^{83} -994.733 q^{85} +822.549 q^{86} +9.69174 q^{88} +378.808 q^{89} +0.371469 q^{91} -186.135 q^{92} +1893.18 q^{94} +345.440 q^{95} -1398.66 q^{97} +196.568 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 6 q^{2} + 18 q^{4} + 41 q^{5} + 49 q^{7} + 33 q^{8} + q^{10} + 126 q^{11} - 87 q^{13} + 42 q^{14} + 2 q^{16} + 204 q^{17} - 286 q^{19} + 418 q^{20} + 329 q^{22} - 161 q^{23} + 440 q^{25} + 360 q^{26}+ \cdots + 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.01159 1.41831 0.709155 0.705053i \(-0.249077\pi\)
0.709155 + 0.705053i \(0.249077\pi\)
\(3\) 0 0
\(4\) 8.09283 1.01160
\(5\) −9.29066 −0.830982 −0.415491 0.909597i \(-0.636390\pi\)
−0.415491 + 0.909597i \(0.636390\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0.372383 0.0164572
\(9\) 0 0
\(10\) −37.2703 −1.17859
\(11\) 26.0262 0.713382 0.356691 0.934222i \(-0.383905\pi\)
0.356691 + 0.934222i \(0.383905\pi\)
\(12\) 0 0
\(13\) 0.0530670 0.00113217 0.000566083 1.00000i \(-0.499820\pi\)
0.000566083 1.00000i \(0.499820\pi\)
\(14\) 28.0811 0.536071
\(15\) 0 0
\(16\) −63.2488 −0.988262
\(17\) 107.068 1.52752 0.763760 0.645501i \(-0.223351\pi\)
0.763760 + 0.645501i \(0.223351\pi\)
\(18\) 0 0
\(19\) −37.1814 −0.448948 −0.224474 0.974480i \(-0.572066\pi\)
−0.224474 + 0.974480i \(0.572066\pi\)
\(20\) −75.1877 −0.840624
\(21\) 0 0
\(22\) 104.406 1.01180
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −38.6836 −0.309469
\(26\) 0.212883 0.00160576
\(27\) 0 0
\(28\) 56.6498 0.382350
\(29\) 270.783 1.73390 0.866952 0.498392i \(-0.166076\pi\)
0.866952 + 0.498392i \(0.166076\pi\)
\(30\) 0 0
\(31\) −215.781 −1.25017 −0.625087 0.780555i \(-0.714937\pi\)
−0.625087 + 0.780555i \(0.714937\pi\)
\(32\) −256.707 −1.41812
\(33\) 0 0
\(34\) 429.513 2.16650
\(35\) −65.0346 −0.314082
\(36\) 0 0
\(37\) 186.628 0.829227 0.414614 0.909998i \(-0.363917\pi\)
0.414614 + 0.909998i \(0.363917\pi\)
\(38\) −149.157 −0.636747
\(39\) 0 0
\(40\) −3.45969 −0.0136756
\(41\) −10.8910 −0.0414850 −0.0207425 0.999785i \(-0.506603\pi\)
−0.0207425 + 0.999785i \(0.506603\pi\)
\(42\) 0 0
\(43\) 205.043 0.727182 0.363591 0.931559i \(-0.381551\pi\)
0.363591 + 0.931559i \(0.381551\pi\)
\(44\) 210.626 0.721660
\(45\) 0 0
\(46\) −92.2665 −0.295738
\(47\) 471.928 1.46463 0.732316 0.680965i \(-0.238439\pi\)
0.732316 + 0.680965i \(0.238439\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −155.183 −0.438923
\(51\) 0 0
\(52\) 0.429462 0.00114530
\(53\) −267.226 −0.692571 −0.346286 0.938129i \(-0.612557\pi\)
−0.346286 + 0.938129i \(0.612557\pi\)
\(54\) 0 0
\(55\) −241.801 −0.592808
\(56\) 2.60668 0.00622023
\(57\) 0 0
\(58\) 1086.27 2.45921
\(59\) 30.0157 0.0662324 0.0331162 0.999452i \(-0.489457\pi\)
0.0331162 + 0.999452i \(0.489457\pi\)
\(60\) 0 0
\(61\) 539.671 1.13275 0.566375 0.824147i \(-0.308345\pi\)
0.566375 + 0.824147i \(0.308345\pi\)
\(62\) −865.624 −1.77314
\(63\) 0 0
\(64\) −523.812 −1.02307
\(65\) −0.493028 −0.000940809 0
\(66\) 0 0
\(67\) 679.592 1.23918 0.619592 0.784924i \(-0.287298\pi\)
0.619592 + 0.784924i \(0.287298\pi\)
\(68\) 866.484 1.54524
\(69\) 0 0
\(70\) −260.892 −0.445465
\(71\) 1111.20 1.85739 0.928697 0.370840i \(-0.120930\pi\)
0.928697 + 0.370840i \(0.120930\pi\)
\(72\) 0 0
\(73\) −182.981 −0.293374 −0.146687 0.989183i \(-0.546861\pi\)
−0.146687 + 0.989183i \(0.546861\pi\)
\(74\) 748.673 1.17610
\(75\) 0 0
\(76\) −300.903 −0.454157
\(77\) 182.184 0.269633
\(78\) 0 0
\(79\) 162.187 0.230980 0.115490 0.993309i \(-0.463156\pi\)
0.115490 + 0.993309i \(0.463156\pi\)
\(80\) 587.623 0.821228
\(81\) 0 0
\(82\) −43.6901 −0.0588386
\(83\) 740.972 0.979907 0.489954 0.871749i \(-0.337014\pi\)
0.489954 + 0.871749i \(0.337014\pi\)
\(84\) 0 0
\(85\) −994.733 −1.26934
\(86\) 822.549 1.03137
\(87\) 0 0
\(88\) 9.69174 0.0117403
\(89\) 378.808 0.451164 0.225582 0.974224i \(-0.427572\pi\)
0.225582 + 0.974224i \(0.427572\pi\)
\(90\) 0 0
\(91\) 0.371469 0.000427918 0
\(92\) −186.135 −0.210934
\(93\) 0 0
\(94\) 1893.18 2.07730
\(95\) 345.440 0.373068
\(96\) 0 0
\(97\) −1398.66 −1.46404 −0.732021 0.681282i \(-0.761423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(98\) 196.568 0.202616
\(99\) 0 0
\(100\) −313.060 −0.313060
\(101\) 1080.66 1.06465 0.532324 0.846541i \(-0.321319\pi\)
0.532324 + 0.846541i \(0.321319\pi\)
\(102\) 0 0
\(103\) 370.703 0.354626 0.177313 0.984155i \(-0.443259\pi\)
0.177313 + 0.984155i \(0.443259\pi\)
\(104\) 0.0197613 1.86322e−5 0
\(105\) 0 0
\(106\) −1072.00 −0.982281
\(107\) 557.976 0.504127 0.252064 0.967711i \(-0.418891\pi\)
0.252064 + 0.967711i \(0.418891\pi\)
\(108\) 0 0
\(109\) 1602.50 1.40818 0.704092 0.710109i \(-0.251354\pi\)
0.704092 + 0.710109i \(0.251354\pi\)
\(110\) −970.005 −0.840785
\(111\) 0 0
\(112\) −442.741 −0.373528
\(113\) 1506.65 1.25428 0.627139 0.778907i \(-0.284226\pi\)
0.627139 + 0.778907i \(0.284226\pi\)
\(114\) 0 0
\(115\) 213.685 0.173272
\(116\) 2191.40 1.75402
\(117\) 0 0
\(118\) 120.411 0.0939381
\(119\) 749.477 0.577348
\(120\) 0 0
\(121\) −653.636 −0.491086
\(122\) 2164.94 1.60659
\(123\) 0 0
\(124\) −1746.28 −1.26468
\(125\) 1520.73 1.08815
\(126\) 0 0
\(127\) −827.281 −0.578026 −0.289013 0.957325i \(-0.593327\pi\)
−0.289013 + 0.957325i \(0.593327\pi\)
\(128\) −47.6619 −0.0329121
\(129\) 0 0
\(130\) −1.97782 −0.00133436
\(131\) −1303.11 −0.869107 −0.434553 0.900646i \(-0.643094\pi\)
−0.434553 + 0.900646i \(0.643094\pi\)
\(132\) 0 0
\(133\) −260.270 −0.169686
\(134\) 2726.24 1.75755
\(135\) 0 0
\(136\) 39.8704 0.0251387
\(137\) −247.574 −0.154392 −0.0771958 0.997016i \(-0.524597\pi\)
−0.0771958 + 0.997016i \(0.524597\pi\)
\(138\) 0 0
\(139\) 560.415 0.341969 0.170985 0.985274i \(-0.445305\pi\)
0.170985 + 0.985274i \(0.445305\pi\)
\(140\) −526.314 −0.317726
\(141\) 0 0
\(142\) 4457.67 2.63436
\(143\) 1.38113 0.000807666 0
\(144\) 0 0
\(145\) −2515.76 −1.44084
\(146\) −734.045 −0.416096
\(147\) 0 0
\(148\) 1510.35 0.838849
\(149\) −2650.36 −1.45722 −0.728612 0.684927i \(-0.759834\pi\)
−0.728612 + 0.684927i \(0.759834\pi\)
\(150\) 0 0
\(151\) −734.446 −0.395817 −0.197908 0.980220i \(-0.563415\pi\)
−0.197908 + 0.980220i \(0.563415\pi\)
\(152\) −13.8458 −0.00738841
\(153\) 0 0
\(154\) 730.845 0.382423
\(155\) 2004.75 1.03887
\(156\) 0 0
\(157\) −2448.16 −1.24449 −0.622243 0.782824i \(-0.713778\pi\)
−0.622243 + 0.782824i \(0.713778\pi\)
\(158\) 650.627 0.327602
\(159\) 0 0
\(160\) 2384.98 1.17843
\(161\) −161.000 −0.0788110
\(162\) 0 0
\(163\) 3698.40 1.77718 0.888592 0.458699i \(-0.151684\pi\)
0.888592 + 0.458699i \(0.151684\pi\)
\(164\) −88.1388 −0.0419664
\(165\) 0 0
\(166\) 2972.47 1.38981
\(167\) −3599.66 −1.66796 −0.833981 0.551793i \(-0.813944\pi\)
−0.833981 + 0.551793i \(0.813944\pi\)
\(168\) 0 0
\(169\) −2197.00 −0.999999
\(170\) −3990.46 −1.80032
\(171\) 0 0
\(172\) 1659.38 0.735619
\(173\) −1644.62 −0.722764 −0.361382 0.932418i \(-0.617695\pi\)
−0.361382 + 0.932418i \(0.617695\pi\)
\(174\) 0 0
\(175\) −270.785 −0.116968
\(176\) −1646.13 −0.705008
\(177\) 0 0
\(178\) 1519.62 0.639891
\(179\) 4760.11 1.98764 0.993819 0.111008i \(-0.0354080\pi\)
0.993819 + 0.111008i \(0.0354080\pi\)
\(180\) 0 0
\(181\) 799.206 0.328202 0.164101 0.986444i \(-0.447528\pi\)
0.164101 + 0.986444i \(0.447528\pi\)
\(182\) 1.49018 0.000606921 0
\(183\) 0 0
\(184\) −8.56482 −0.00343156
\(185\) −1733.89 −0.689073
\(186\) 0 0
\(187\) 2786.58 1.08970
\(188\) 3819.23 1.48163
\(189\) 0 0
\(190\) 1385.76 0.529125
\(191\) 2733.54 1.03556 0.517781 0.855513i \(-0.326758\pi\)
0.517781 + 0.855513i \(0.326758\pi\)
\(192\) 0 0
\(193\) 2516.43 0.938533 0.469266 0.883057i \(-0.344518\pi\)
0.469266 + 0.883057i \(0.344518\pi\)
\(194\) −5610.83 −2.07647
\(195\) 0 0
\(196\) 396.549 0.144515
\(197\) −2839.10 −1.02679 −0.513395 0.858152i \(-0.671613\pi\)
−0.513395 + 0.858152i \(0.671613\pi\)
\(198\) 0 0
\(199\) 11.6659 0.00415566 0.00207783 0.999998i \(-0.499339\pi\)
0.00207783 + 0.999998i \(0.499339\pi\)
\(200\) −14.4051 −0.00509299
\(201\) 0 0
\(202\) 4335.15 1.51000
\(203\) 1895.48 0.655354
\(204\) 0 0
\(205\) 101.184 0.0344733
\(206\) 1487.11 0.502970
\(207\) 0 0
\(208\) −3.35643 −0.00111888
\(209\) −967.693 −0.320271
\(210\) 0 0
\(211\) −3294.35 −1.07484 −0.537422 0.843313i \(-0.680602\pi\)
−0.537422 + 0.843313i \(0.680602\pi\)
\(212\) −2162.61 −0.700607
\(213\) 0 0
\(214\) 2238.37 0.715009
\(215\) −1904.99 −0.604275
\(216\) 0 0
\(217\) −1510.47 −0.472522
\(218\) 6428.58 1.99724
\(219\) 0 0
\(220\) −1956.85 −0.599686
\(221\) 5.68179 0.00172940
\(222\) 0 0
\(223\) 1709.66 0.513397 0.256699 0.966491i \(-0.417365\pi\)
0.256699 + 0.966491i \(0.417365\pi\)
\(224\) −1796.95 −0.535999
\(225\) 0 0
\(226\) 6044.05 1.77896
\(227\) −4910.88 −1.43589 −0.717944 0.696101i \(-0.754917\pi\)
−0.717944 + 0.696101i \(0.754917\pi\)
\(228\) 0 0
\(229\) 657.414 0.189708 0.0948540 0.995491i \(-0.469762\pi\)
0.0948540 + 0.995491i \(0.469762\pi\)
\(230\) 857.217 0.245753
\(231\) 0 0
\(232\) 100.835 0.0285352
\(233\) 4042.94 1.13675 0.568373 0.822771i \(-0.307573\pi\)
0.568373 + 0.822771i \(0.307573\pi\)
\(234\) 0 0
\(235\) −4384.52 −1.21708
\(236\) 242.912 0.0670010
\(237\) 0 0
\(238\) 3006.59 0.818858
\(239\) −5849.57 −1.58317 −0.791584 0.611060i \(-0.790743\pi\)
−0.791584 + 0.611060i \(0.790743\pi\)
\(240\) 0 0
\(241\) −1520.34 −0.406364 −0.203182 0.979141i \(-0.565128\pi\)
−0.203182 + 0.979141i \(0.565128\pi\)
\(242\) −2622.12 −0.696512
\(243\) 0 0
\(244\) 4367.46 1.14589
\(245\) −455.242 −0.118712
\(246\) 0 0
\(247\) −1.97311 −0.000508283 0
\(248\) −80.3533 −0.0205743
\(249\) 0 0
\(250\) 6100.54 1.54333
\(251\) −2027.33 −0.509817 −0.254909 0.966965i \(-0.582045\pi\)
−0.254909 + 0.966965i \(0.582045\pi\)
\(252\) 0 0
\(253\) −598.603 −0.148750
\(254\) −3318.71 −0.819820
\(255\) 0 0
\(256\) 3999.30 0.976391
\(257\) −460.382 −0.111742 −0.0558712 0.998438i \(-0.517794\pi\)
−0.0558712 + 0.998438i \(0.517794\pi\)
\(258\) 0 0
\(259\) 1306.39 0.313418
\(260\) −3.98999 −0.000951726 0
\(261\) 0 0
\(262\) −5227.53 −1.23266
\(263\) −855.717 −0.200630 −0.100315 0.994956i \(-0.531985\pi\)
−0.100315 + 0.994956i \(0.531985\pi\)
\(264\) 0 0
\(265\) 2482.70 0.575514
\(266\) −1044.10 −0.240668
\(267\) 0 0
\(268\) 5499.82 1.25356
\(269\) −4915.03 −1.11403 −0.557016 0.830502i \(-0.688054\pi\)
−0.557016 + 0.830502i \(0.688054\pi\)
\(270\) 0 0
\(271\) −4904.12 −1.09928 −0.549638 0.835403i \(-0.685234\pi\)
−0.549638 + 0.835403i \(0.685234\pi\)
\(272\) −6771.92 −1.50959
\(273\) 0 0
\(274\) −993.163 −0.218975
\(275\) −1006.79 −0.220770
\(276\) 0 0
\(277\) −1522.94 −0.330341 −0.165171 0.986265i \(-0.552818\pi\)
−0.165171 + 0.986265i \(0.552818\pi\)
\(278\) 2248.15 0.485019
\(279\) 0 0
\(280\) −24.2178 −0.00516890
\(281\) 7847.92 1.66608 0.833038 0.553215i \(-0.186599\pi\)
0.833038 + 0.553215i \(0.186599\pi\)
\(282\) 0 0
\(283\) −8315.72 −1.74671 −0.873354 0.487086i \(-0.838060\pi\)
−0.873354 + 0.487086i \(0.838060\pi\)
\(284\) 8992.73 1.87895
\(285\) 0 0
\(286\) 5.54054 0.00114552
\(287\) −76.2369 −0.0156799
\(288\) 0 0
\(289\) 6550.58 1.33331
\(290\) −10092.2 −2.04356
\(291\) 0 0
\(292\) −1480.83 −0.296778
\(293\) 3652.35 0.728235 0.364117 0.931353i \(-0.381371\pi\)
0.364117 + 0.931353i \(0.381371\pi\)
\(294\) 0 0
\(295\) −278.866 −0.0550380
\(296\) 69.4971 0.0136467
\(297\) 0 0
\(298\) −10632.2 −2.06679
\(299\) −1.22054 −0.000236073 0
\(300\) 0 0
\(301\) 1435.30 0.274849
\(302\) −2946.29 −0.561391
\(303\) 0 0
\(304\) 2351.68 0.443678
\(305\) −5013.90 −0.941295
\(306\) 0 0
\(307\) −3056.40 −0.568201 −0.284101 0.958794i \(-0.591695\pi\)
−0.284101 + 0.958794i \(0.591695\pi\)
\(308\) 1474.38 0.272762
\(309\) 0 0
\(310\) 8042.22 1.47344
\(311\) −3317.56 −0.604893 −0.302446 0.953166i \(-0.597803\pi\)
−0.302446 + 0.953166i \(0.597803\pi\)
\(312\) 0 0
\(313\) 5004.23 0.903693 0.451846 0.892096i \(-0.350766\pi\)
0.451846 + 0.892096i \(0.350766\pi\)
\(314\) −9820.99 −1.76507
\(315\) 0 0
\(316\) 1312.55 0.233661
\(317\) 8828.01 1.56413 0.782066 0.623195i \(-0.214166\pi\)
0.782066 + 0.623195i \(0.214166\pi\)
\(318\) 0 0
\(319\) 7047.47 1.23694
\(320\) 4866.56 0.850153
\(321\) 0 0
\(322\) −645.865 −0.111778
\(323\) −3980.95 −0.685776
\(324\) 0 0
\(325\) −2.05283 −0.000350370 0
\(326\) 14836.4 2.52060
\(327\) 0 0
\(328\) −4.05562 −0.000682726 0
\(329\) 3303.49 0.553579
\(330\) 0 0
\(331\) −312.884 −0.0519567 −0.0259784 0.999663i \(-0.508270\pi\)
−0.0259784 + 0.999663i \(0.508270\pi\)
\(332\) 5996.56 0.991277
\(333\) 0 0
\(334\) −14440.3 −2.36569
\(335\) −6313.86 −1.02974
\(336\) 0 0
\(337\) −6915.33 −1.11781 −0.558905 0.829232i \(-0.688778\pi\)
−0.558905 + 0.829232i \(0.688778\pi\)
\(338\) −8813.44 −1.41831
\(339\) 0 0
\(340\) −8050.20 −1.28407
\(341\) −5615.97 −0.891852
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 76.3547 0.0119674
\(345\) 0 0
\(346\) −6597.53 −1.02510
\(347\) 8630.76 1.33523 0.667613 0.744508i \(-0.267316\pi\)
0.667613 + 0.744508i \(0.267316\pi\)
\(348\) 0 0
\(349\) 1398.48 0.214495 0.107248 0.994232i \(-0.465796\pi\)
0.107248 + 0.994232i \(0.465796\pi\)
\(350\) −1086.28 −0.165897
\(351\) 0 0
\(352\) −6681.11 −1.01166
\(353\) 7272.15 1.09648 0.548240 0.836321i \(-0.315298\pi\)
0.548240 + 0.836321i \(0.315298\pi\)
\(354\) 0 0
\(355\) −10323.8 −1.54346
\(356\) 3065.63 0.456399
\(357\) 0 0
\(358\) 19095.6 2.81909
\(359\) −3938.05 −0.578948 −0.289474 0.957186i \(-0.593480\pi\)
−0.289474 + 0.957186i \(0.593480\pi\)
\(360\) 0 0
\(361\) −5476.54 −0.798446
\(362\) 3206.09 0.465492
\(363\) 0 0
\(364\) 3.00624 0.000432884 0
\(365\) 1700.02 0.243789
\(366\) 0 0
\(367\) 4038.29 0.574379 0.287190 0.957874i \(-0.407279\pi\)
0.287190 + 0.957874i \(0.407279\pi\)
\(368\) 1454.72 0.206067
\(369\) 0 0
\(370\) −6955.67 −0.977319
\(371\) −1870.58 −0.261767
\(372\) 0 0
\(373\) 2809.11 0.389947 0.194973 0.980809i \(-0.437538\pi\)
0.194973 + 0.980809i \(0.437538\pi\)
\(374\) 11178.6 1.54554
\(375\) 0 0
\(376\) 175.738 0.0241037
\(377\) 14.3697 0.00196307
\(378\) 0 0
\(379\) 4091.32 0.554504 0.277252 0.960797i \(-0.410576\pi\)
0.277252 + 0.960797i \(0.410576\pi\)
\(380\) 2795.59 0.377396
\(381\) 0 0
\(382\) 10965.8 1.46875
\(383\) −4096.95 −0.546591 −0.273295 0.961930i \(-0.588114\pi\)
−0.273295 + 0.961930i \(0.588114\pi\)
\(384\) 0 0
\(385\) −1692.61 −0.224060
\(386\) 10094.9 1.33113
\(387\) 0 0
\(388\) −11319.1 −1.48103
\(389\) 54.3187 0.00707986 0.00353993 0.999994i \(-0.498873\pi\)
0.00353993 + 0.999994i \(0.498873\pi\)
\(390\) 0 0
\(391\) −2462.57 −0.318510
\(392\) 18.2468 0.00235103
\(393\) 0 0
\(394\) −11389.3 −1.45631
\(395\) −1506.82 −0.191941
\(396\) 0 0
\(397\) 9273.44 1.17234 0.586172 0.810187i \(-0.300634\pi\)
0.586172 + 0.810187i \(0.300634\pi\)
\(398\) 46.7989 0.00589402
\(399\) 0 0
\(400\) 2446.69 0.305836
\(401\) −13718.2 −1.70837 −0.854185 0.519969i \(-0.825944\pi\)
−0.854185 + 0.519969i \(0.825944\pi\)
\(402\) 0 0
\(403\) −11.4509 −0.00141540
\(404\) 8745.58 1.07700
\(405\) 0 0
\(406\) 7603.90 0.929495
\(407\) 4857.22 0.591556
\(408\) 0 0
\(409\) −2397.58 −0.289860 −0.144930 0.989442i \(-0.546296\pi\)
−0.144930 + 0.989442i \(0.546296\pi\)
\(410\) 405.910 0.0488938
\(411\) 0 0
\(412\) 3000.04 0.358741
\(413\) 210.110 0.0250335
\(414\) 0 0
\(415\) −6884.12 −0.814285
\(416\) −13.6227 −0.00160555
\(417\) 0 0
\(418\) −3881.98 −0.454244
\(419\) −1423.39 −0.165960 −0.0829799 0.996551i \(-0.526444\pi\)
−0.0829799 + 0.996551i \(0.526444\pi\)
\(420\) 0 0
\(421\) −3069.10 −0.355294 −0.177647 0.984094i \(-0.556849\pi\)
−0.177647 + 0.984094i \(0.556849\pi\)
\(422\) −13215.6 −1.52446
\(423\) 0 0
\(424\) −99.5104 −0.0113978
\(425\) −4141.78 −0.472720
\(426\) 0 0
\(427\) 3777.70 0.428139
\(428\) 4515.61 0.509977
\(429\) 0 0
\(430\) −7642.02 −0.857049
\(431\) 6600.69 0.737690 0.368845 0.929491i \(-0.379753\pi\)
0.368845 + 0.929491i \(0.379753\pi\)
\(432\) 0 0
\(433\) −8663.43 −0.961519 −0.480760 0.876852i \(-0.659639\pi\)
−0.480760 + 0.876852i \(0.659639\pi\)
\(434\) −6059.37 −0.670182
\(435\) 0 0
\(436\) 12968.8 1.42452
\(437\) 855.173 0.0936121
\(438\) 0 0
\(439\) 6948.87 0.755471 0.377735 0.925914i \(-0.376703\pi\)
0.377735 + 0.925914i \(0.376703\pi\)
\(440\) −90.0426 −0.00975594
\(441\) 0 0
\(442\) 22.7930 0.00245283
\(443\) −3400.22 −0.364672 −0.182336 0.983236i \(-0.558366\pi\)
−0.182336 + 0.983236i \(0.558366\pi\)
\(444\) 0 0
\(445\) −3519.38 −0.374909
\(446\) 6858.47 0.728157
\(447\) 0 0
\(448\) −3666.68 −0.386684
\(449\) 11407.2 1.19897 0.599487 0.800384i \(-0.295371\pi\)
0.599487 + 0.800384i \(0.295371\pi\)
\(450\) 0 0
\(451\) −283.451 −0.0295947
\(452\) 12193.0 1.26883
\(453\) 0 0
\(454\) −19700.4 −2.03654
\(455\) −3.45120 −0.000355592 0
\(456\) 0 0
\(457\) 9912.76 1.01466 0.507330 0.861752i \(-0.330633\pi\)
0.507330 + 0.861752i \(0.330633\pi\)
\(458\) 2637.27 0.269065
\(459\) 0 0
\(460\) 1729.32 0.175282
\(461\) −10159.1 −1.02637 −0.513185 0.858278i \(-0.671535\pi\)
−0.513185 + 0.858278i \(0.671535\pi\)
\(462\) 0 0
\(463\) −9046.25 −0.908024 −0.454012 0.890996i \(-0.650008\pi\)
−0.454012 + 0.890996i \(0.650008\pi\)
\(464\) −17126.7 −1.71355
\(465\) 0 0
\(466\) 16218.6 1.61226
\(467\) 3959.37 0.392329 0.196165 0.980571i \(-0.437151\pi\)
0.196165 + 0.980571i \(0.437151\pi\)
\(468\) 0 0
\(469\) 4757.14 0.468368
\(470\) −17588.9 −1.72620
\(471\) 0 0
\(472\) 11.1774 0.00109000
\(473\) 5336.50 0.518758
\(474\) 0 0
\(475\) 1438.31 0.138935
\(476\) 6065.38 0.584047
\(477\) 0 0
\(478\) −23466.1 −2.24542
\(479\) −16222.6 −1.54745 −0.773726 0.633520i \(-0.781609\pi\)
−0.773726 + 0.633520i \(0.781609\pi\)
\(480\) 0 0
\(481\) 9.90378 0.000938823 0
\(482\) −6098.97 −0.576350
\(483\) 0 0
\(484\) −5289.76 −0.496784
\(485\) 12994.4 1.21659
\(486\) 0 0
\(487\) 6774.14 0.630320 0.315160 0.949039i \(-0.397942\pi\)
0.315160 + 0.949039i \(0.397942\pi\)
\(488\) 200.965 0.0186419
\(489\) 0 0
\(490\) −1826.24 −0.168370
\(491\) −14659.7 −1.34742 −0.673710 0.738996i \(-0.735300\pi\)
−0.673710 + 0.738996i \(0.735300\pi\)
\(492\) 0 0
\(493\) 28992.3 2.64857
\(494\) −7.91530 −0.000720903 0
\(495\) 0 0
\(496\) 13647.9 1.23550
\(497\) 7778.38 0.702029
\(498\) 0 0
\(499\) 12484.8 1.12003 0.560015 0.828483i \(-0.310795\pi\)
0.560015 + 0.828483i \(0.310795\pi\)
\(500\) 12307.0 1.10077
\(501\) 0 0
\(502\) −8132.82 −0.723079
\(503\) 17938.9 1.59017 0.795085 0.606498i \(-0.207426\pi\)
0.795085 + 0.606498i \(0.207426\pi\)
\(504\) 0 0
\(505\) −10040.0 −0.884703
\(506\) −2401.35 −0.210974
\(507\) 0 0
\(508\) −6695.04 −0.584733
\(509\) 10505.0 0.914785 0.457392 0.889265i \(-0.348783\pi\)
0.457392 + 0.889265i \(0.348783\pi\)
\(510\) 0 0
\(511\) −1280.87 −0.110885
\(512\) 16424.8 1.41774
\(513\) 0 0
\(514\) −1846.86 −0.158485
\(515\) −3444.08 −0.294688
\(516\) 0 0
\(517\) 12282.5 1.04484
\(518\) 5240.71 0.444525
\(519\) 0 0
\(520\) −0.183595 −1.54831e−5 0
\(521\) −3758.58 −0.316058 −0.158029 0.987434i \(-0.550514\pi\)
−0.158029 + 0.987434i \(0.550514\pi\)
\(522\) 0 0
\(523\) −20595.1 −1.72191 −0.860955 0.508681i \(-0.830133\pi\)
−0.860955 + 0.508681i \(0.830133\pi\)
\(524\) −10545.8 −0.879191
\(525\) 0 0
\(526\) −3432.78 −0.284556
\(527\) −23103.3 −1.90967
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 9959.58 0.816258
\(531\) 0 0
\(532\) −2106.32 −0.171655
\(533\) −0.577952 −4.69679e−5 0
\(534\) 0 0
\(535\) −5183.97 −0.418921
\(536\) 253.069 0.0203935
\(537\) 0 0
\(538\) −19717.1 −1.58004
\(539\) 1275.29 0.101912
\(540\) 0 0
\(541\) 6685.37 0.531288 0.265644 0.964071i \(-0.414415\pi\)
0.265644 + 0.964071i \(0.414415\pi\)
\(542\) −19673.3 −1.55912
\(543\) 0 0
\(544\) −27485.1 −2.16620
\(545\) −14888.3 −1.17017
\(546\) 0 0
\(547\) 12675.1 0.990763 0.495381 0.868676i \(-0.335028\pi\)
0.495381 + 0.868676i \(0.335028\pi\)
\(548\) −2003.57 −0.156183
\(549\) 0 0
\(550\) −4038.82 −0.313120
\(551\) −10068.1 −0.778432
\(552\) 0 0
\(553\) 1135.31 0.0873024
\(554\) −6109.41 −0.468527
\(555\) 0 0
\(556\) 4535.34 0.345937
\(557\) −12756.8 −0.970418 −0.485209 0.874398i \(-0.661256\pi\)
−0.485209 + 0.874398i \(0.661256\pi\)
\(558\) 0 0
\(559\) 10.8810 0.000823290 0
\(560\) 4113.36 0.310395
\(561\) 0 0
\(562\) 31482.6 2.36301
\(563\) −11448.9 −0.857039 −0.428519 0.903533i \(-0.640965\pi\)
−0.428519 + 0.903533i \(0.640965\pi\)
\(564\) 0 0
\(565\) −13997.7 −1.04228
\(566\) −33359.2 −2.47737
\(567\) 0 0
\(568\) 413.792 0.0305675
\(569\) −5508.53 −0.405852 −0.202926 0.979194i \(-0.565045\pi\)
−0.202926 + 0.979194i \(0.565045\pi\)
\(570\) 0 0
\(571\) 743.477 0.0544895 0.0272448 0.999629i \(-0.491327\pi\)
0.0272448 + 0.999629i \(0.491327\pi\)
\(572\) 11.1773 0.000817038 0
\(573\) 0 0
\(574\) −305.831 −0.0222389
\(575\) 889.723 0.0645287
\(576\) 0 0
\(577\) −17770.7 −1.28215 −0.641077 0.767477i \(-0.721512\pi\)
−0.641077 + 0.767477i \(0.721512\pi\)
\(578\) 26278.2 1.89105
\(579\) 0 0
\(580\) −20359.6 −1.45756
\(581\) 5186.81 0.370370
\(582\) 0 0
\(583\) −6954.88 −0.494068
\(584\) −68.1391 −0.00482811
\(585\) 0 0
\(586\) 14651.7 1.03286
\(587\) 15758.0 1.10801 0.554007 0.832512i \(-0.313098\pi\)
0.554007 + 0.832512i \(0.313098\pi\)
\(588\) 0 0
\(589\) 8023.05 0.561263
\(590\) −1118.69 −0.0780609
\(591\) 0 0
\(592\) −11804.0 −0.819494
\(593\) 6098.60 0.422326 0.211163 0.977451i \(-0.432275\pi\)
0.211163 + 0.977451i \(0.432275\pi\)
\(594\) 0 0
\(595\) −6963.13 −0.479766
\(596\) −21448.9 −1.47413
\(597\) 0 0
\(598\) −4.89631 −0.000334824 0
\(599\) −13811.2 −0.942087 −0.471044 0.882110i \(-0.656123\pi\)
−0.471044 + 0.882110i \(0.656123\pi\)
\(600\) 0 0
\(601\) 24341.1 1.65207 0.826034 0.563620i \(-0.190592\pi\)
0.826034 + 0.563620i \(0.190592\pi\)
\(602\) 5757.84 0.389821
\(603\) 0 0
\(604\) −5943.74 −0.400410
\(605\) 6072.71 0.408084
\(606\) 0 0
\(607\) 18529.0 1.23899 0.619497 0.784999i \(-0.287337\pi\)
0.619497 + 0.784999i \(0.287337\pi\)
\(608\) 9544.74 0.636661
\(609\) 0 0
\(610\) −20113.7 −1.33505
\(611\) 25.0438 0.00165821
\(612\) 0 0
\(613\) −9236.65 −0.608589 −0.304294 0.952578i \(-0.598421\pi\)
−0.304294 + 0.952578i \(0.598421\pi\)
\(614\) −12261.0 −0.805886
\(615\) 0 0
\(616\) 67.8422 0.00443740
\(617\) 19494.7 1.27201 0.636004 0.771686i \(-0.280586\pi\)
0.636004 + 0.771686i \(0.280586\pi\)
\(618\) 0 0
\(619\) −17261.4 −1.12083 −0.560417 0.828211i \(-0.689359\pi\)
−0.560417 + 0.828211i \(0.689359\pi\)
\(620\) 16224.1 1.05093
\(621\) 0 0
\(622\) −13308.7 −0.857926
\(623\) 2651.66 0.170524
\(624\) 0 0
\(625\) −9293.12 −0.594760
\(626\) 20074.9 1.28172
\(627\) 0 0
\(628\) −19812.5 −1.25893
\(629\) 19981.9 1.26666
\(630\) 0 0
\(631\) 3497.01 0.220624 0.110312 0.993897i \(-0.464815\pi\)
0.110312 + 0.993897i \(0.464815\pi\)
\(632\) 60.3957 0.00380129
\(633\) 0 0
\(634\) 35414.3 2.21843
\(635\) 7685.99 0.480329
\(636\) 0 0
\(637\) 2.60029 0.000161738 0
\(638\) 28271.5 1.75436
\(639\) 0 0
\(640\) 442.810 0.0273494
\(641\) −16199.9 −0.998219 −0.499110 0.866539i \(-0.666340\pi\)
−0.499110 + 0.866539i \(0.666340\pi\)
\(642\) 0 0
\(643\) 17595.3 1.07915 0.539574 0.841938i \(-0.318585\pi\)
0.539574 + 0.841938i \(0.318585\pi\)
\(644\) −1302.95 −0.0797255
\(645\) 0 0
\(646\) −15969.9 −0.972644
\(647\) −1534.38 −0.0932343 −0.0466172 0.998913i \(-0.514844\pi\)
−0.0466172 + 0.998913i \(0.514844\pi\)
\(648\) 0 0
\(649\) 781.196 0.0472490
\(650\) −8.23509 −0.000496933 0
\(651\) 0 0
\(652\) 29930.5 1.79780
\(653\) 9932.96 0.595263 0.297631 0.954681i \(-0.403803\pi\)
0.297631 + 0.954681i \(0.403803\pi\)
\(654\) 0 0
\(655\) 12106.7 0.722212
\(656\) 688.841 0.0409981
\(657\) 0 0
\(658\) 13252.2 0.785147
\(659\) −24631.9 −1.45603 −0.728013 0.685564i \(-0.759556\pi\)
−0.728013 + 0.685564i \(0.759556\pi\)
\(660\) 0 0
\(661\) −24286.5 −1.42910 −0.714549 0.699585i \(-0.753368\pi\)
−0.714549 + 0.699585i \(0.753368\pi\)
\(662\) −1255.16 −0.0736907
\(663\) 0 0
\(664\) 275.926 0.0161265
\(665\) 2418.08 0.141006
\(666\) 0 0
\(667\) −6228.02 −0.361544
\(668\) −29131.4 −1.68732
\(669\) 0 0
\(670\) −25328.6 −1.46049
\(671\) 14045.6 0.808084
\(672\) 0 0
\(673\) 12874.3 0.737394 0.368697 0.929550i \(-0.379804\pi\)
0.368697 + 0.929550i \(0.379804\pi\)
\(674\) −27741.4 −1.58540
\(675\) 0 0
\(676\) −17779.9 −1.01160
\(677\) 17431.5 0.989584 0.494792 0.869012i \(-0.335244\pi\)
0.494792 + 0.869012i \(0.335244\pi\)
\(678\) 0 0
\(679\) −9790.60 −0.553356
\(680\) −370.422 −0.0208898
\(681\) 0 0
\(682\) −22528.9 −1.26492
\(683\) −6488.50 −0.363507 −0.181754 0.983344i \(-0.558177\pi\)
−0.181754 + 0.983344i \(0.558177\pi\)
\(684\) 0 0
\(685\) 2300.12 0.128297
\(686\) 1375.97 0.0765815
\(687\) 0 0
\(688\) −12968.7 −0.718646
\(689\) −14.1809 −0.000784105 0
\(690\) 0 0
\(691\) 34226.6 1.88428 0.942142 0.335215i \(-0.108809\pi\)
0.942142 + 0.335215i \(0.108809\pi\)
\(692\) −13309.6 −0.731150
\(693\) 0 0
\(694\) 34623.0 1.89376
\(695\) −5206.62 −0.284170
\(696\) 0 0
\(697\) −1166.08 −0.0633692
\(698\) 5610.12 0.304221
\(699\) 0 0
\(700\) −2191.42 −0.118326
\(701\) −27477.7 −1.48048 −0.740242 0.672341i \(-0.765289\pi\)
−0.740242 + 0.672341i \(0.765289\pi\)
\(702\) 0 0
\(703\) −6939.09 −0.372280
\(704\) −13632.9 −0.729840
\(705\) 0 0
\(706\) 29172.8 1.55515
\(707\) 7564.60 0.402399
\(708\) 0 0
\(709\) −7049.88 −0.373433 −0.186716 0.982414i \(-0.559785\pi\)
−0.186716 + 0.982414i \(0.559785\pi\)
\(710\) −41414.7 −2.18911
\(711\) 0 0
\(712\) 141.062 0.00742489
\(713\) 4962.96 0.260679
\(714\) 0 0
\(715\) −12.8317 −0.000671156 0
\(716\) 38522.8 2.01070
\(717\) 0 0
\(718\) −15797.8 −0.821128
\(719\) 26340.1 1.36623 0.683114 0.730311i \(-0.260625\pi\)
0.683114 + 0.730311i \(0.260625\pi\)
\(720\) 0 0
\(721\) 2594.92 0.134036
\(722\) −21969.6 −1.13244
\(723\) 0 0
\(724\) 6467.84 0.332010
\(725\) −10474.9 −0.536589
\(726\) 0 0
\(727\) −16913.3 −0.862833 −0.431416 0.902153i \(-0.641986\pi\)
−0.431416 + 0.902153i \(0.641986\pi\)
\(728\) 0.138329 7.04233e−6 0
\(729\) 0 0
\(730\) 6819.76 0.345768
\(731\) 21953.6 1.11078
\(732\) 0 0
\(733\) −21070.8 −1.06176 −0.530878 0.847448i \(-0.678138\pi\)
−0.530878 + 0.847448i \(0.678138\pi\)
\(734\) 16200.0 0.814648
\(735\) 0 0
\(736\) 5904.26 0.295698
\(737\) 17687.2 0.884012
\(738\) 0 0
\(739\) 32778.5 1.63163 0.815816 0.578311i \(-0.196288\pi\)
0.815816 + 0.578311i \(0.196288\pi\)
\(740\) −14032.1 −0.697069
\(741\) 0 0
\(742\) −7503.99 −0.371267
\(743\) 24391.3 1.20435 0.602173 0.798365i \(-0.294302\pi\)
0.602173 + 0.798365i \(0.294302\pi\)
\(744\) 0 0
\(745\) 24623.6 1.21093
\(746\) 11269.0 0.553065
\(747\) 0 0
\(748\) 22551.3 1.10235
\(749\) 3905.83 0.190542
\(750\) 0 0
\(751\) 33092.5 1.60794 0.803969 0.594671i \(-0.202718\pi\)
0.803969 + 0.594671i \(0.202718\pi\)
\(752\) −29848.8 −1.44744
\(753\) 0 0
\(754\) 57.6452 0.00278424
\(755\) 6823.49 0.328917
\(756\) 0 0
\(757\) −7638.71 −0.366755 −0.183378 0.983043i \(-0.558703\pi\)
−0.183378 + 0.983043i \(0.558703\pi\)
\(758\) 16412.7 0.786459
\(759\) 0 0
\(760\) 128.636 0.00613964
\(761\) −2717.83 −0.129463 −0.0647314 0.997903i \(-0.520619\pi\)
−0.0647314 + 0.997903i \(0.520619\pi\)
\(762\) 0 0
\(763\) 11217.5 0.532243
\(764\) 22122.1 1.04758
\(765\) 0 0
\(766\) −16435.3 −0.775235
\(767\) 1.59285 7.49861e−5 0
\(768\) 0 0
\(769\) −32383.5 −1.51857 −0.759285 0.650758i \(-0.774451\pi\)
−0.759285 + 0.650758i \(0.774451\pi\)
\(770\) −6790.03 −0.317787
\(771\) 0 0
\(772\) 20365.1 0.949423
\(773\) 18976.7 0.882979 0.441490 0.897266i \(-0.354450\pi\)
0.441490 + 0.897266i \(0.354450\pi\)
\(774\) 0 0
\(775\) 8347.19 0.386890
\(776\) −520.837 −0.0240940
\(777\) 0 0
\(778\) 217.904 0.0100414
\(779\) 404.943 0.0186246
\(780\) 0 0
\(781\) 28920.3 1.32503
\(782\) −9878.80 −0.451746
\(783\) 0 0
\(784\) −3099.19 −0.141180
\(785\) 22745.0 1.03414
\(786\) 0 0
\(787\) −25315.0 −1.14661 −0.573304 0.819342i \(-0.694339\pi\)
−0.573304 + 0.819342i \(0.694339\pi\)
\(788\) −22976.4 −1.03870
\(789\) 0 0
\(790\) −6044.75 −0.272231
\(791\) 10546.5 0.474073
\(792\) 0 0
\(793\) 28.6387 0.00128246
\(794\) 37201.2 1.66275
\(795\) 0 0
\(796\) 94.4104 0.00420388
\(797\) 38523.5 1.71214 0.856068 0.516863i \(-0.172900\pi\)
0.856068 + 0.516863i \(0.172900\pi\)
\(798\) 0 0
\(799\) 50528.4 2.23725
\(800\) 9930.36 0.438864
\(801\) 0 0
\(802\) −55031.9 −2.42300
\(803\) −4762.31 −0.209288
\(804\) 0 0
\(805\) 1495.80 0.0654906
\(806\) −45.9361 −0.00200748
\(807\) 0 0
\(808\) 402.419 0.0175211
\(809\) 27469.5 1.19379 0.596895 0.802319i \(-0.296401\pi\)
0.596895 + 0.802319i \(0.296401\pi\)
\(810\) 0 0
\(811\) −24345.5 −1.05411 −0.527056 0.849830i \(-0.676704\pi\)
−0.527056 + 0.849830i \(0.676704\pi\)
\(812\) 15339.8 0.662958
\(813\) 0 0
\(814\) 19485.1 0.839010
\(815\) −34360.6 −1.47681
\(816\) 0 0
\(817\) −7623.81 −0.326467
\(818\) −9618.11 −0.411111
\(819\) 0 0
\(820\) 818.868 0.0348733
\(821\) −27134.4 −1.15347 −0.576733 0.816933i \(-0.695673\pi\)
−0.576733 + 0.816933i \(0.695673\pi\)
\(822\) 0 0
\(823\) −15641.7 −0.662496 −0.331248 0.943544i \(-0.607470\pi\)
−0.331248 + 0.943544i \(0.607470\pi\)
\(824\) 138.044 0.00583615
\(825\) 0 0
\(826\) 842.875 0.0355053
\(827\) −37881.7 −1.59284 −0.796418 0.604746i \(-0.793275\pi\)
−0.796418 + 0.604746i \(0.793275\pi\)
\(828\) 0 0
\(829\) −23483.1 −0.983840 −0.491920 0.870640i \(-0.663705\pi\)
−0.491920 + 0.870640i \(0.663705\pi\)
\(830\) −27616.3 −1.15491
\(831\) 0 0
\(832\) −27.7972 −0.00115829
\(833\) 5246.34 0.218217
\(834\) 0 0
\(835\) 33443.2 1.38605
\(836\) −7831.37 −0.323988
\(837\) 0 0
\(838\) −5710.05 −0.235382
\(839\) 33381.1 1.37359 0.686796 0.726850i \(-0.259016\pi\)
0.686796 + 0.726850i \(0.259016\pi\)
\(840\) 0 0
\(841\) 48934.6 2.00642
\(842\) −12312.0 −0.503917
\(843\) 0 0
\(844\) −26660.6 −1.08732
\(845\) 20411.6 0.830981
\(846\) 0 0
\(847\) −4575.45 −0.185613
\(848\) 16901.7 0.684442
\(849\) 0 0
\(850\) −16615.1 −0.670463
\(851\) −4292.44 −0.172906
\(852\) 0 0
\(853\) −26043.1 −1.04537 −0.522683 0.852527i \(-0.675069\pi\)
−0.522683 + 0.852527i \(0.675069\pi\)
\(854\) 15154.6 0.607234
\(855\) 0 0
\(856\) 207.781 0.00829651
\(857\) −45096.7 −1.79752 −0.898759 0.438443i \(-0.855530\pi\)
−0.898759 + 0.438443i \(0.855530\pi\)
\(858\) 0 0
\(859\) 19006.0 0.754921 0.377460 0.926026i \(-0.376797\pi\)
0.377460 + 0.926026i \(0.376797\pi\)
\(860\) −15416.7 −0.611286
\(861\) 0 0
\(862\) 26479.3 1.04627
\(863\) 36333.2 1.43314 0.716568 0.697518i \(-0.245712\pi\)
0.716568 + 0.697518i \(0.245712\pi\)
\(864\) 0 0
\(865\) 15279.6 0.600603
\(866\) −34754.1 −1.36373
\(867\) 0 0
\(868\) −12223.9 −0.478004
\(869\) 4221.11 0.164777
\(870\) 0 0
\(871\) 36.0639 0.00140296
\(872\) 596.746 0.0231747
\(873\) 0 0
\(874\) 3430.60 0.132771
\(875\) 10645.1 0.411280
\(876\) 0 0
\(877\) −20443.5 −0.787145 −0.393573 0.919294i \(-0.628761\pi\)
−0.393573 + 0.919294i \(0.628761\pi\)
\(878\) 27876.0 1.07149
\(879\) 0 0
\(880\) 15293.6 0.585849
\(881\) −26429.0 −1.01069 −0.505345 0.862918i \(-0.668635\pi\)
−0.505345 + 0.862918i \(0.668635\pi\)
\(882\) 0 0
\(883\) 16823.1 0.641156 0.320578 0.947222i \(-0.396123\pi\)
0.320578 + 0.947222i \(0.396123\pi\)
\(884\) 45.9817 0.00174947
\(885\) 0 0
\(886\) −13640.3 −0.517217
\(887\) −37841.3 −1.43245 −0.716226 0.697868i \(-0.754132\pi\)
−0.716226 + 0.697868i \(0.754132\pi\)
\(888\) 0 0
\(889\) −5790.97 −0.218473
\(890\) −14118.3 −0.531738
\(891\) 0 0
\(892\) 13836.0 0.519354
\(893\) −17546.9 −0.657543
\(894\) 0 0
\(895\) −44224.6 −1.65169
\(896\) −333.633 −0.0124396
\(897\) 0 0
\(898\) 45761.0 1.70052
\(899\) −58429.9 −2.16768
\(900\) 0 0
\(901\) −28611.3 −1.05792
\(902\) −1137.09 −0.0419744
\(903\) 0 0
\(904\) 561.051 0.0206419
\(905\) −7425.16 −0.272730
\(906\) 0 0
\(907\) 19199.0 0.702858 0.351429 0.936214i \(-0.385696\pi\)
0.351429 + 0.936214i \(0.385696\pi\)
\(908\) −39742.9 −1.45255
\(909\) 0 0
\(910\) −13.8448 −0.000504340 0
\(911\) 13080.8 0.475727 0.237863 0.971299i \(-0.423553\pi\)
0.237863 + 0.971299i \(0.423553\pi\)
\(912\) 0 0
\(913\) 19284.7 0.699048
\(914\) 39765.9 1.43910
\(915\) 0 0
\(916\) 5320.34 0.191909
\(917\) −9121.75 −0.328491
\(918\) 0 0
\(919\) 301.836 0.0108342 0.00541712 0.999985i \(-0.498276\pi\)
0.00541712 + 0.999985i \(0.498276\pi\)
\(920\) 79.5728 0.00285156
\(921\) 0 0
\(922\) −40754.1 −1.45571
\(923\) 58.9680 0.00210288
\(924\) 0 0
\(925\) −7219.44 −0.256620
\(926\) −36289.8 −1.28786
\(927\) 0 0
\(928\) −69512.0 −2.45888
\(929\) −49106.4 −1.73426 −0.867130 0.498082i \(-0.834038\pi\)
−0.867130 + 0.498082i \(0.834038\pi\)
\(930\) 0 0
\(931\) −1821.89 −0.0641354
\(932\) 32718.8 1.14994
\(933\) 0 0
\(934\) 15883.4 0.556444
\(935\) −25889.2 −0.905525
\(936\) 0 0
\(937\) −16868.0 −0.588104 −0.294052 0.955789i \(-0.595004\pi\)
−0.294052 + 0.955789i \(0.595004\pi\)
\(938\) 19083.7 0.664291
\(939\) 0 0
\(940\) −35483.2 −1.23121
\(941\) 15141.3 0.524541 0.262271 0.964994i \(-0.415529\pi\)
0.262271 + 0.964994i \(0.415529\pi\)
\(942\) 0 0
\(943\) 250.493 0.00865023
\(944\) −1898.46 −0.0654550
\(945\) 0 0
\(946\) 21407.8 0.735760
\(947\) −41117.0 −1.41090 −0.705450 0.708760i \(-0.749255\pi\)
−0.705450 + 0.708760i \(0.749255\pi\)
\(948\) 0 0
\(949\) −9.71027 −0.000332148 0
\(950\) 5769.92 0.197054
\(951\) 0 0
\(952\) 279.093 0.00950152
\(953\) 304.023 0.0103340 0.00516698 0.999987i \(-0.498355\pi\)
0.00516698 + 0.999987i \(0.498355\pi\)
\(954\) 0 0
\(955\) −25396.4 −0.860533
\(956\) −47339.6 −1.60154
\(957\) 0 0
\(958\) −65078.4 −2.19477
\(959\) −1733.02 −0.0583545
\(960\) 0 0
\(961\) 16770.4 0.562937
\(962\) 39.7299 0.00133154
\(963\) 0 0
\(964\) −12303.8 −0.411079
\(965\) −23379.3 −0.779904
\(966\) 0 0
\(967\) 26528.3 0.882204 0.441102 0.897457i \(-0.354588\pi\)
0.441102 + 0.897457i \(0.354588\pi\)
\(968\) −243.403 −0.00808189
\(969\) 0 0
\(970\) 52128.3 1.72551
\(971\) −43836.5 −1.44879 −0.724397 0.689383i \(-0.757882\pi\)
−0.724397 + 0.689383i \(0.757882\pi\)
\(972\) 0 0
\(973\) 3922.90 0.129252
\(974\) 27175.1 0.893989
\(975\) 0 0
\(976\) −34133.5 −1.11945
\(977\) −26128.0 −0.855588 −0.427794 0.903876i \(-0.640709\pi\)
−0.427794 + 0.903876i \(0.640709\pi\)
\(978\) 0 0
\(979\) 9858.95 0.321852
\(980\) −3684.20 −0.120089
\(981\) 0 0
\(982\) −58808.7 −1.91106
\(983\) −22600.8 −0.733321 −0.366661 0.930355i \(-0.619499\pi\)
−0.366661 + 0.930355i \(0.619499\pi\)
\(984\) 0 0
\(985\) 26377.1 0.853244
\(986\) 116305. 3.75650
\(987\) 0 0
\(988\) −15.9680 −0.000514181 0
\(989\) −4716.00 −0.151628
\(990\) 0 0
\(991\) 1642.25 0.0526417 0.0263208 0.999654i \(-0.491621\pi\)
0.0263208 + 0.999654i \(0.491621\pi\)
\(992\) 55392.5 1.77290
\(993\) 0 0
\(994\) 31203.7 0.995694
\(995\) −108.384 −0.00345328
\(996\) 0 0
\(997\) 8390.31 0.266523 0.133262 0.991081i \(-0.457455\pi\)
0.133262 + 0.991081i \(0.457455\pi\)
\(998\) 50083.7 1.58855
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1449.4.a.h.1.6 7
3.2 odd 2 483.4.a.c.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.4.a.c.1.2 7 3.2 odd 2
1449.4.a.h.1.6 7 1.1 even 1 trivial