Properties

Label 4732.2.g.b.337.1
Level $4732$
Weight $2$
Character 4732.337
Analytic conductor $37.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4732.337
Dual form 4732.2.g.b.337.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} +1.00000i q^{7} -3.00000 q^{9} +2.00000i q^{11} +3.00000 q^{17} -6.00000i q^{19} +4.00000 q^{23} +4.00000 q^{25} -7.00000 q^{29} +4.00000i q^{31} +1.00000 q^{35} -9.00000i q^{37} +9.00000i q^{41} -10.0000 q^{43} +3.00000i q^{45} +2.00000i q^{47} -1.00000 q^{49} +9.00000 q^{53} +2.00000 q^{55} -14.0000i q^{59} -5.00000 q^{61} -3.00000i q^{63} -8.00000i q^{67} +10.0000i q^{71} +7.00000i q^{73} -2.00000 q^{77} +2.00000 q^{79} +9.00000 q^{81} -6.00000i q^{83} -3.00000i q^{85} -6.00000i q^{89} -6.00000 q^{95} +2.00000i q^{97} -6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9} + 6 q^{17} + 8 q^{23} + 8 q^{25} - 14 q^{29} + 2 q^{35} - 20 q^{43} - 2 q^{49} + 18 q^{53} + 4 q^{55} - 10 q^{61} - 4 q^{77} + 4 q^{79} + 18 q^{81} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i −0.974679 0.223607i \(-0.928217\pi\)
0.974679 0.223607i \(-0.0717831\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) − 6.00000i − 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.00000 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) − 9.00000i − 1.47959i −0.672832 0.739795i \(-0.734922\pi\)
0.672832 0.739795i \(-0.265078\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000i 1.40556i 0.711405 + 0.702782i \(0.248059\pi\)
−0.711405 + 0.702782i \(0.751941\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 3.00000i 0.447214i
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 14.0000i − 1.82264i −0.411693 0.911322i \(-0.635063\pi\)
0.411693 0.911322i \(-0.364937\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) − 3.00000i − 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000i 1.18678i 0.804914 + 0.593391i \(0.202211\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(72\) 0 0
\(73\) 7.00000i 0.819288i 0.912245 + 0.409644i \(0.134347\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 6.00000i − 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) − 3.00000i − 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6.00000i − 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) − 6.00000i − 0.603023i
\(100\) 0 0
\(101\) 17.0000 1.69156 0.845782 0.533529i \(-0.179135\pi\)
0.845782 + 0.533529i \(0.179135\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) − 14.0000i − 1.34096i −0.741929 0.670478i \(-0.766089\pi\)
0.741929 0.670478i \(-0.233911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0000 1.03479 0.517396 0.855746i \(-0.326901\pi\)
0.517396 + 0.855746i \(0.326901\pi\)
\(114\) 0 0
\(115\) − 4.00000i − 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.00000i 0.275010i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.00000i − 0.804984i
\(126\) 0 0
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15.0000i − 1.28154i −0.767734 0.640768i \(-0.778616\pi\)
0.767734 0.640768i \(-0.221384\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.00000i 0.581318i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 3.00000i − 0.245770i −0.992421 0.122885i \(-0.960785\pi\)
0.992421 0.122885i \(-0.0392146\pi\)
\(150\) 0 0
\(151\) − 18.0000i − 1.46482i −0.680864 0.732410i \(-0.738396\pi\)
0.680864 0.732410i \(-0.261604\pi\)
\(152\) 0 0
\(153\) −9.00000 −0.727607
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000i 0.315244i
\(162\) 0 0
\(163\) − 2.00000i − 0.156652i −0.996928 0.0783260i \(-0.975042\pi\)
0.996928 0.0783260i \(-0.0249575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 18.0000i − 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 18.0000i 1.37649i
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 4.00000i 0.302372i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −15.0000 −1.11494 −0.557471 0.830197i \(-0.688228\pi\)
−0.557471 + 0.830197i \(0.688228\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.00000 −0.661693
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) − 11.0000i − 0.791797i −0.918294 0.395899i \(-0.870433\pi\)
0.918294 0.395899i \(-0.129567\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.00000i − 0.491304i
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.0000i 0.681994i
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.00000i 0.401790i 0.979613 + 0.200895i \(0.0643850\pi\)
−0.979613 + 0.200895i \(0.935615\pi\)
\(224\) 0 0
\(225\) −12.0000 −0.800000
\(226\) 0 0
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 6.00000i − 0.388108i −0.980991 0.194054i \(-0.937836\pi\)
0.980991 0.194054i \(-0.0621637\pi\)
\(240\) 0 0
\(241\) 3.00000i 0.193247i 0.995321 + 0.0966235i \(0.0308043\pi\)
−0.995321 + 0.0966235i \(0.969196\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 21.0000 1.29987
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) − 9.00000i − 0.552866i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) − 10.0000i − 0.607457i −0.952759 0.303728i \(-0.901768\pi\)
0.952759 0.303728i \(-0.0982315\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.00000i 0.482418i
\(276\) 0 0
\(277\) 3.00000 0.180253 0.0901263 0.995930i \(-0.471273\pi\)
0.0901263 + 0.995930i \(0.471273\pi\)
\(278\) 0 0
\(279\) − 12.0000i − 0.718421i
\(280\) 0 0
\(281\) − 7.00000i − 0.417585i −0.977960 0.208792i \(-0.933047\pi\)
0.977960 0.208792i \(-0.0669533\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 31.0000i − 1.81104i −0.424304 0.905520i \(-0.639481\pi\)
0.424304 0.905520i \(-0.360519\pi\)
\(294\) 0 0
\(295\) −14.0000 −0.815112
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 10.0000i − 0.576390i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.00000i 0.286299i
\(306\) 0 0
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) −3.00000 −0.169031
\(316\) 0 0
\(317\) − 3.00000i − 0.168497i −0.996445 0.0842484i \(-0.973151\pi\)
0.996445 0.0842484i \(-0.0268489\pi\)
\(318\) 0 0
\(319\) − 14.0000i − 0.783850i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 18.0000i − 1.00155i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.00000 −0.110264
\(330\) 0 0
\(331\) 14.0000i 0.769510i 0.923019 + 0.384755i \(0.125714\pi\)
−0.923019 + 0.384755i \(0.874286\pi\)
\(332\) 0 0
\(333\) 27.0000i 1.47959i
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 25.0000 1.36184 0.680918 0.732359i \(-0.261581\pi\)
0.680918 + 0.732359i \(0.261581\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 14.0000i 0.749403i 0.927146 + 0.374701i \(0.122255\pi\)
−0.927146 + 0.374701i \(0.877745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000i 0.0532246i 0.999646 + 0.0266123i \(0.00847196\pi\)
−0.999646 + 0.0266123i \(0.991528\pi\)
\(354\) 0 0
\(355\) 10.0000 0.530745
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) 20.0000 1.04399 0.521996 0.852948i \(-0.325188\pi\)
0.521996 + 0.852948i \(0.325188\pi\)
\(368\) 0 0
\(369\) − 27.0000i − 1.40556i
\(370\) 0 0
\(371\) 9.00000i 0.467257i
\(372\) 0 0
\(373\) 29.0000 1.50156 0.750782 0.660551i \(-0.229677\pi\)
0.750782 + 0.660551i \(0.229677\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.0000i 1.53293i 0.642287 + 0.766464i \(0.277986\pi\)
−0.642287 + 0.766464i \(0.722014\pi\)
\(384\) 0 0
\(385\) 2.00000i 0.101929i
\(386\) 0 0
\(387\) 30.0000 1.52499
\(388\) 0 0
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 2.00000i − 0.100631i
\(396\) 0 0
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 15.0000i − 0.749064i −0.927214 0.374532i \(-0.877803\pi\)
0.927214 0.374532i \(-0.122197\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 9.00000i − 0.447214i
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) 1.00000i 0.0494468i 0.999694 + 0.0247234i \(0.00787051\pi\)
−0.999694 + 0.0247234i \(0.992129\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.0000 0.688895
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 25.0000i 1.21843i 0.793007 + 0.609213i \(0.208514\pi\)
−0.793007 + 0.609213i \(0.791486\pi\)
\(422\) 0 0
\(423\) − 6.00000i − 0.291730i
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) − 5.00000i − 0.241967i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000i 1.15604i 0.816023 + 0.578020i \(0.196174\pi\)
−0.816023 + 0.578020i \(0.803826\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 24.0000i − 1.14808i
\(438\) 0 0
\(439\) 34.0000 1.62273 0.811366 0.584539i \(-0.198725\pi\)
0.811366 + 0.584539i \(0.198725\pi\)
\(440\) 0 0
\(441\) 3.00000 0.142857
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000i 1.22702i 0.789689 + 0.613508i \(0.210242\pi\)
−0.789689 + 0.613508i \(0.789758\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 17.0000i − 0.795226i −0.917553 0.397613i \(-0.869839\pi\)
0.917553 0.397613i \(-0.130161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 21.0000i − 0.978068i −0.872265 0.489034i \(-0.837349\pi\)
0.872265 0.489034i \(-0.162651\pi\)
\(462\) 0 0
\(463\) 14.0000i 0.650635i 0.945605 + 0.325318i \(0.105471\pi\)
−0.945605 + 0.325318i \(0.894529\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.0000 −0.647843 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 20.0000i − 0.919601i
\(474\) 0 0
\(475\) − 24.0000i − 1.10120i
\(476\) 0 0
\(477\) −27.0000 −1.23625
\(478\) 0 0
\(479\) − 12.0000i − 0.548294i −0.961688 0.274147i \(-0.911605\pi\)
0.961688 0.274147i \(-0.0883955\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) − 16.0000i − 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) 0 0
\(493\) −21.0000 −0.945792
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) −10.0000 −0.448561
\(498\) 0 0
\(499\) 40.0000i 1.79065i 0.445418 + 0.895323i \(0.353055\pi\)
−0.445418 + 0.895323i \(0.646945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.00000 −0.0891756 −0.0445878 0.999005i \(-0.514197\pi\)
−0.0445878 + 0.999005i \(0.514197\pi\)
\(504\) 0 0
\(505\) − 17.0000i − 0.756490i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 29.0000i − 1.28540i −0.766117 0.642701i \(-0.777814\pi\)
0.766117 0.642701i \(-0.222186\pi\)
\(510\) 0 0
\(511\) −7.00000 −0.309662
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 14.0000i − 0.616914i
\(516\) 0 0
\(517\) −4.00000 −0.175920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 42.0000i 1.82264i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 2.00000i − 0.0864675i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2.00000i − 0.0861461i
\(540\) 0 0
\(541\) 7.00000i 0.300954i 0.988614 + 0.150477i \(0.0480809\pi\)
−0.988614 + 0.150477i \(0.951919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 15.0000 0.640184
\(550\) 0 0
\(551\) 42.0000i 1.78926i
\(552\) 0 0
\(553\) 2.00000i 0.0850487i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.00000i 0.127114i 0.997978 + 0.0635570i \(0.0202445\pi\)
−0.997978 + 0.0635570i \(0.979756\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0000 0.421450 0.210725 0.977545i \(-0.432418\pi\)
0.210725 + 0.977545i \(0.432418\pi\)
\(564\) 0 0
\(565\) − 11.0000i − 0.462773i
\(566\) 0 0
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) − 27.0000i − 1.12402i −0.827129 0.562012i \(-0.810027\pi\)
0.827129 0.562012i \(-0.189973\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 18.0000i 0.745484i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44.0000i 1.81607i 0.418890 + 0.908037i \(0.362419\pi\)
−0.418890 + 0.908037i \(0.637581\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 29.0000i − 1.19089i −0.803397 0.595444i \(-0.796976\pi\)
0.803397 0.595444i \(-0.203024\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 34.0000 1.38920 0.694601 0.719395i \(-0.255581\pi\)
0.694601 + 0.719395i \(0.255581\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 24.0000i 0.977356i
\(604\) 0 0
\(605\) − 7.00000i − 0.284590i
\(606\) 0 0
\(607\) 18.0000 0.730597 0.365299 0.930890i \(-0.380967\pi\)
0.365299 + 0.930890i \(0.380967\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17.0000i 0.686624i 0.939222 + 0.343312i \(0.111549\pi\)
−0.939222 + 0.343312i \(0.888451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 41.0000i − 1.65060i −0.564696 0.825299i \(-0.691007\pi\)
0.564696 0.825299i \(-0.308993\pi\)
\(618\) 0 0
\(619\) 2.00000i 0.0803868i 0.999192 + 0.0401934i \(0.0127974\pi\)
−0.999192 + 0.0401934i \(0.987203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 27.0000i − 1.07656i
\(630\) 0 0
\(631\) 32.0000i 1.27390i 0.770905 + 0.636950i \(0.219804\pi\)
−0.770905 + 0.636950i \(0.780196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 14.0000i − 0.555573i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 30.0000i − 1.18678i
\(640\) 0 0
\(641\) 41.0000 1.61940 0.809701 0.586842i \(-0.199629\pi\)
0.809701 + 0.586842i \(0.199629\pi\)
\(642\) 0 0
\(643\) 20.0000i 0.788723i 0.918955 + 0.394362i \(0.129034\pi\)
−0.918955 + 0.394362i \(0.870966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.0000 −1.80845 −0.904223 0.427060i \(-0.859549\pi\)
−0.904223 + 0.427060i \(0.859549\pi\)
\(648\) 0 0
\(649\) 28.0000 1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) − 14.0000i − 0.547025i
\(656\) 0 0
\(657\) − 21.0000i − 0.819288i
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 13.0000i 0.505641i 0.967513 + 0.252821i \(0.0813583\pi\)
−0.967513 + 0.252821i \(0.918642\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 6.00000i − 0.232670i
\(666\) 0 0
\(667\) −28.0000 −1.08416
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 10.0000i − 0.386046i
\(672\) 0 0
\(673\) 41.0000 1.58043 0.790217 0.612827i \(-0.209968\pi\)
0.790217 + 0.612827i \(0.209968\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.00000i 0.0765279i 0.999268 + 0.0382639i \(0.0121828\pi\)
−0.999268 + 0.0382639i \(0.987817\pi\)
\(684\) 0 0
\(685\) −15.0000 −0.573121
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 20.0000i − 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) 14.0000i 0.531050i
\(696\) 0 0
\(697\) 27.0000i 1.02270i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −54.0000 −2.03665
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.0000i 0.639351i
\(708\) 0 0
\(709\) 43.0000i 1.61490i 0.589937 + 0.807449i \(0.299153\pi\)
−0.589937 + 0.807449i \(0.700847\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) 0 0
\(721\) 14.0000i 0.521387i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −28.0000 −1.03989
\(726\) 0 0
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −30.0000 −1.10959
\(732\) 0 0
\(733\) − 1.00000i − 0.0369358i −0.999829 0.0184679i \(-0.994121\pi\)
0.999829 0.0184679i \(-0.00587886\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 36.0000i 1.32428i 0.749380 + 0.662141i \(0.230352\pi\)
−0.749380 + 0.662141i \(0.769648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000i 0.586983i 0.955962 + 0.293492i \(0.0948173\pi\)
−0.955962 + 0.293492i \(0.905183\pi\)
\(744\) 0 0
\(745\) −3.00000 −0.109911
\(746\) 0 0
\(747\) 18.0000i 0.658586i
\(748\) 0 0
\(749\) 2.00000i 0.0730784i
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.0000 −0.655087
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000i 0.217500i 0.994069 + 0.108750i \(0.0346848\pi\)
−0.994069 + 0.108750i \(0.965315\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) 0 0
\(765\) 9.00000i 0.325396i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18.0000i 0.649097i 0.945869 + 0.324548i \(0.105212\pi\)
−0.945869 + 0.324548i \(0.894788\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.00000i 0.0719350i 0.999353 + 0.0359675i \(0.0114513\pi\)
−0.999353 + 0.0359675i \(0.988549\pi\)
\(774\) 0 0
\(775\) 16.0000i 0.574737i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 54.0000 1.93475
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 11.0000i − 0.392607i
\(786\) 0 0
\(787\) 52.0000i 1.85360i 0.375555 + 0.926800i \(0.377452\pi\)
−0.375555 + 0.926800i \(0.622548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.0000i 0.391115i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) 6.00000i 0.212265i
\(800\) 0 0
\(801\) 18.0000i 0.635999i
\(802\) 0 0
\(803\) −14.0000 −0.494049
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) − 40.0000i − 1.40459i −0.711886 0.702295i \(-0.752159\pi\)
0.711886 0.702295i \(-0.247841\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.00000 −0.0700569
\(816\) 0 0
\(817\) 60.0000i 2.09913i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 10.0000i − 0.349002i −0.984657 0.174501i \(-0.944169\pi\)
0.984657 0.174501i \(-0.0558313\pi\)
\(822\) 0 0
\(823\) −48.0000 −1.67317 −0.836587 0.547833i \(-0.815453\pi\)
−0.836587 + 0.547833i \(0.815453\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.00000i 0.208640i 0.994544 + 0.104320i \(0.0332667\pi\)
−0.994544 + 0.104320i \(0.966733\pi\)
\(828\) 0 0
\(829\) −55.0000 −1.91023 −0.955114 0.296237i \(-0.904268\pi\)
−0.955114 + 0.296237i \(0.904268\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 26.0000i − 0.897620i −0.893627 0.448810i \(-0.851848\pi\)
0.893627 0.448810i \(-0.148152\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 36.0000i − 1.23406i
\(852\) 0 0
\(853\) 5.00000i 0.171197i 0.996330 + 0.0855984i \(0.0272802\pi\)
−0.996330 + 0.0855984i \(0.972720\pi\)
\(854\) 0 0
\(855\) 18.0000 0.615587
\(856\) 0 0
\(857\) −37.0000 −1.26390 −0.631948 0.775011i \(-0.717744\pi\)
−0.631948 + 0.775011i \(0.717744\pi\)
\(858\) 0 0
\(859\) −16.0000 −0.545913 −0.272956 0.962026i \(-0.588002\pi\)
−0.272956 + 0.962026i \(0.588002\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.0000i 0.340404i 0.985409 + 0.170202i \(0.0544420\pi\)
−0.985409 + 0.170202i \(0.945558\pi\)
\(864\) 0 0
\(865\) 2.00000i 0.0680020i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.00000i 0.135691i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 6.00000i − 0.203069i
\(874\) 0 0
\(875\) 9.00000 0.304256
\(876\) 0 0
\(877\) 21.0000i 0.709120i 0.935033 + 0.354560i \(0.115369\pi\)
−0.935033 + 0.354560i \(0.884631\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −57.0000 −1.92038 −0.960189 0.279350i \(-0.909881\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.0000 0.537227 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(888\) 0 0
\(889\) 14.0000i 0.469545i
\(890\) 0 0
\(891\) 18.0000i 0.603023i
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 28.0000i − 0.933852i
\(900\) 0 0
\(901\) 27.0000 0.899500
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.0000i 0.498617i
\(906\) 0 0
\(907\) 18.0000 0.597680 0.298840 0.954303i \(-0.403400\pi\)
0.298840 + 0.954303i \(0.403400\pi\)
\(908\) 0 0
\(909\) −51.0000 −1.69156
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.0000i 0.462321i
\(918\) 0 0
\(919\) −18.0000 −0.593765 −0.296883 0.954914i \(-0.595947\pi\)
−0.296883 + 0.954914i \(0.595947\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 36.0000i − 1.18367i
\(926\) 0 0
\(927\) −42.0000 −1.37946
\(928\) 0 0
\(929\) − 27.0000i − 0.885841i −0.896561 0.442921i \(-0.853942\pi\)
0.896561 0.442921i \(-0.146058\pi\)
\(930\) 0 0
\(931\) 6.00000i 0.196642i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0000i 0.325991i 0.986627 + 0.162995i \(0.0521156\pi\)
−0.986627 + 0.162995i \(0.947884\pi\)
\(942\) 0 0
\(943\) 36.0000i 1.17232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 60.0000i − 1.94974i −0.222779 0.974869i \(-0.571513\pi\)
0.222779 0.974869i \(-0.428487\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.0000 1.87880 0.939402 0.342817i \(-0.111381\pi\)
0.939402 + 0.342817i \(0.111381\pi\)
\(954\) 0 0
\(955\) 8.00000i 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.0000 0.484375
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) −11.0000 −0.354103
\(966\) 0 0
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) − 14.0000i − 0.448819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 33.0000i − 1.05576i −0.849318 0.527882i \(-0.822986\pi\)
0.849318 0.527882i \(-0.177014\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 42.0000i 1.34096i
\(982\) 0 0
\(983\) − 2.00000i − 0.0637901i −0.999491 0.0318950i \(-0.989846\pi\)
0.999491 0.0318950i \(-0.0101542\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.0000i 0.443830i
\(996\) 0 0
\(997\) 59.0000 1.86855 0.934274 0.356555i \(-0.116049\pi\)
0.934274 + 0.356555i \(0.116049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.g.b.337.1 2
13.2 odd 12 364.2.k.a.113.1 yes 2
13.5 odd 4 4732.2.a.c.1.1 1
13.6 odd 12 364.2.k.a.29.1 2
13.8 odd 4 4732.2.a.d.1.1 1
13.12 even 2 inner 4732.2.g.b.337.2 2
39.2 even 12 3276.2.z.c.3025.1 2
39.32 even 12 3276.2.z.c.757.1 2
52.15 even 12 1456.2.s.c.113.1 2
52.19 even 12 1456.2.s.c.1121.1 2
91.2 odd 12 2548.2.i.e.165.1 2
91.6 even 12 2548.2.k.c.393.1 2
91.19 even 12 2548.2.l.d.1537.1 2
91.32 odd 12 2548.2.i.e.1745.1 2
91.41 even 12 2548.2.k.c.1569.1 2
91.45 even 12 2548.2.i.d.1745.1 2
91.54 even 12 2548.2.i.d.165.1 2
91.58 odd 12 2548.2.l.e.1537.1 2
91.67 odd 12 2548.2.l.e.373.1 2
91.80 even 12 2548.2.l.d.373.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.a.29.1 2 13.6 odd 12
364.2.k.a.113.1 yes 2 13.2 odd 12
1456.2.s.c.113.1 2 52.15 even 12
1456.2.s.c.1121.1 2 52.19 even 12
2548.2.i.d.165.1 2 91.54 even 12
2548.2.i.d.1745.1 2 91.45 even 12
2548.2.i.e.165.1 2 91.2 odd 12
2548.2.i.e.1745.1 2 91.32 odd 12
2548.2.k.c.393.1 2 91.6 even 12
2548.2.k.c.1569.1 2 91.41 even 12
2548.2.l.d.373.1 2 91.80 even 12
2548.2.l.d.1537.1 2 91.19 even 12
2548.2.l.e.373.1 2 91.67 odd 12
2548.2.l.e.1537.1 2 91.58 odd 12
3276.2.z.c.757.1 2 39.32 even 12
3276.2.z.c.3025.1 2 39.2 even 12
4732.2.a.c.1.1 1 13.5 odd 4
4732.2.a.d.1.1 1 13.8 odd 4
4732.2.g.b.337.1 2 1.1 even 1 trivial
4732.2.g.b.337.2 2 13.12 even 2 inner