Properties

Label 1456.2.s.c.1121.1
Level $1456$
Weight $2$
Character 1456.1121
Analytic conductor $11.626$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1456,2,Mod(113,1456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1456, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1456.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1456.1121
Dual form 1456.2.s.c.113.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +(-0.500000 + 0.866025i) q^{7} +(1.50000 - 2.59808i) q^{9} +(-1.00000 - 1.73205i) q^{11} +(3.50000 - 0.866025i) q^{13} +(1.50000 - 2.59808i) q^{17} +(-3.00000 + 5.19615i) q^{19} +(-2.00000 - 3.46410i) q^{23} -4.00000 q^{25} +(3.50000 + 6.06218i) q^{29} -4.00000 q^{31} +(0.500000 - 0.866025i) q^{35} +(-4.50000 - 7.79423i) q^{37} +(-4.50000 - 7.79423i) q^{41} +(5.00000 - 8.66025i) q^{43} +(-1.50000 + 2.59808i) q^{45} +2.00000 q^{47} +(-0.500000 - 0.866025i) q^{49} +9.00000 q^{53} +(1.00000 + 1.73205i) q^{55} +(7.00000 - 12.1244i) q^{59} +(2.50000 - 4.33013i) q^{61} +(1.50000 + 2.59808i) q^{63} +(-3.50000 + 0.866025i) q^{65} +(-4.00000 - 6.92820i) q^{67} +(5.00000 - 8.66025i) q^{71} -7.00000 q^{73} +2.00000 q^{77} -2.00000 q^{79} +(-4.50000 - 7.79423i) q^{81} +6.00000 q^{83} +(-1.50000 + 2.59808i) q^{85} +(-3.00000 - 5.19615i) q^{89} +(-1.00000 + 3.46410i) q^{91} +(3.00000 - 5.19615i) q^{95} +(-1.00000 + 1.73205i) q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - q^{7} + 3 q^{9} - 2 q^{11} + 7 q^{13} + 3 q^{17} - 6 q^{19} - 4 q^{23} - 8 q^{25} + 7 q^{29} - 8 q^{31} + q^{35} - 9 q^{37} - 9 q^{41} + 10 q^{43} - 3 q^{45} + 4 q^{47} - q^{49} + 18 q^{53}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −3.00000 + 5.19615i −0.688247 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233301i \(0.925047\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.50000 + 6.06218i 0.649934 + 1.12572i 0.983138 + 0.182864i \(0.0585367\pi\)
−0.333205 + 0.942855i \(0.608130\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) 0 0
\(37\) −4.50000 7.79423i −0.739795 1.28136i −0.952587 0.304266i \(-0.901589\pi\)
0.212792 0.977098i \(-0.431744\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.50000 7.79423i −0.702782 1.21725i −0.967486 0.252924i \(-0.918608\pi\)
0.264704 0.964330i \(-0.414726\pi\)
\(42\) 0 0
\(43\) 5.00000 8.66025i 0.762493 1.32068i −0.179069 0.983836i \(-0.557309\pi\)
0.941562 0.336840i \(-0.109358\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.00000 12.1244i 0.911322 1.57846i 0.0991242 0.995075i \(-0.468396\pi\)
0.812198 0.583382i \(-0.198271\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) 1.50000 + 2.59808i 0.188982 + 0.327327i
\(64\) 0 0
\(65\) −3.50000 + 0.866025i −0.434122 + 0.107417i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 8.66025i 0.593391 1.02778i −0.400381 0.916349i \(-0.631122\pi\)
0.993772 0.111434i \(-0.0355445\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −1.50000 + 2.59808i −0.162698 + 0.281801i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 0 0
\(91\) −1.00000 + 3.46410i −0.104828 + 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 8.50000 + 14.7224i 0.845782 + 1.46494i 0.884941 + 0.465704i \(0.154199\pi\)
−0.0391591 + 0.999233i \(0.512468\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.00000 + 1.73205i 0.0966736 + 0.167444i 0.910306 0.413936i \(-0.135846\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.50000 + 9.52628i −0.517396 + 0.896157i 0.482399 + 0.875951i \(0.339765\pi\)
−0.999796 + 0.0202056i \(0.993568\pi\)
\(114\) 0 0
\(115\) 2.00000 + 3.46410i 0.186501 + 0.323029i
\(116\) 0 0
\(117\) 3.00000 10.3923i 0.277350 0.960769i
\(118\) 0 0
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −7.00000 12.1244i −0.621150 1.07586i −0.989272 0.146085i \(-0.953333\pi\)
0.368122 0.929777i \(-0.380001\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.0000 −1.22319 −0.611593 0.791173i \(-0.709471\pi\)
−0.611593 + 0.791173i \(0.709471\pi\)
\(132\) 0 0
\(133\) −3.00000 5.19615i −0.260133 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.50000 + 12.9904i −0.640768 + 1.10984i 0.344493 + 0.938789i \(0.388051\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(138\) 0 0
\(139\) −7.00000 + 12.1244i −0.593732 + 1.02837i 0.399992 + 0.916519i \(0.369013\pi\)
−0.993724 + 0.111856i \(0.964321\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.00000 5.19615i −0.418121 0.434524i
\(144\) 0 0
\(145\) −3.50000 6.06218i −0.290659 0.503436i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) −18.0000 −1.46482 −0.732410 0.680864i \(-0.761604\pi\)
−0.732410 + 0.680864i \(0.761604\pi\)
\(152\) 0 0
\(153\) −4.50000 7.79423i −0.363803 0.630126i
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 1.00000 1.73205i 0.0783260 0.135665i −0.824202 0.566296i \(-0.808376\pi\)
0.902528 + 0.430632i \(0.141709\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.00000 + 15.5885i 0.696441 + 1.20627i 0.969693 + 0.244328i \(0.0785675\pi\)
−0.273252 + 0.961943i \(0.588099\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 9.00000 + 15.5885i 0.688247 + 1.19208i
\(172\) 0 0
\(173\) −1.00000 + 1.73205i −0.0760286 + 0.131685i −0.901533 0.432710i \(-0.857557\pi\)
0.825505 + 0.564396i \(0.190891\pi\)
\(174\) 0 0
\(175\) 2.00000 3.46410i 0.151186 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 15.0000 1.11494 0.557471 0.830197i \(-0.311772\pi\)
0.557471 + 0.830197i \(0.311772\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.50000 + 7.79423i 0.330847 + 0.573043i
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 0 0
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.00000 + 15.5885i 0.641223 + 1.11063i 0.985160 + 0.171639i \(0.0549062\pi\)
−0.343937 + 0.938993i \(0.611761\pi\)
\(198\) 0 0
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.00000 −0.491304
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.00000 + 8.66025i −0.340997 + 0.590624i
\(216\) 0 0
\(217\) 2.00000 3.46410i 0.135769 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 10.3923i 0.201802 0.699062i
\(222\) 0 0
\(223\) 3.00000 + 5.19615i 0.200895 + 0.347960i 0.948817 0.315826i \(-0.102282\pi\)
−0.747922 + 0.663786i \(0.768948\pi\)
\(224\) 0 0
\(225\) −6.00000 + 10.3923i −0.400000 + 0.692820i
\(226\) 0 0
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −2.00000 −0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 1.50000 2.59808i 0.0966235 0.167357i −0.813662 0.581339i \(-0.802529\pi\)
0.910285 + 0.413982i \(0.135862\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.500000 + 0.866025i 0.0319438 + 0.0553283i
\(246\) 0 0
\(247\) −6.00000 + 20.7846i −0.381771 + 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0000 25.9808i 0.946792 1.63989i 0.194668 0.980869i \(-0.437637\pi\)
0.752124 0.659022i \(-0.229030\pi\)
\(252\) 0 0
\(253\) −4.00000 + 6.92820i −0.251478 + 0.435572i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 21.0000 1.29987
\(262\) 0 0
\(263\) −9.00000 15.5885i −0.554964 0.961225i −0.997906 0.0646755i \(-0.979399\pi\)
0.442943 0.896550i \(-0.353935\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) 0 0
\(271\) 5.00000 + 8.66025i 0.303728 + 0.526073i 0.976977 0.213343i \(-0.0684351\pi\)
−0.673249 + 0.739416i \(0.735102\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 0 0
\(277\) 1.50000 2.59808i 0.0901263 0.156103i −0.817438 0.576017i \(-0.804606\pi\)
0.907564 + 0.419914i \(0.137940\pi\)
\(278\) 0 0
\(279\) −6.00000 + 10.3923i −0.359211 + 0.622171i
\(280\) 0 0
\(281\) 7.00000 0.417585 0.208792 0.977960i \(-0.433047\pi\)
0.208792 + 0.977960i \(0.433047\pi\)
\(282\) 0 0
\(283\) −1.00000 1.73205i −0.0594438 0.102960i 0.834772 0.550596i \(-0.185599\pi\)
−0.894216 + 0.447636i \(0.852266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.5000 + 26.8468i −0.905520 + 1.56841i −0.0853015 + 0.996355i \(0.527185\pi\)
−0.820218 + 0.572051i \(0.806148\pi\)
\(294\) 0 0
\(295\) −7.00000 + 12.1244i −0.407556 + 0.705907i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.0000 10.3923i −0.578315 0.601003i
\(300\) 0 0
\(301\) 5.00000 + 8.66025i 0.288195 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.50000 + 4.33013i −0.143150 + 0.247942i
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) −1.50000 2.59808i −0.0845154 0.146385i
\(316\) 0 0
\(317\) −3.00000 −0.168497 −0.0842484 0.996445i \(-0.526849\pi\)
−0.0842484 + 0.996445i \(0.526849\pi\)
\(318\) 0 0
\(319\) 7.00000 12.1244i 0.391925 0.678834i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.00000 + 15.5885i 0.500773 + 0.867365i
\(324\) 0 0
\(325\) −14.0000 + 3.46410i −0.776580 + 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.00000 + 1.73205i −0.0551318 + 0.0954911i
\(330\) 0 0
\(331\) 7.00000 12.1244i 0.384755 0.666415i −0.606980 0.794717i \(-0.707619\pi\)
0.991735 + 0.128302i \(0.0409527\pi\)
\(332\) 0 0
\(333\) −27.0000 −1.47959
\(334\) 0 0
\(335\) 4.00000 + 6.92820i 0.218543 + 0.378528i
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.500000 0.866025i −0.0266123 0.0460939i 0.852413 0.522870i \(-0.175139\pi\)
−0.879025 + 0.476776i \(0.841805\pi\)
\(354\) 0 0
\(355\) −5.00000 + 8.66025i −0.265372 + 0.459639i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) 10.0000 + 17.3205i 0.521996 + 0.904123i 0.999673 + 0.0255875i \(0.00814566\pi\)
−0.477677 + 0.878536i \(0.658521\pi\)
\(368\) 0 0
\(369\) −27.0000 −1.40556
\(370\) 0 0
\(371\) −4.50000 + 7.79423i −0.233628 + 0.404656i
\(372\) 0 0
\(373\) −14.5000 + 25.1147i −0.750782 + 1.30039i 0.196663 + 0.980471i \(0.436990\pi\)
−0.947444 + 0.319921i \(0.896344\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.5000 + 18.1865i 0.901296 + 0.936654i
\(378\) 0 0
\(379\) 8.00000 + 13.8564i 0.410932 + 0.711756i 0.994992 0.0999550i \(-0.0318699\pi\)
−0.584060 + 0.811711i \(0.698537\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.0000 25.9808i 0.766464 1.32755i −0.173005 0.984921i \(-0.555348\pi\)
0.939469 0.342634i \(-0.111319\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) −15.0000 25.9808i −0.762493 1.32068i
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.00000 0.100631
\(396\) 0 0
\(397\) −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i \(-0.947600\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.50000 12.9904i −0.374532 0.648709i 0.615725 0.787961i \(-0.288863\pi\)
−0.990257 + 0.139253i \(0.955530\pi\)
\(402\) 0 0
\(403\) −14.0000 + 3.46410i −0.697390 + 0.172559i
\(404\) 0 0
\(405\) 4.50000 + 7.79423i 0.223607 + 0.387298i
\(406\) 0 0
\(407\) −9.00000 + 15.5885i −0.446113 + 0.772691i
\(408\) 0 0
\(409\) −0.500000 + 0.866025i −0.0247234 + 0.0428222i −0.878122 0.478436i \(-0.841204\pi\)
0.853399 + 0.521258i \(0.174537\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.00000 + 12.1244i 0.344447 + 0.596601i
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0000 + 31.1769i 0.879358 + 1.52309i 0.852047 + 0.523465i \(0.175361\pi\)
0.0273103 + 0.999627i \(0.491306\pi\)
\(420\) 0 0
\(421\) 25.0000 1.21843 0.609213 0.793007i \(-0.291486\pi\)
0.609213 + 0.793007i \(0.291486\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) 2.50000 + 4.33013i 0.120983 + 0.209550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 + 20.7846i 0.578020 + 1.00116i 0.995706 + 0.0925683i \(0.0295076\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(432\) 0 0
\(433\) −0.500000 + 0.866025i −0.0240285 + 0.0416185i −0.877790 0.479046i \(-0.840983\pi\)
0.853761 + 0.520665i \(0.174316\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) −17.0000 29.4449i −0.811366 1.40533i −0.911908 0.410394i \(-0.865391\pi\)
0.100543 0.994933i \(-0.467942\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.0000 22.5167i 0.613508 1.06263i −0.377136 0.926158i \(-0.623091\pi\)
0.990644 0.136469i \(-0.0435755\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.00000 3.46410i 0.0468807 0.162400i
\(456\) 0 0
\(457\) 8.50000 + 14.7224i 0.397613 + 0.688686i 0.993431 0.114433i \(-0.0365053\pi\)
−0.595818 + 0.803120i \(0.703172\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5000 18.1865i 0.489034 0.847031i −0.510887 0.859648i \(-0.670683\pi\)
0.999920 + 0.0126168i \(0.00401615\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.0000 −0.647843 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.0000 −0.919601
\(474\) 0 0
\(475\) 12.0000 20.7846i 0.550598 0.953663i
\(476\) 0 0
\(477\) 13.5000 23.3827i 0.618123 1.07062i
\(478\) 0 0
\(479\) 6.00000 + 10.3923i 0.274147 + 0.474837i 0.969920 0.243426i \(-0.0782712\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(480\) 0 0
\(481\) −22.5000 23.3827i −1.02591 1.06616i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.73205i 0.0454077 0.0786484i
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.00000 + 13.8564i 0.361035 + 0.625331i 0.988131 0.153611i \(-0.0490902\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 5.00000 + 8.66025i 0.224281 + 0.388465i
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.00000 + 1.73205i −0.0445878 + 0.0772283i −0.887458 0.460889i \(-0.847531\pi\)
0.842870 + 0.538117i \(0.180864\pi\)
\(504\) 0 0
\(505\) −8.50000 14.7224i −0.378245 0.655140i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.5000 + 25.1147i 0.642701 + 1.11319i 0.984827 + 0.173537i \(0.0555197\pi\)
−0.342126 + 0.939654i \(0.611147\pi\)
\(510\) 0 0
\(511\) 3.50000 6.06218i 0.154831 0.268175i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.0000 −0.616914
\(516\) 0 0
\(517\) −2.00000 3.46410i −0.0879599 0.152351i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) −6.00000 10.3923i −0.262362 0.454424i 0.704507 0.709697i \(-0.251168\pi\)
−0.966869 + 0.255273i \(0.917835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) −21.0000 36.3731i −0.911322 1.57846i
\(532\) 0 0
\(533\) −22.5000 23.3827i −0.974583 1.01282i
\(534\) 0 0
\(535\) −1.00000 1.73205i −0.0432338 0.0748831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.00000 + 1.73205i −0.0430730 + 0.0746047i
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) −7.50000 12.9904i −0.320092 0.554416i
\(550\) 0 0
\(551\) −42.0000 −1.78926
\(552\) 0 0
\(553\) 1.00000 1.73205i 0.0425243 0.0736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.50000 + 2.59808i 0.0635570 + 0.110084i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(558\) 0 0
\(559\) 10.0000 34.6410i 0.422955 1.46516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.00000 + 8.66025i −0.210725 + 0.364986i −0.951942 0.306280i \(-0.900916\pi\)
0.741217 + 0.671266i \(0.234249\pi\)
\(564\) 0 0
\(565\) 5.50000 9.52628i 0.231387 0.400774i
\(566\) 0 0
\(567\) 9.00000 0.377964
\(568\) 0 0
\(569\) −11.0000 19.0526i −0.461144 0.798725i 0.537874 0.843025i \(-0.319228\pi\)
−0.999018 + 0.0443003i \(0.985894\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 + 13.8564i 0.333623 + 0.577852i
\(576\) 0 0
\(577\) −27.0000 −1.12402 −0.562012 0.827129i \(-0.689973\pi\)
−0.562012 + 0.827129i \(0.689973\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.00000 + 5.19615i −0.124461 + 0.215573i
\(582\) 0 0
\(583\) −9.00000 15.5885i −0.372742 0.645608i
\(584\) 0 0
\(585\) −3.00000 + 10.3923i −0.124035 + 0.429669i
\(586\) 0 0
\(587\) 22.0000 + 38.1051i 0.908037 + 1.57277i 0.816788 + 0.576938i \(0.195753\pi\)
0.0912496 + 0.995828i \(0.470914\pi\)
\(588\) 0 0
\(589\) 12.0000 20.7846i 0.494451 0.856415i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 29.0000 1.19089 0.595444 0.803397i \(-0.296976\pi\)
0.595444 + 0.803397i \(0.296976\pi\)
\(594\) 0 0
\(595\) −1.50000 2.59808i −0.0614940 0.106511i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.0000 −1.38920 −0.694601 0.719395i \(-0.744419\pi\)
−0.694601 + 0.719395i \(0.744419\pi\)
\(600\) 0 0
\(601\) 17.5000 + 30.3109i 0.713840 + 1.23641i 0.963405 + 0.268049i \(0.0863789\pi\)
−0.249565 + 0.968358i \(0.580288\pi\)
\(602\) 0 0
\(603\) −24.0000 −0.977356
\(604\) 0 0
\(605\) −3.50000 + 6.06218i −0.142295 + 0.246463i
\(606\) 0 0
\(607\) 9.00000 15.5885i 0.365299 0.632716i −0.623525 0.781803i \(-0.714300\pi\)
0.988824 + 0.149087i \(0.0476335\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.00000 1.73205i 0.283190 0.0700713i
\(612\) 0 0
\(613\) −8.50000 14.7224i −0.343312 0.594633i 0.641734 0.766927i \(-0.278215\pi\)
−0.985046 + 0.172294i \(0.944882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.5000 35.5070i 0.825299 1.42946i −0.0763917 0.997078i \(-0.524340\pi\)
0.901691 0.432382i \(-0.142327\pi\)
\(618\) 0 0
\(619\) 2.00000 0.0803868 0.0401934 0.999192i \(-0.487203\pi\)
0.0401934 + 0.999192i \(0.487203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.0000 −1.07656
\(630\) 0 0
\(631\) −16.0000 + 27.7128i −0.636950 + 1.10323i 0.349148 + 0.937067i \(0.386471\pi\)
−0.986098 + 0.166162i \(0.946862\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.00000 + 12.1244i 0.277787 + 0.481140i
\(636\) 0 0
\(637\) −2.50000 2.59808i −0.0990536 0.102940i
\(638\) 0 0
\(639\) −15.0000 25.9808i −0.593391 1.02778i
\(640\) 0 0
\(641\) 20.5000 35.5070i 0.809701 1.40244i −0.103370 0.994643i \(-0.532962\pi\)
0.913071 0.407801i \(-0.133704\pi\)
\(642\) 0 0
\(643\) 10.0000 17.3205i 0.394362 0.683054i −0.598658 0.801005i \(-0.704299\pi\)
0.993019 + 0.117951i \(0.0376325\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.0000 + 39.8372i 0.904223 + 1.56616i 0.821956 + 0.569550i \(0.192883\pi\)
0.0822669 + 0.996610i \(0.473784\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) 0 0
\(655\) 14.0000 0.547025
\(656\) 0 0
\(657\) −10.5000 + 18.1865i −0.409644 + 0.709524i
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) 6.50000 + 11.2583i 0.252821 + 0.437898i 0.964301 0.264807i \(-0.0853084\pi\)
−0.711481 + 0.702706i \(0.751975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.00000 + 5.19615i 0.116335 + 0.201498i
\(666\) 0 0
\(667\) 14.0000 24.2487i 0.542082 0.938914i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i \(0.123365\pi\)
−0.135615 + 0.990762i \(0.543301\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) −1.00000 1.73205i −0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00000 + 1.73205i −0.0382639 + 0.0662751i −0.884523 0.466496i \(-0.845516\pi\)
0.846259 + 0.532771i \(0.178849\pi\)
\(684\) 0 0
\(685\) 7.50000 12.9904i 0.286560 0.496337i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 31.5000 7.79423i 1.20005 0.296936i
\(690\) 0 0
\(691\) −10.0000 17.3205i −0.380418 0.658903i 0.610704 0.791859i \(-0.290887\pi\)
−0.991122 + 0.132956i \(0.957553\pi\)
\(692\) 0 0
\(693\) 3.00000 5.19615i 0.113961 0.197386i
\(694\) 0 0
\(695\) 7.00000 12.1244i 0.265525 0.459903i
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 54.0000 2.03665
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −17.0000 −0.639351
\(708\) 0 0
\(709\) 21.5000 37.2391i 0.807449 1.39854i −0.107176 0.994240i \(-0.534181\pi\)
0.914625 0.404303i \(-0.132486\pi\)
\(710\) 0 0
\(711\) −3.00000 + 5.19615i −0.112509 + 0.194871i
\(712\) 0 0
\(713\) 8.00000 + 13.8564i 0.299602 + 0.518927i
\(714\) 0 0
\(715\) 5.00000 + 5.19615i 0.186989 + 0.194325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.00000 12.1244i 0.261056 0.452162i −0.705467 0.708743i \(-0.749263\pi\)
0.966523 + 0.256581i \(0.0825960\pi\)
\(720\) 0 0
\(721\) −7.00000 + 12.1244i −0.260694 + 0.451535i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −14.0000 24.2487i −0.519947 0.900575i
\(726\) 0 0
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −15.0000 25.9808i −0.554795 0.960933i
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 + 13.8564i −0.294684 + 0.510407i
\(738\) 0 0
\(739\) −18.0000 31.1769i −0.662141 1.14686i −0.980052 0.198741i \(-0.936315\pi\)
0.317911 0.948120i \(-0.397019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000 + 13.8564i 0.293492 + 0.508342i 0.974633 0.223810i \(-0.0718494\pi\)
−0.681141 + 0.732152i \(0.738516\pi\)
\(744\) 0 0
\(745\) −1.50000 + 2.59808i −0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) 9.00000 15.5885i 0.329293 0.570352i
\(748\) 0 0
\(749\) −2.00000 −0.0730784
\(750\) 0 0
\(751\) −3.00000 5.19615i −0.109472 0.189610i 0.806085 0.591800i \(-0.201583\pi\)
−0.915556 + 0.402190i \(0.868249\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.0000 0.655087
\(756\) 0 0
\(757\) −3.00000 5.19615i −0.109037 0.188857i 0.806343 0.591448i \(-0.201443\pi\)
−0.915380 + 0.402590i \(0.868110\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.00000 5.19615i 0.108750 0.188360i −0.806514 0.591215i \(-0.798649\pi\)
0.915264 + 0.402854i \(0.131982\pi\)
\(762\) 0 0
\(763\) 7.00000 12.1244i 0.253417 0.438931i
\(764\) 0 0
\(765\) 4.50000 + 7.79423i 0.162698 + 0.281801i
\(766\) 0 0
\(767\) 14.0000 48.4974i 0.505511 1.75114i
\(768\) 0 0
\(769\) −9.00000 15.5885i −0.324548 0.562134i 0.656873 0.754002i \(-0.271879\pi\)
−0.981421 + 0.191867i \(0.938546\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.00000 + 1.73205i −0.0359675 + 0.0622975i −0.883449 0.468528i \(-0.844785\pi\)
0.847481 + 0.530825i \(0.178118\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 54.0000 1.93475
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.0000 −0.392607
\(786\) 0 0
\(787\) −26.0000 + 45.0333i −0.926800 + 1.60526i −0.138159 + 0.990410i \(0.544119\pi\)
−0.788641 + 0.614855i \(0.789215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.50000 9.52628i −0.195557 0.338716i
\(792\) 0 0
\(793\) 5.00000 17.3205i 0.177555 0.615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000 5.19615i 0.106265 0.184057i −0.807989 0.589197i \(-0.799444\pi\)
0.914255 + 0.405140i \(0.132777\pi\)
\(798\) 0 0
\(799\) 3.00000 5.19615i 0.106132 0.183827i
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) 7.00000 + 12.1244i 0.247025 + 0.427859i
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.50000 12.9904i −0.263686 0.456717i 0.703533 0.710663i \(-0.251605\pi\)
−0.967219 + 0.253946i \(0.918272\pi\)
\(810\) 0 0
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.00000 + 1.73205i −0.0350285 + 0.0606711i
\(816\) 0 0
\(817\) 30.0000 + 51.9615i 1.04957 + 1.81790i
\(818\) 0 0
\(819\) 7.50000 + 7.79423i 0.262071 + 0.272352i
\(820\) 0 0
\(821\) 5.00000 + 8.66025i 0.174501 + 0.302245i 0.939989 0.341206i \(-0.110835\pi\)
−0.765487 + 0.643451i \(0.777502\pi\)
\(822\) 0 0
\(823\) 24.0000 41.5692i 0.836587 1.44901i −0.0561440 0.998423i \(-0.517881\pi\)
0.892731 0.450589i \(-0.148786\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.00000 0.208640 0.104320 0.994544i \(-0.466733\pi\)
0.104320 + 0.994544i \(0.466733\pi\)
\(828\) 0 0
\(829\) −27.5000 47.6314i −0.955114 1.65431i −0.734106 0.679035i \(-0.762398\pi\)
−0.221009 0.975272i \(-0.570935\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) −9.00000 15.5885i −0.311458 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.0000 22.5167i 0.448810 0.777361i −0.549499 0.835494i \(-0.685181\pi\)
0.998309 + 0.0581329i \(0.0185147\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.5000 + 6.06218i −0.395612 + 0.208545i
\(846\) 0 0
\(847\) 3.50000 + 6.06218i 0.120261 + 0.208299i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.0000 + 31.1769i −0.617032 + 1.06873i
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) −9.00000 15.5885i −0.307794 0.533114i
\(856\) 0 0
\(857\) 37.0000 1.26390 0.631948 0.775011i \(-0.282256\pi\)
0.631948 + 0.775011i \(0.282256\pi\)
\(858\) 0 0
\(859\) 16.0000 0.545913 0.272956 0.962026i \(-0.411998\pi\)
0.272956 + 0.962026i \(0.411998\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 0 0
\(865\) 1.00000 1.73205i 0.0340010 0.0588915i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.00000 + 3.46410i 0.0678454 + 0.117512i
\(870\) 0 0
\(871\) −20.0000 20.7846i −0.677674 0.704260i
\(872\) 0 0
\(873\) 3.00000 + 5.19615i 0.101535 + 0.175863i
\(874\) 0 0
\(875\) −4.50000 + 7.79423i −0.152128 + 0.263493i
\(876\) 0 0
\(877\) −10.5000 + 18.1865i −0.354560 + 0.614116i −0.987043 0.160459i \(-0.948703\pi\)
0.632483 + 0.774574i \(0.282036\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −28.5000 49.3634i −0.960189 1.66310i −0.722019 0.691873i \(-0.756786\pi\)
−0.238171 0.971223i \(-0.576548\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.00000 + 13.8564i 0.268614 + 0.465253i 0.968504 0.248998i \(-0.0801012\pi\)
−0.699890 + 0.714250i \(0.746768\pi\)
\(888\) 0 0
\(889\) 14.0000 0.469545
\(890\) 0 0
\(891\) −9.00000 + 15.5885i −0.301511 + 0.522233i
\(892\) 0 0
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.0000 24.2487i −0.466926 0.808740i
\(900\) 0 0
\(901\) 13.5000 23.3827i 0.449750 0.778990i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.0000 −0.498617
\(906\) 0 0
\(907\) −9.00000 15.5885i −0.298840 0.517606i 0.677031 0.735955i \(-0.263266\pi\)
−0.975871 + 0.218348i \(0.929933\pi\)
\(908\) 0 0
\(909\) 51.0000 1.69156
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.00000 12.1244i 0.231160 0.400381i
\(918\) 0 0
\(919\) −9.00000 + 15.5885i −0.296883 + 0.514216i −0.975421 0.220349i \(-0.929280\pi\)
0.678538 + 0.734565i \(0.262614\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.0000 34.6410i 0.329154 1.14022i
\(924\) 0 0
\(925\) 18.0000 + 31.1769i 0.591836 + 1.02509i
\(926\) 0 0
\(927\) 21.0000 36.3731i 0.689730 1.19465i
\(928\) 0 0
\(929\) 13.5000 23.3827i 0.442921 0.767161i −0.554984 0.831861i \(-0.687276\pi\)
0.997905 + 0.0646999i \(0.0206090\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) −18.0000 + 31.1769i −0.586161 + 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000 + 51.9615i 0.974869 + 1.68852i 0.680367 + 0.732872i \(0.261821\pi\)
0.294502 + 0.955651i \(0.404846\pi\)
\(948\) 0 0
\(949\) −24.5000 + 6.06218i −0.795304 + 0.196787i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29.0000 50.2295i 0.939402 1.62709i 0.172813 0.984955i \(-0.444714\pi\)
0.766589 0.642138i \(-0.221952\pi\)
\(954\) 0 0
\(955\) 4.00000 6.92820i 0.129437 0.224191i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.50000 12.9904i −0.242188 0.419481i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) 5.50000 + 9.52628i 0.177051 + 0.306662i
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.00000 + 5.19615i −0.0962746 + 0.166752i −0.910140 0.414301i \(-0.864026\pi\)
0.813865 + 0.581054i \(0.197359\pi\)
\(972\) 0 0
\(973\) −7.00000 12.1244i −0.224410 0.388689i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.5000 + 28.5788i 0.527882 + 0.914318i 0.999472 + 0.0325001i \(0.0103469\pi\)
−0.471590 + 0.881818i \(0.656320\pi\)
\(978\) 0 0
\(979\) −6.00000 + 10.3923i −0.191761 + 0.332140i
\(980\) 0 0
\(981\) −21.0000 + 36.3731i −0.670478 + 1.16130i
\(982\) 0 0
\(983\) −2.00000 −0.0637901 −0.0318950 0.999491i \(-0.510154\pi\)
−0.0318950 + 0.999491i \(0.510154\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) 18.0000 + 31.1769i 0.571789 + 0.990367i 0.996382 + 0.0849833i \(0.0270837\pi\)
−0.424594 + 0.905384i \(0.639583\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.00000 + 12.1244i −0.221915 + 0.384368i
\(996\) 0 0
\(997\) −29.5000 + 51.0955i −0.934274 + 1.61821i −0.158352 + 0.987383i \(0.550618\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.s.c.1121.1 2
4.3 odd 2 364.2.k.a.29.1 2
12.11 even 2 3276.2.z.c.757.1 2
13.9 even 3 inner 1456.2.s.c.113.1 2
28.3 even 6 2548.2.i.d.1745.1 2
28.11 odd 6 2548.2.i.e.1745.1 2
28.19 even 6 2548.2.l.d.1537.1 2
28.23 odd 6 2548.2.l.e.1537.1 2
28.27 even 2 2548.2.k.c.393.1 2
52.3 odd 6 4732.2.a.c.1.1 1
52.11 even 12 4732.2.g.b.337.1 2
52.15 even 12 4732.2.g.b.337.2 2
52.23 odd 6 4732.2.a.d.1.1 1
52.35 odd 6 364.2.k.a.113.1 yes 2
156.35 even 6 3276.2.z.c.3025.1 2
364.87 even 6 2548.2.l.d.373.1 2
364.139 even 6 2548.2.k.c.1569.1 2
364.191 odd 6 2548.2.i.e.165.1 2
364.243 even 6 2548.2.i.d.165.1 2
364.347 odd 6 2548.2.l.e.373.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.a.29.1 2 4.3 odd 2
364.2.k.a.113.1 yes 2 52.35 odd 6
1456.2.s.c.113.1 2 13.9 even 3 inner
1456.2.s.c.1121.1 2 1.1 even 1 trivial
2548.2.i.d.165.1 2 364.243 even 6
2548.2.i.d.1745.1 2 28.3 even 6
2548.2.i.e.165.1 2 364.191 odd 6
2548.2.i.e.1745.1 2 28.11 odd 6
2548.2.k.c.393.1 2 28.27 even 2
2548.2.k.c.1569.1 2 364.139 even 6
2548.2.l.d.373.1 2 364.87 even 6
2548.2.l.d.1537.1 2 28.19 even 6
2548.2.l.e.373.1 2 364.347 odd 6
2548.2.l.e.1537.1 2 28.23 odd 6
3276.2.z.c.757.1 2 12.11 even 2
3276.2.z.c.3025.1 2 156.35 even 6
4732.2.a.c.1.1 1 52.3 odd 6
4732.2.a.d.1.1 1 52.23 odd 6
4732.2.g.b.337.1 2 52.11 even 12
4732.2.g.b.337.2 2 52.15 even 12