Properties

Label 1458.3.b.c.1457.16
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.16
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +7.63957i q^{5} +5.75438 q^{7} +2.82843i q^{8} +10.8040 q^{10} -8.15026i q^{11} +23.4613 q^{13} -8.13793i q^{14} +4.00000 q^{16} -7.38231i q^{17} +15.6026 q^{19} -15.2791i q^{20} -11.5262 q^{22} +31.0764i q^{23} -33.3630 q^{25} -33.1793i q^{26} -11.5088 q^{28} -28.3184i q^{29} +16.0044 q^{31} -5.65685i q^{32} -10.4402 q^{34} +43.9610i q^{35} -11.9809 q^{37} -22.0654i q^{38} -21.6080 q^{40} -8.26339i q^{41} -45.0827 q^{43} +16.3005i q^{44} +43.9486 q^{46} -67.6105i q^{47} -15.8871 q^{49} +47.1824i q^{50} -46.9226 q^{52} +16.4115i q^{53} +62.2645 q^{55} +16.2759i q^{56} -40.0482 q^{58} +58.2441i q^{59} +71.3542 q^{61} -22.6337i q^{62} -8.00000 q^{64} +179.234i q^{65} +50.1960 q^{67} +14.7646i q^{68} +62.1703 q^{70} -40.9183i q^{71} +99.5384 q^{73} +16.9436i q^{74} -31.2052 q^{76} -46.8997i q^{77} +77.0529 q^{79} +30.5583i q^{80} -11.6862 q^{82} +105.482i q^{83} +56.3976 q^{85} +63.7566i q^{86} +23.0524 q^{88} -0.348951i q^{89} +135.005 q^{91} -62.1527i q^{92} -95.6157 q^{94} +119.197i q^{95} +63.9662 q^{97} +22.4677i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 7.63957i 1.52791i 0.645268 + 0.763957i \(0.276746\pi\)
−0.645268 + 0.763957i \(0.723254\pi\)
\(6\) 0 0
\(7\) 5.75438 0.822055 0.411027 0.911623i \(-0.365170\pi\)
0.411027 + 0.911623i \(0.365170\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 10.8040 1.08040
\(11\) − 8.15026i − 0.740933i −0.928846 0.370466i \(-0.879198\pi\)
0.928846 0.370466i \(-0.120802\pi\)
\(12\) 0 0
\(13\) 23.4613 1.80471 0.902357 0.430990i \(-0.141836\pi\)
0.902357 + 0.430990i \(0.141836\pi\)
\(14\) − 8.13793i − 0.581281i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 7.38231i − 0.434253i −0.976143 0.217127i \(-0.930332\pi\)
0.976143 0.217127i \(-0.0696685\pi\)
\(18\) 0 0
\(19\) 15.6026 0.821189 0.410595 0.911818i \(-0.365321\pi\)
0.410595 + 0.911818i \(0.365321\pi\)
\(20\) − 15.2791i − 0.763957i
\(21\) 0 0
\(22\) −11.5262 −0.523919
\(23\) 31.0764i 1.35115i 0.737293 + 0.675573i \(0.236104\pi\)
−0.737293 + 0.675573i \(0.763896\pi\)
\(24\) 0 0
\(25\) −33.3630 −1.33452
\(26\) − 33.1793i − 1.27613i
\(27\) 0 0
\(28\) −11.5088 −0.411027
\(29\) − 28.3184i − 0.976496i −0.872705 0.488248i \(-0.837636\pi\)
0.872705 0.488248i \(-0.162364\pi\)
\(30\) 0 0
\(31\) 16.0044 0.516272 0.258136 0.966109i \(-0.416892\pi\)
0.258136 + 0.966109i \(0.416892\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −10.4402 −0.307064
\(35\) 43.9610i 1.25603i
\(36\) 0 0
\(37\) −11.9809 −0.323809 −0.161904 0.986806i \(-0.551764\pi\)
−0.161904 + 0.986806i \(0.551764\pi\)
\(38\) − 22.0654i − 0.580669i
\(39\) 0 0
\(40\) −21.6080 −0.540199
\(41\) − 8.26339i − 0.201546i −0.994909 0.100773i \(-0.967868\pi\)
0.994909 0.100773i \(-0.0321316\pi\)
\(42\) 0 0
\(43\) −45.0827 −1.04844 −0.524218 0.851584i \(-0.675642\pi\)
−0.524218 + 0.851584i \(0.675642\pi\)
\(44\) 16.3005i 0.370466i
\(45\) 0 0
\(46\) 43.9486 0.955405
\(47\) − 67.6105i − 1.43852i −0.694740 0.719261i \(-0.744481\pi\)
0.694740 0.719261i \(-0.255519\pi\)
\(48\) 0 0
\(49\) −15.8871 −0.324226
\(50\) 47.1824i 0.943648i
\(51\) 0 0
\(52\) −46.9226 −0.902357
\(53\) 16.4115i 0.309652i 0.987942 + 0.154826i \(0.0494816\pi\)
−0.987942 + 0.154826i \(0.950518\pi\)
\(54\) 0 0
\(55\) 62.2645 1.13208
\(56\) 16.2759i 0.290640i
\(57\) 0 0
\(58\) −40.0482 −0.690487
\(59\) 58.2441i 0.987187i 0.869693 + 0.493594i \(0.164317\pi\)
−0.869693 + 0.493594i \(0.835683\pi\)
\(60\) 0 0
\(61\) 71.3542 1.16974 0.584870 0.811127i \(-0.301145\pi\)
0.584870 + 0.811127i \(0.301145\pi\)
\(62\) − 22.6337i − 0.365059i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 179.234i 2.75745i
\(66\) 0 0
\(67\) 50.1960 0.749193 0.374597 0.927188i \(-0.377781\pi\)
0.374597 + 0.927188i \(0.377781\pi\)
\(68\) 14.7646i 0.217127i
\(69\) 0 0
\(70\) 62.1703 0.888146
\(71\) − 40.9183i − 0.576315i −0.957583 0.288157i \(-0.906957\pi\)
0.957583 0.288157i \(-0.0930426\pi\)
\(72\) 0 0
\(73\) 99.5384 1.36354 0.681770 0.731567i \(-0.261211\pi\)
0.681770 + 0.731567i \(0.261211\pi\)
\(74\) 16.9436i 0.228967i
\(75\) 0 0
\(76\) −31.2052 −0.410595
\(77\) − 46.8997i − 0.609088i
\(78\) 0 0
\(79\) 77.0529 0.975354 0.487677 0.873024i \(-0.337844\pi\)
0.487677 + 0.873024i \(0.337844\pi\)
\(80\) 30.5583i 0.381978i
\(81\) 0 0
\(82\) −11.6862 −0.142515
\(83\) 105.482i 1.27087i 0.772156 + 0.635433i \(0.219178\pi\)
−0.772156 + 0.635433i \(0.780822\pi\)
\(84\) 0 0
\(85\) 56.3976 0.663502
\(86\) 63.7566i 0.741356i
\(87\) 0 0
\(88\) 23.0524 0.261959
\(89\) − 0.348951i − 0.00392080i −0.999998 0.00196040i \(-0.999376\pi\)
0.999998 0.00196040i \(-0.000624015\pi\)
\(90\) 0 0
\(91\) 135.005 1.48357
\(92\) − 62.1527i − 0.675573i
\(93\) 0 0
\(94\) −95.6157 −1.01719
\(95\) 119.197i 1.25471i
\(96\) 0 0
\(97\) 63.9662 0.659445 0.329723 0.944078i \(-0.393045\pi\)
0.329723 + 0.944078i \(0.393045\pi\)
\(98\) 22.4677i 0.229262i
\(99\) 0 0
\(100\) 66.7260 0.667260
\(101\) 166.725i 1.65074i 0.564593 + 0.825370i \(0.309033\pi\)
−0.564593 + 0.825370i \(0.690967\pi\)
\(102\) 0 0
\(103\) −100.610 −0.976800 −0.488400 0.872620i \(-0.662419\pi\)
−0.488400 + 0.872620i \(0.662419\pi\)
\(104\) 66.3585i 0.638063i
\(105\) 0 0
\(106\) 23.2094 0.218957
\(107\) − 6.57806i − 0.0614772i −0.999527 0.0307386i \(-0.990214\pi\)
0.999527 0.0307386i \(-0.00978594\pi\)
\(108\) 0 0
\(109\) 198.876 1.82455 0.912276 0.409576i \(-0.134323\pi\)
0.912276 + 0.409576i \(0.134323\pi\)
\(110\) − 88.0553i − 0.800502i
\(111\) 0 0
\(112\) 23.0175 0.205514
\(113\) − 5.24721i − 0.0464355i −0.999730 0.0232177i \(-0.992609\pi\)
0.999730 0.0232177i \(-0.00739110\pi\)
\(114\) 0 0
\(115\) −237.410 −2.06443
\(116\) 56.6368i 0.488248i
\(117\) 0 0
\(118\) 82.3695 0.698047
\(119\) − 42.4806i − 0.356980i
\(120\) 0 0
\(121\) 54.5732 0.451018
\(122\) − 100.910i − 0.827132i
\(123\) 0 0
\(124\) −32.0088 −0.258136
\(125\) − 63.8896i − 0.511117i
\(126\) 0 0
\(127\) 44.4382 0.349907 0.174954 0.984577i \(-0.444022\pi\)
0.174954 + 0.984577i \(0.444022\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 253.475 1.94981
\(131\) − 40.1802i − 0.306719i −0.988170 0.153360i \(-0.950991\pi\)
0.988170 0.153360i \(-0.0490093\pi\)
\(132\) 0 0
\(133\) 89.7834 0.675063
\(134\) − 70.9878i − 0.529760i
\(135\) 0 0
\(136\) 20.8803 0.153532
\(137\) 51.5369i 0.376182i 0.982152 + 0.188091i \(0.0602300\pi\)
−0.982152 + 0.188091i \(0.939770\pi\)
\(138\) 0 0
\(139\) −107.649 −0.774455 −0.387228 0.921984i \(-0.626567\pi\)
−0.387228 + 0.921984i \(0.626567\pi\)
\(140\) − 87.9220i − 0.628014i
\(141\) 0 0
\(142\) −57.8673 −0.407516
\(143\) − 191.216i − 1.33717i
\(144\) 0 0
\(145\) 216.340 1.49200
\(146\) − 140.769i − 0.964168i
\(147\) 0 0
\(148\) 23.9619 0.161904
\(149\) 141.101i 0.946987i 0.880797 + 0.473493i \(0.157007\pi\)
−0.880797 + 0.473493i \(0.842993\pi\)
\(150\) 0 0
\(151\) −131.182 −0.868755 −0.434378 0.900731i \(-0.643032\pi\)
−0.434378 + 0.900731i \(0.643032\pi\)
\(152\) 44.1308i 0.290334i
\(153\) 0 0
\(154\) −66.3263 −0.430690
\(155\) 122.267i 0.788818i
\(156\) 0 0
\(157\) 192.772 1.22785 0.613924 0.789365i \(-0.289590\pi\)
0.613924 + 0.789365i \(0.289590\pi\)
\(158\) − 108.969i − 0.689679i
\(159\) 0 0
\(160\) 43.2159 0.270099
\(161\) 178.825i 1.11072i
\(162\) 0 0
\(163\) 80.4819 0.493754 0.246877 0.969047i \(-0.420596\pi\)
0.246877 + 0.969047i \(0.420596\pi\)
\(164\) 16.5268i 0.100773i
\(165\) 0 0
\(166\) 149.174 0.898638
\(167\) − 108.270i − 0.648321i −0.946002 0.324161i \(-0.894918\pi\)
0.946002 0.324161i \(-0.105082\pi\)
\(168\) 0 0
\(169\) 381.431 2.25699
\(170\) − 79.7583i − 0.469167i
\(171\) 0 0
\(172\) 90.1655 0.524218
\(173\) − 84.6632i − 0.489383i −0.969601 0.244691i \(-0.921313\pi\)
0.969601 0.244691i \(-0.0786866\pi\)
\(174\) 0 0
\(175\) −191.983 −1.09705
\(176\) − 32.6011i − 0.185233i
\(177\) 0 0
\(178\) −0.493491 −0.00277242
\(179\) 167.767i 0.937248i 0.883398 + 0.468624i \(0.155250\pi\)
−0.883398 + 0.468624i \(0.844750\pi\)
\(180\) 0 0
\(181\) −289.465 −1.59925 −0.799627 0.600497i \(-0.794970\pi\)
−0.799627 + 0.600497i \(0.794970\pi\)
\(182\) − 190.926i − 1.04905i
\(183\) 0 0
\(184\) −87.8972 −0.477702
\(185\) − 91.5291i − 0.494752i
\(186\) 0 0
\(187\) −60.1678 −0.321753
\(188\) 135.221i 0.719261i
\(189\) 0 0
\(190\) 168.570 0.887211
\(191\) − 40.3377i − 0.211192i −0.994409 0.105596i \(-0.966325\pi\)
0.994409 0.105596i \(-0.0336751\pi\)
\(192\) 0 0
\(193\) −242.523 −1.25660 −0.628299 0.777972i \(-0.716249\pi\)
−0.628299 + 0.777972i \(0.716249\pi\)
\(194\) − 90.4619i − 0.466298i
\(195\) 0 0
\(196\) 31.7741 0.162113
\(197\) − 5.45517i − 0.0276912i −0.999904 0.0138456i \(-0.995593\pi\)
0.999904 0.0138456i \(-0.00440733\pi\)
\(198\) 0 0
\(199\) −143.015 −0.718667 −0.359333 0.933209i \(-0.616996\pi\)
−0.359333 + 0.933209i \(0.616996\pi\)
\(200\) − 94.3648i − 0.471824i
\(201\) 0 0
\(202\) 235.784 1.16725
\(203\) − 162.955i − 0.802733i
\(204\) 0 0
\(205\) 63.1288 0.307945
\(206\) 142.285i 0.690702i
\(207\) 0 0
\(208\) 93.8451 0.451178
\(209\) − 127.165i − 0.608446i
\(210\) 0 0
\(211\) −8.63782 −0.0409375 −0.0204688 0.999790i \(-0.506516\pi\)
−0.0204688 + 0.999790i \(0.506516\pi\)
\(212\) − 32.8231i − 0.154826i
\(213\) 0 0
\(214\) −9.30278 −0.0434709
\(215\) − 344.413i − 1.60192i
\(216\) 0 0
\(217\) 92.0956 0.424404
\(218\) − 281.253i − 1.29015i
\(219\) 0 0
\(220\) −124.529 −0.566041
\(221\) − 173.198i − 0.783703i
\(222\) 0 0
\(223\) −306.810 −1.37583 −0.687915 0.725791i \(-0.741474\pi\)
−0.687915 + 0.725791i \(0.741474\pi\)
\(224\) − 32.5517i − 0.145320i
\(225\) 0 0
\(226\) −7.42068 −0.0328348
\(227\) − 11.8982i − 0.0524148i −0.999657 0.0262074i \(-0.991657\pi\)
0.999657 0.0262074i \(-0.00834303\pi\)
\(228\) 0 0
\(229\) −385.366 −1.68282 −0.841409 0.540398i \(-0.818274\pi\)
−0.841409 + 0.540398i \(0.818274\pi\)
\(230\) 335.748i 1.45978i
\(231\) 0 0
\(232\) 80.0965 0.345243
\(233\) 9.60654i 0.0412298i 0.999787 + 0.0206149i \(0.00656239\pi\)
−0.999787 + 0.0206149i \(0.993438\pi\)
\(234\) 0 0
\(235\) 516.515 2.19794
\(236\) − 116.488i − 0.493594i
\(237\) 0 0
\(238\) −60.0767 −0.252423
\(239\) 102.957i 0.430782i 0.976528 + 0.215391i \(0.0691025\pi\)
−0.976528 + 0.215391i \(0.930897\pi\)
\(240\) 0 0
\(241\) 106.473 0.441798 0.220899 0.975297i \(-0.429101\pi\)
0.220899 + 0.975297i \(0.429101\pi\)
\(242\) − 77.1782i − 0.318918i
\(243\) 0 0
\(244\) −142.708 −0.584870
\(245\) − 121.370i − 0.495389i
\(246\) 0 0
\(247\) 366.057 1.48201
\(248\) 45.2673i 0.182530i
\(249\) 0 0
\(250\) −90.3535 −0.361414
\(251\) 81.6007i 0.325102i 0.986700 + 0.162551i \(0.0519723\pi\)
−0.986700 + 0.162551i \(0.948028\pi\)
\(252\) 0 0
\(253\) 253.281 1.00111
\(254\) − 62.8451i − 0.247422i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 439.294i − 1.70931i −0.519193 0.854657i \(-0.673767\pi\)
0.519193 0.854657i \(-0.326233\pi\)
\(258\) 0 0
\(259\) −68.9429 −0.266189
\(260\) − 358.468i − 1.37872i
\(261\) 0 0
\(262\) −56.8234 −0.216883
\(263\) 450.911i 1.71449i 0.514908 + 0.857245i \(0.327826\pi\)
−0.514908 + 0.857245i \(0.672174\pi\)
\(264\) 0 0
\(265\) −125.377 −0.473121
\(266\) − 126.973i − 0.477342i
\(267\) 0 0
\(268\) −100.392 −0.374597
\(269\) 363.566i 1.35155i 0.737110 + 0.675773i \(0.236190\pi\)
−0.737110 + 0.675773i \(0.763810\pi\)
\(270\) 0 0
\(271\) −70.6655 −0.260758 −0.130379 0.991464i \(-0.541619\pi\)
−0.130379 + 0.991464i \(0.541619\pi\)
\(272\) − 29.5292i − 0.108563i
\(273\) 0 0
\(274\) 72.8842 0.266001
\(275\) 271.917i 0.988789i
\(276\) 0 0
\(277\) −233.500 −0.842962 −0.421481 0.906837i \(-0.638490\pi\)
−0.421481 + 0.906837i \(0.638490\pi\)
\(278\) 152.239i 0.547622i
\(279\) 0 0
\(280\) −124.341 −0.444073
\(281\) 289.317i 1.02960i 0.857311 + 0.514799i \(0.172134\pi\)
−0.857311 + 0.514799i \(0.827866\pi\)
\(282\) 0 0
\(283\) 153.403 0.542060 0.271030 0.962571i \(-0.412636\pi\)
0.271030 + 0.962571i \(0.412636\pi\)
\(284\) 81.8367i 0.288157i
\(285\) 0 0
\(286\) −270.420 −0.945523
\(287\) − 47.5508i − 0.165682i
\(288\) 0 0
\(289\) 234.502 0.811424
\(290\) − 305.951i − 1.05500i
\(291\) 0 0
\(292\) −199.077 −0.681770
\(293\) − 163.328i − 0.557434i −0.960373 0.278717i \(-0.910091\pi\)
0.960373 0.278717i \(-0.0899091\pi\)
\(294\) 0 0
\(295\) −444.959 −1.50834
\(296\) − 33.8872i − 0.114484i
\(297\) 0 0
\(298\) 199.547 0.669621
\(299\) 729.091i 2.43843i
\(300\) 0 0
\(301\) −259.423 −0.861872
\(302\) 185.519i 0.614303i
\(303\) 0 0
\(304\) 62.4104 0.205297
\(305\) 545.115i 1.78726i
\(306\) 0 0
\(307\) −326.648 −1.06400 −0.532000 0.846744i \(-0.678560\pi\)
−0.532000 + 0.846744i \(0.678560\pi\)
\(308\) 93.7995i 0.304544i
\(309\) 0 0
\(310\) 172.911 0.557779
\(311\) − 465.553i − 1.49695i −0.663161 0.748477i \(-0.730786\pi\)
0.663161 0.748477i \(-0.269214\pi\)
\(312\) 0 0
\(313\) 219.310 0.700669 0.350335 0.936625i \(-0.386068\pi\)
0.350335 + 0.936625i \(0.386068\pi\)
\(314\) − 272.621i − 0.868220i
\(315\) 0 0
\(316\) −154.106 −0.487677
\(317\) − 127.383i − 0.401838i −0.979608 0.200919i \(-0.935607\pi\)
0.979608 0.200919i \(-0.0643928\pi\)
\(318\) 0 0
\(319\) −230.802 −0.723518
\(320\) − 61.1165i − 0.190989i
\(321\) 0 0
\(322\) 252.897 0.785395
\(323\) − 115.183i − 0.356604i
\(324\) 0 0
\(325\) −782.738 −2.40843
\(326\) − 113.819i − 0.349137i
\(327\) 0 0
\(328\) 23.3724 0.0712573
\(329\) − 389.057i − 1.18254i
\(330\) 0 0
\(331\) 271.665 0.820739 0.410370 0.911919i \(-0.365400\pi\)
0.410370 + 0.911919i \(0.365400\pi\)
\(332\) − 210.964i − 0.635433i
\(333\) 0 0
\(334\) −153.116 −0.458432
\(335\) 383.475i 1.14470i
\(336\) 0 0
\(337\) 513.337 1.52325 0.761627 0.648015i \(-0.224401\pi\)
0.761627 + 0.648015i \(0.224401\pi\)
\(338\) − 539.426i − 1.59593i
\(339\) 0 0
\(340\) −112.795 −0.331751
\(341\) − 130.440i − 0.382523i
\(342\) 0 0
\(343\) −373.385 −1.08859
\(344\) − 127.513i − 0.370678i
\(345\) 0 0
\(346\) −119.732 −0.346046
\(347\) 179.150i 0.516281i 0.966107 + 0.258141i \(0.0831098\pi\)
−0.966107 + 0.258141i \(0.916890\pi\)
\(348\) 0 0
\(349\) −345.505 −0.989985 −0.494992 0.868897i \(-0.664829\pi\)
−0.494992 + 0.868897i \(0.664829\pi\)
\(350\) 271.506i 0.775730i
\(351\) 0 0
\(352\) −46.1048 −0.130980
\(353\) 245.720i 0.696091i 0.937478 + 0.348046i \(0.113155\pi\)
−0.937478 + 0.348046i \(0.886845\pi\)
\(354\) 0 0
\(355\) 312.598 0.880559
\(356\) 0.697902i 0.00196040i
\(357\) 0 0
\(358\) 237.259 0.662735
\(359\) − 555.660i − 1.54780i −0.633309 0.773899i \(-0.718304\pi\)
0.633309 0.773899i \(-0.281696\pi\)
\(360\) 0 0
\(361\) −117.559 −0.325648
\(362\) 409.365i 1.13084i
\(363\) 0 0
\(364\) −270.010 −0.741787
\(365\) 760.430i 2.08337i
\(366\) 0 0
\(367\) 398.565 1.08601 0.543004 0.839730i \(-0.317287\pi\)
0.543004 + 0.839730i \(0.317287\pi\)
\(368\) 124.305i 0.337787i
\(369\) 0 0
\(370\) −129.442 −0.349842
\(371\) 94.4383i 0.254551i
\(372\) 0 0
\(373\) 409.675 1.09832 0.549162 0.835716i \(-0.314947\pi\)
0.549162 + 0.835716i \(0.314947\pi\)
\(374\) 85.0901i 0.227514i
\(375\) 0 0
\(376\) 191.231 0.508594
\(377\) − 664.385i − 1.76230i
\(378\) 0 0
\(379\) −61.5139 −0.162306 −0.0811529 0.996702i \(-0.525860\pi\)
−0.0811529 + 0.996702i \(0.525860\pi\)
\(380\) − 238.394i − 0.627353i
\(381\) 0 0
\(382\) −57.0462 −0.149335
\(383\) 203.341i 0.530917i 0.964122 + 0.265458i \(0.0855233\pi\)
−0.964122 + 0.265458i \(0.914477\pi\)
\(384\) 0 0
\(385\) 358.294 0.930633
\(386\) 342.980i 0.888549i
\(387\) 0 0
\(388\) −127.932 −0.329723
\(389\) 255.004i 0.655538i 0.944758 + 0.327769i \(0.106297\pi\)
−0.944758 + 0.327769i \(0.893703\pi\)
\(390\) 0 0
\(391\) 229.415 0.586740
\(392\) − 44.9354i − 0.114631i
\(393\) 0 0
\(394\) −7.71477 −0.0195806
\(395\) 588.651i 1.49026i
\(396\) 0 0
\(397\) −27.6278 −0.0695914 −0.0347957 0.999394i \(-0.511078\pi\)
−0.0347957 + 0.999394i \(0.511078\pi\)
\(398\) 202.253i 0.508174i
\(399\) 0 0
\(400\) −133.452 −0.333630
\(401\) 374.465i 0.933829i 0.884303 + 0.466914i \(0.154634\pi\)
−0.884303 + 0.466914i \(0.845366\pi\)
\(402\) 0 0
\(403\) 375.484 0.931722
\(404\) − 333.449i − 0.825370i
\(405\) 0 0
\(406\) −230.453 −0.567618
\(407\) 97.6477i 0.239921i
\(408\) 0 0
\(409\) 204.938 0.501071 0.250536 0.968107i \(-0.419393\pi\)
0.250536 + 0.968107i \(0.419393\pi\)
\(410\) − 89.2775i − 0.217750i
\(411\) 0 0
\(412\) 201.221 0.488400
\(413\) 335.159i 0.811522i
\(414\) 0 0
\(415\) −805.835 −1.94177
\(416\) − 132.717i − 0.319031i
\(417\) 0 0
\(418\) −179.839 −0.430237
\(419\) − 239.000i − 0.570405i −0.958467 0.285202i \(-0.907939\pi\)
0.958467 0.285202i \(-0.0920608\pi\)
\(420\) 0 0
\(421\) 199.488 0.473844 0.236922 0.971529i \(-0.423861\pi\)
0.236922 + 0.971529i \(0.423861\pi\)
\(422\) 12.2157i 0.0289472i
\(423\) 0 0
\(424\) −46.4188 −0.109478
\(425\) 246.296i 0.579520i
\(426\) 0 0
\(427\) 410.599 0.961591
\(428\) 13.1561i 0.0307386i
\(429\) 0 0
\(430\) −487.073 −1.13273
\(431\) − 235.094i − 0.545461i −0.962090 0.272731i \(-0.912073\pi\)
0.962090 0.272731i \(-0.0879267\pi\)
\(432\) 0 0
\(433\) −391.650 −0.904504 −0.452252 0.891890i \(-0.649379\pi\)
−0.452252 + 0.891890i \(0.649379\pi\)
\(434\) − 130.243i − 0.300099i
\(435\) 0 0
\(436\) −397.752 −0.912276
\(437\) 484.872i 1.10955i
\(438\) 0 0
\(439\) 81.2695 0.185124 0.0925621 0.995707i \(-0.470494\pi\)
0.0925621 + 0.995707i \(0.470494\pi\)
\(440\) 176.111i 0.400251i
\(441\) 0 0
\(442\) −244.940 −0.554162
\(443\) − 527.706i − 1.19121i −0.803277 0.595605i \(-0.796912\pi\)
0.803277 0.595605i \(-0.203088\pi\)
\(444\) 0 0
\(445\) 2.66583 0.00599064
\(446\) 433.895i 0.972859i
\(447\) 0 0
\(448\) −46.0351 −0.102757
\(449\) 120.226i 0.267765i 0.990997 + 0.133882i \(0.0427445\pi\)
−0.990997 + 0.133882i \(0.957256\pi\)
\(450\) 0 0
\(451\) −67.3488 −0.149332
\(452\) 10.4944i 0.0232177i
\(453\) 0 0
\(454\) −16.8265 −0.0370629
\(455\) 1031.38i 2.26677i
\(456\) 0 0
\(457\) −143.140 −0.313216 −0.156608 0.987661i \(-0.550056\pi\)
−0.156608 + 0.987661i \(0.550056\pi\)
\(458\) 544.989i 1.18993i
\(459\) 0 0
\(460\) 474.820 1.03222
\(461\) − 236.139i − 0.512232i −0.966646 0.256116i \(-0.917557\pi\)
0.966646 0.256116i \(-0.0824429\pi\)
\(462\) 0 0
\(463\) 148.324 0.320353 0.160177 0.987088i \(-0.448794\pi\)
0.160177 + 0.987088i \(0.448794\pi\)
\(464\) − 113.274i − 0.244124i
\(465\) 0 0
\(466\) 13.5857 0.0291539
\(467\) − 90.2013i − 0.193150i −0.995326 0.0965752i \(-0.969211\pi\)
0.995326 0.0965752i \(-0.0307888\pi\)
\(468\) 0 0
\(469\) 288.847 0.615878
\(470\) − 730.463i − 1.55418i
\(471\) 0 0
\(472\) −164.739 −0.349023
\(473\) 367.436i 0.776821i
\(474\) 0 0
\(475\) −520.549 −1.09589
\(476\) 84.9613i 0.178490i
\(477\) 0 0
\(478\) 145.603 0.304609
\(479\) − 258.118i − 0.538868i −0.963019 0.269434i \(-0.913163\pi\)
0.963019 0.269434i \(-0.0868366\pi\)
\(480\) 0 0
\(481\) −281.088 −0.584382
\(482\) − 150.576i − 0.312398i
\(483\) 0 0
\(484\) −109.146 −0.225509
\(485\) 488.674i 1.00758i
\(486\) 0 0
\(487\) −103.107 −0.211718 −0.105859 0.994381i \(-0.533759\pi\)
−0.105859 + 0.994381i \(0.533759\pi\)
\(488\) 201.820i 0.413566i
\(489\) 0 0
\(490\) −171.643 −0.350293
\(491\) − 764.752i − 1.55754i −0.627310 0.778770i \(-0.715844\pi\)
0.627310 0.778770i \(-0.284156\pi\)
\(492\) 0 0
\(493\) −209.055 −0.424047
\(494\) − 517.683i − 1.04794i
\(495\) 0 0
\(496\) 64.0177 0.129068
\(497\) − 235.460i − 0.473762i
\(498\) 0 0
\(499\) −718.977 −1.44084 −0.720418 0.693540i \(-0.756050\pi\)
−0.720418 + 0.693540i \(0.756050\pi\)
\(500\) 127.779i 0.255558i
\(501\) 0 0
\(502\) 115.401 0.229882
\(503\) − 585.028i − 1.16308i −0.813519 0.581538i \(-0.802451\pi\)
0.813519 0.581538i \(-0.197549\pi\)
\(504\) 0 0
\(505\) −1273.70 −2.52219
\(506\) − 358.193i − 0.707891i
\(507\) 0 0
\(508\) −88.8764 −0.174954
\(509\) − 883.436i − 1.73563i −0.496886 0.867816i \(-0.665523\pi\)
0.496886 0.867816i \(-0.334477\pi\)
\(510\) 0 0
\(511\) 572.782 1.12090
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −621.255 −1.20867
\(515\) − 768.620i − 1.49247i
\(516\) 0 0
\(517\) −551.044 −1.06585
\(518\) 97.5000i 0.188224i
\(519\) 0 0
\(520\) −506.950 −0.974904
\(521\) 26.0398i 0.0499804i 0.999688 + 0.0249902i \(0.00795545\pi\)
−0.999688 + 0.0249902i \(0.992045\pi\)
\(522\) 0 0
\(523\) 578.821 1.10673 0.553366 0.832938i \(-0.313343\pi\)
0.553366 + 0.832938i \(0.313343\pi\)
\(524\) 80.3605i 0.153360i
\(525\) 0 0
\(526\) 637.684 1.21233
\(527\) − 118.150i − 0.224193i
\(528\) 0 0
\(529\) −436.741 −0.825597
\(530\) 177.310i 0.334547i
\(531\) 0 0
\(532\) −179.567 −0.337531
\(533\) − 193.870i − 0.363733i
\(534\) 0 0
\(535\) 50.2535 0.0939318
\(536\) 141.976i 0.264880i
\(537\) 0 0
\(538\) 514.160 0.955688
\(539\) 129.484i 0.240229i
\(540\) 0 0
\(541\) −84.9565 −0.157036 −0.0785180 0.996913i \(-0.525019\pi\)
−0.0785180 + 0.996913i \(0.525019\pi\)
\(542\) 99.9360i 0.184384i
\(543\) 0 0
\(544\) −41.7606 −0.0767659
\(545\) 1519.33i 2.78776i
\(546\) 0 0
\(547\) −864.185 −1.57986 −0.789931 0.613195i \(-0.789884\pi\)
−0.789931 + 0.613195i \(0.789884\pi\)
\(548\) − 103.074i − 0.188091i
\(549\) 0 0
\(550\) 384.549 0.699180
\(551\) − 441.840i − 0.801888i
\(552\) 0 0
\(553\) 443.392 0.801794
\(554\) 330.219i 0.596064i
\(555\) 0 0
\(556\) 215.299 0.387228
\(557\) 261.397i 0.469294i 0.972081 + 0.234647i \(0.0753934\pi\)
−0.972081 + 0.234647i \(0.924607\pi\)
\(558\) 0 0
\(559\) −1057.70 −1.89213
\(560\) 175.844i 0.314007i
\(561\) 0 0
\(562\) 409.156 0.728036
\(563\) − 787.033i − 1.39793i −0.715158 0.698963i \(-0.753645\pi\)
0.715158 0.698963i \(-0.246355\pi\)
\(564\) 0 0
\(565\) 40.0864 0.0709494
\(566\) − 216.944i − 0.383294i
\(567\) 0 0
\(568\) 115.735 0.203758
\(569\) 264.418i 0.464707i 0.972631 + 0.232354i \(0.0746427\pi\)
−0.972631 + 0.232354i \(0.925357\pi\)
\(570\) 0 0
\(571\) −63.6987 −0.111556 −0.0557782 0.998443i \(-0.517764\pi\)
−0.0557782 + 0.998443i \(0.517764\pi\)
\(572\) 382.431i 0.668586i
\(573\) 0 0
\(574\) −67.2469 −0.117155
\(575\) − 1036.80i − 1.80313i
\(576\) 0 0
\(577\) −970.722 −1.68236 −0.841180 0.540755i \(-0.818139\pi\)
−0.841180 + 0.540755i \(0.818139\pi\)
\(578\) − 331.635i − 0.573763i
\(579\) 0 0
\(580\) −432.680 −0.746001
\(581\) 606.983i 1.04472i
\(582\) 0 0
\(583\) 133.758 0.229431
\(584\) 281.537i 0.482084i
\(585\) 0 0
\(586\) −230.981 −0.394165
\(587\) 101.662i 0.173190i 0.996244 + 0.0865948i \(0.0275985\pi\)
−0.996244 + 0.0865948i \(0.972401\pi\)
\(588\) 0 0
\(589\) 249.711 0.423957
\(590\) 629.268i 1.06656i
\(591\) 0 0
\(592\) −47.9237 −0.0809522
\(593\) 926.755i 1.56282i 0.624016 + 0.781412i \(0.285500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(594\) 0 0
\(595\) 324.534 0.545435
\(596\) − 282.202i − 0.473493i
\(597\) 0 0
\(598\) 1031.09 1.72423
\(599\) − 562.278i − 0.938695i −0.883014 0.469347i \(-0.844489\pi\)
0.883014 0.469347i \(-0.155511\pi\)
\(600\) 0 0
\(601\) 380.292 0.632765 0.316382 0.948632i \(-0.397532\pi\)
0.316382 + 0.948632i \(0.397532\pi\)
\(602\) 366.880i 0.609436i
\(603\) 0 0
\(604\) 262.364 0.434378
\(605\) 416.916i 0.689117i
\(606\) 0 0
\(607\) −1124.48 −1.85251 −0.926257 0.376893i \(-0.876992\pi\)
−0.926257 + 0.376893i \(0.876992\pi\)
\(608\) − 88.2616i − 0.145167i
\(609\) 0 0
\(610\) 770.909 1.26379
\(611\) − 1586.23i − 2.59612i
\(612\) 0 0
\(613\) 626.817 1.02254 0.511270 0.859420i \(-0.329175\pi\)
0.511270 + 0.859420i \(0.329175\pi\)
\(614\) 461.950i 0.752362i
\(615\) 0 0
\(616\) 132.653 0.215345
\(617\) − 176.294i − 0.285727i −0.989742 0.142864i \(-0.954369\pi\)
0.989742 0.142864i \(-0.0456311\pi\)
\(618\) 0 0
\(619\) 929.905 1.50227 0.751135 0.660149i \(-0.229507\pi\)
0.751135 + 0.660149i \(0.229507\pi\)
\(620\) − 244.534i − 0.394409i
\(621\) 0 0
\(622\) −658.391 −1.05851
\(623\) − 2.00800i − 0.00322311i
\(624\) 0 0
\(625\) −345.986 −0.553577
\(626\) − 310.151i − 0.495448i
\(627\) 0 0
\(628\) −385.544 −0.613924
\(629\) 88.4469i 0.140615i
\(630\) 0 0
\(631\) −654.106 −1.03662 −0.518309 0.855193i \(-0.673438\pi\)
−0.518309 + 0.855193i \(0.673438\pi\)
\(632\) 217.939i 0.344840i
\(633\) 0 0
\(634\) −180.146 −0.284142
\(635\) 339.489i 0.534628i
\(636\) 0 0
\(637\) −372.731 −0.585134
\(638\) 326.404i 0.511605i
\(639\) 0 0
\(640\) −86.4318 −0.135050
\(641\) 736.054i 1.14829i 0.818754 + 0.574145i \(0.194665\pi\)
−0.818754 + 0.574145i \(0.805335\pi\)
\(642\) 0 0
\(643\) −712.261 −1.10771 −0.553857 0.832612i \(-0.686845\pi\)
−0.553857 + 0.832612i \(0.686845\pi\)
\(644\) − 357.651i − 0.555358i
\(645\) 0 0
\(646\) −162.894 −0.252157
\(647\) 291.136i 0.449978i 0.974361 + 0.224989i \(0.0722346\pi\)
−0.974361 + 0.224989i \(0.927765\pi\)
\(648\) 0 0
\(649\) 474.704 0.731440
\(650\) 1106.96i 1.70301i
\(651\) 0 0
\(652\) −160.964 −0.246877
\(653\) − 1162.93i − 1.78090i −0.455081 0.890450i \(-0.650390\pi\)
0.455081 0.890450i \(-0.349610\pi\)
\(654\) 0 0
\(655\) 306.960 0.468641
\(656\) − 33.0536i − 0.0503866i
\(657\) 0 0
\(658\) −550.210 −0.836185
\(659\) − 529.292i − 0.803174i −0.915821 0.401587i \(-0.868459\pi\)
0.915821 0.401587i \(-0.131541\pi\)
\(660\) 0 0
\(661\) 3.85043 0.00582516 0.00291258 0.999996i \(-0.499073\pi\)
0.00291258 + 0.999996i \(0.499073\pi\)
\(662\) − 384.192i − 0.580350i
\(663\) 0 0
\(664\) −298.348 −0.449319
\(665\) 685.906i 1.03144i
\(666\) 0 0
\(667\) 880.033 1.31939
\(668\) 216.539i 0.324161i
\(669\) 0 0
\(670\) 542.316 0.809427
\(671\) − 581.555i − 0.866700i
\(672\) 0 0
\(673\) −414.813 −0.616364 −0.308182 0.951327i \(-0.599721\pi\)
−0.308182 + 0.951327i \(0.599721\pi\)
\(674\) − 725.968i − 1.07710i
\(675\) 0 0
\(676\) −762.863 −1.12850
\(677\) − 1187.49i − 1.75405i −0.480444 0.877025i \(-0.659524\pi\)
0.480444 0.877025i \(-0.340476\pi\)
\(678\) 0 0
\(679\) 368.086 0.542100
\(680\) 159.517i 0.234583i
\(681\) 0 0
\(682\) −184.470 −0.270484
\(683\) 513.834i 0.752320i 0.926555 + 0.376160i \(0.122756\pi\)
−0.926555 + 0.376160i \(0.877244\pi\)
\(684\) 0 0
\(685\) −393.720 −0.574774
\(686\) 528.046i 0.769747i
\(687\) 0 0
\(688\) −180.331 −0.262109
\(689\) 385.036i 0.558833i
\(690\) 0 0
\(691\) 529.360 0.766079 0.383039 0.923732i \(-0.374877\pi\)
0.383039 + 0.923732i \(0.374877\pi\)
\(692\) 169.326i 0.244691i
\(693\) 0 0
\(694\) 253.356 0.365066
\(695\) − 822.394i − 1.18330i
\(696\) 0 0
\(697\) −61.0029 −0.0875221
\(698\) 488.617i 0.700025i
\(699\) 0 0
\(700\) 383.967 0.548524
\(701\) 13.0718i 0.0186474i 0.999957 + 0.00932369i \(0.00296787\pi\)
−0.999957 + 0.00932369i \(0.997032\pi\)
\(702\) 0 0
\(703\) −186.934 −0.265908
\(704\) 65.2021i 0.0926166i
\(705\) 0 0
\(706\) 347.501 0.492211
\(707\) 959.398i 1.35700i
\(708\) 0 0
\(709\) −762.984 −1.07614 −0.538071 0.842900i \(-0.680847\pi\)
−0.538071 + 0.842900i \(0.680847\pi\)
\(710\) − 442.081i − 0.622649i
\(711\) 0 0
\(712\) 0.986982 0.00138621
\(713\) 497.359i 0.697559i
\(714\) 0 0
\(715\) 1460.80 2.04308
\(716\) − 335.535i − 0.468624i
\(717\) 0 0
\(718\) −785.821 −1.09446
\(719\) 903.516i 1.25663i 0.777959 + 0.628315i \(0.216255\pi\)
−0.777959 + 0.628315i \(0.783745\pi\)
\(720\) 0 0
\(721\) −578.951 −0.802983
\(722\) 166.253i 0.230268i
\(723\) 0 0
\(724\) 578.930 0.799627
\(725\) 944.786i 1.30315i
\(726\) 0 0
\(727\) −964.599 −1.32682 −0.663411 0.748256i \(-0.730892\pi\)
−0.663411 + 0.748256i \(0.730892\pi\)
\(728\) 381.852i 0.524523i
\(729\) 0 0
\(730\) 1075.41 1.47317
\(731\) 332.815i 0.455287i
\(732\) 0 0
\(733\) 549.731 0.749974 0.374987 0.927030i \(-0.377647\pi\)
0.374987 + 0.927030i \(0.377647\pi\)
\(734\) − 563.656i − 0.767924i
\(735\) 0 0
\(736\) 175.794 0.238851
\(737\) − 409.110i − 0.555102i
\(738\) 0 0
\(739\) 522.615 0.707192 0.353596 0.935398i \(-0.384959\pi\)
0.353596 + 0.935398i \(0.384959\pi\)
\(740\) 183.058i 0.247376i
\(741\) 0 0
\(742\) 133.556 0.179995
\(743\) 498.311i 0.670674i 0.942098 + 0.335337i \(0.108850\pi\)
−0.942098 + 0.335337i \(0.891150\pi\)
\(744\) 0 0
\(745\) −1077.95 −1.44691
\(746\) − 579.367i − 0.776632i
\(747\) 0 0
\(748\) 120.336 0.160876
\(749\) − 37.8527i − 0.0505376i
\(750\) 0 0
\(751\) 401.886 0.535135 0.267567 0.963539i \(-0.413780\pi\)
0.267567 + 0.963539i \(0.413780\pi\)
\(752\) − 270.442i − 0.359631i
\(753\) 0 0
\(754\) −939.583 −1.24613
\(755\) − 1002.17i − 1.32738i
\(756\) 0 0
\(757\) 564.958 0.746312 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(758\) 86.9938i 0.114768i
\(759\) 0 0
\(760\) −337.140 −0.443606
\(761\) − 359.307i − 0.472151i −0.971735 0.236076i \(-0.924139\pi\)
0.971735 0.236076i \(-0.0758613\pi\)
\(762\) 0 0
\(763\) 1144.41 1.49988
\(764\) 80.6754i 0.105596i
\(765\) 0 0
\(766\) 287.568 0.375415
\(767\) 1366.48i 1.78159i
\(768\) 0 0
\(769\) −600.467 −0.780841 −0.390420 0.920637i \(-0.627670\pi\)
−0.390420 + 0.920637i \(0.627670\pi\)
\(770\) − 506.704i − 0.658057i
\(771\) 0 0
\(772\) 485.047 0.628299
\(773\) 229.599i 0.297023i 0.988911 + 0.148512i \(0.0474482\pi\)
−0.988911 + 0.148512i \(0.952552\pi\)
\(774\) 0 0
\(775\) −533.955 −0.688974
\(776\) 180.924i 0.233149i
\(777\) 0 0
\(778\) 360.630 0.463535
\(779\) − 128.930i − 0.165508i
\(780\) 0 0
\(781\) −333.495 −0.427010
\(782\) − 324.442i − 0.414888i
\(783\) 0 0
\(784\) −63.5482 −0.0810564
\(785\) 1472.70i 1.87605i
\(786\) 0 0
\(787\) −1049.16 −1.33311 −0.666554 0.745456i \(-0.732232\pi\)
−0.666554 + 0.745456i \(0.732232\pi\)
\(788\) 10.9103i 0.0138456i
\(789\) 0 0
\(790\) 832.478 1.05377
\(791\) − 30.1945i − 0.0381725i
\(792\) 0 0
\(793\) 1674.06 2.11105
\(794\) 39.0716i 0.0492086i
\(795\) 0 0
\(796\) 286.029 0.359333
\(797\) − 1490.08i − 1.86961i −0.355162 0.934805i \(-0.615574\pi\)
0.355162 0.934805i \(-0.384426\pi\)
\(798\) 0 0
\(799\) −499.122 −0.624683
\(800\) 188.730i 0.235912i
\(801\) 0 0
\(802\) 529.574 0.660317
\(803\) − 811.264i − 1.01029i
\(804\) 0 0
\(805\) −1366.15 −1.69708
\(806\) − 531.015i − 0.658827i
\(807\) 0 0
\(808\) −471.569 −0.583625
\(809\) 1326.92i 1.64020i 0.572222 + 0.820099i \(0.306082\pi\)
−0.572222 + 0.820099i \(0.693918\pi\)
\(810\) 0 0
\(811\) 412.746 0.508935 0.254467 0.967081i \(-0.418100\pi\)
0.254467 + 0.967081i \(0.418100\pi\)
\(812\) 325.910i 0.401367i
\(813\) 0 0
\(814\) 138.095 0.169650
\(815\) 614.847i 0.754413i
\(816\) 0 0
\(817\) −703.408 −0.860965
\(818\) − 289.826i − 0.354311i
\(819\) 0 0
\(820\) −126.258 −0.153973
\(821\) − 270.948i − 0.330022i −0.986292 0.165011i \(-0.947234\pi\)
0.986292 0.165011i \(-0.0527660\pi\)
\(822\) 0 0
\(823\) 718.060 0.872491 0.436246 0.899828i \(-0.356308\pi\)
0.436246 + 0.899828i \(0.356308\pi\)
\(824\) − 284.569i − 0.345351i
\(825\) 0 0
\(826\) 473.986 0.573833
\(827\) − 1115.81i − 1.34923i −0.738171 0.674614i \(-0.764310\pi\)
0.738171 0.674614i \(-0.235690\pi\)
\(828\) 0 0
\(829\) 1123.75 1.35555 0.677774 0.735270i \(-0.262945\pi\)
0.677774 + 0.735270i \(0.262945\pi\)
\(830\) 1139.62i 1.37304i
\(831\) 0 0
\(832\) −187.690 −0.225589
\(833\) 117.283i 0.140796i
\(834\) 0 0
\(835\) 827.133 0.990579
\(836\) 254.331i 0.304223i
\(837\) 0 0
\(838\) −337.996 −0.403337
\(839\) − 253.356i − 0.301973i −0.988536 0.150987i \(-0.951755\pi\)
0.988536 0.150987i \(-0.0482451\pi\)
\(840\) 0 0
\(841\) 39.0691 0.0464556
\(842\) − 282.119i − 0.335058i
\(843\) 0 0
\(844\) 17.2756 0.0204688
\(845\) 2913.97i 3.44849i
\(846\) 0 0
\(847\) 314.035 0.370762
\(848\) 65.6462i 0.0774129i
\(849\) 0 0
\(850\) 348.315 0.409782
\(851\) − 372.324i − 0.437513i
\(852\) 0 0
\(853\) 797.504 0.934940 0.467470 0.884009i \(-0.345166\pi\)
0.467470 + 0.884009i \(0.345166\pi\)
\(854\) − 580.675i − 0.679948i
\(855\) 0 0
\(856\) 18.6056 0.0217355
\(857\) − 1117.98i − 1.30453i −0.757990 0.652266i \(-0.773818\pi\)
0.757990 0.652266i \(-0.226182\pi\)
\(858\) 0 0
\(859\) −1024.40 −1.19255 −0.596276 0.802779i \(-0.703354\pi\)
−0.596276 + 0.802779i \(0.703354\pi\)
\(860\) 688.825i 0.800960i
\(861\) 0 0
\(862\) −332.473 −0.385699
\(863\) − 1691.86i − 1.96044i −0.197921 0.980218i \(-0.563419\pi\)
0.197921 0.980218i \(-0.436581\pi\)
\(864\) 0 0
\(865\) 646.790 0.747734
\(866\) 553.877i 0.639581i
\(867\) 0 0
\(868\) −184.191 −0.212202
\(869\) − 628.002i − 0.722672i
\(870\) 0 0
\(871\) 1177.66 1.35208
\(872\) 562.507i 0.645076i
\(873\) 0 0
\(874\) 685.713 0.784568
\(875\) − 367.645i − 0.420166i
\(876\) 0 0
\(877\) 210.381 0.239887 0.119944 0.992781i \(-0.461729\pi\)
0.119944 + 0.992781i \(0.461729\pi\)
\(878\) − 114.932i − 0.130903i
\(879\) 0 0
\(880\) 249.058 0.283020
\(881\) 756.115i 0.858247i 0.903246 + 0.429123i \(0.141177\pi\)
−0.903246 + 0.429123i \(0.858823\pi\)
\(882\) 0 0
\(883\) 1283.92 1.45404 0.727021 0.686615i \(-0.240904\pi\)
0.727021 + 0.686615i \(0.240904\pi\)
\(884\) 346.397i 0.391852i
\(885\) 0 0
\(886\) −746.289 −0.842313
\(887\) − 454.977i − 0.512939i −0.966552 0.256469i \(-0.917441\pi\)
0.966552 0.256469i \(-0.0825593\pi\)
\(888\) 0 0
\(889\) 255.715 0.287643
\(890\) − 3.77006i − 0.00423602i
\(891\) 0 0
\(892\) 613.620 0.687915
\(893\) − 1054.90i − 1.18130i
\(894\) 0 0
\(895\) −1281.67 −1.43203
\(896\) 65.1034i 0.0726601i
\(897\) 0 0
\(898\) 170.026 0.189338
\(899\) − 453.219i − 0.504137i
\(900\) 0 0
\(901\) 121.155 0.134467
\(902\) 95.2456i 0.105594i
\(903\) 0 0
\(904\) 14.8414 0.0164174
\(905\) − 2211.39i − 2.44352i
\(906\) 0 0
\(907\) 1565.38 1.72589 0.862946 0.505296i \(-0.168617\pi\)
0.862946 + 0.505296i \(0.168617\pi\)
\(908\) 23.7963i 0.0262074i
\(909\) 0 0
\(910\) 1458.59 1.60285
\(911\) 962.212i 1.05622i 0.849177 + 0.528108i \(0.177098\pi\)
−0.849177 + 0.528108i \(0.822902\pi\)
\(912\) 0 0
\(913\) 859.705 0.941626
\(914\) 202.430i 0.221477i
\(915\) 0 0
\(916\) 770.731 0.841409
\(917\) − 231.213i − 0.252140i
\(918\) 0 0
\(919\) −1645.52 −1.79055 −0.895277 0.445509i \(-0.853023\pi\)
−0.895277 + 0.445509i \(0.853023\pi\)
\(920\) − 671.497i − 0.729888i
\(921\) 0 0
\(922\) −333.951 −0.362203
\(923\) − 959.996i − 1.04008i
\(924\) 0 0
\(925\) 399.720 0.432129
\(926\) − 209.761i − 0.226524i
\(927\) 0 0
\(928\) −160.193 −0.172622
\(929\) − 1362.56i − 1.46670i −0.679853 0.733348i \(-0.737957\pi\)
0.679853 0.733348i \(-0.262043\pi\)
\(930\) 0 0
\(931\) −247.879 −0.266251
\(932\) − 19.2131i − 0.0206149i
\(933\) 0 0
\(934\) −127.564 −0.136578
\(935\) − 459.656i − 0.491610i
\(936\) 0 0
\(937\) 350.586 0.374157 0.187079 0.982345i \(-0.440098\pi\)
0.187079 + 0.982345i \(0.440098\pi\)
\(938\) − 408.491i − 0.435492i
\(939\) 0 0
\(940\) −1033.03 −1.09897
\(941\) 303.734i 0.322778i 0.986891 + 0.161389i \(0.0515974\pi\)
−0.986891 + 0.161389i \(0.948403\pi\)
\(942\) 0 0
\(943\) 256.796 0.272318
\(944\) 232.976i 0.246797i
\(945\) 0 0
\(946\) 519.633 0.549295
\(947\) − 1424.55i − 1.50428i −0.659005 0.752139i \(-0.729022\pi\)
0.659005 0.752139i \(-0.270978\pi\)
\(948\) 0 0
\(949\) 2335.30 2.46080
\(950\) 736.168i 0.774914i
\(951\) 0 0
\(952\) 120.153 0.126212
\(953\) − 636.885i − 0.668294i −0.942521 0.334147i \(-0.891552\pi\)
0.942521 0.334147i \(-0.108448\pi\)
\(954\) 0 0
\(955\) 308.163 0.322683
\(956\) − 205.914i − 0.215391i
\(957\) 0 0
\(958\) −365.034 −0.381037
\(959\) 296.563i 0.309242i
\(960\) 0 0
\(961\) −704.859 −0.733464
\(962\) 397.518i 0.413221i
\(963\) 0 0
\(964\) −212.946 −0.220899
\(965\) − 1852.77i − 1.91997i
\(966\) 0 0
\(967\) −618.697 −0.639811 −0.319905 0.947450i \(-0.603651\pi\)
−0.319905 + 0.947450i \(0.603651\pi\)
\(968\) 154.356i 0.159459i
\(969\) 0 0
\(970\) 691.090 0.712463
\(971\) − 1356.90i − 1.39743i −0.715402 0.698713i \(-0.753756\pi\)
0.715402 0.698713i \(-0.246244\pi\)
\(972\) 0 0
\(973\) −619.455 −0.636645
\(974\) 145.815i 0.149707i
\(975\) 0 0
\(976\) 285.417 0.292435
\(977\) − 182.369i − 0.186663i −0.995635 0.0933314i \(-0.970248\pi\)
0.995635 0.0933314i \(-0.0297516\pi\)
\(978\) 0 0
\(979\) −2.84404 −0.00290505
\(980\) 242.740i 0.247694i
\(981\) 0 0
\(982\) −1081.52 −1.10135
\(983\) − 1270.39i − 1.29236i −0.763187 0.646178i \(-0.776366\pi\)
0.763187 0.646178i \(-0.223634\pi\)
\(984\) 0 0
\(985\) 41.6751 0.0423098
\(986\) 295.648i 0.299846i
\(987\) 0 0
\(988\) −732.114 −0.741006
\(989\) − 1401.01i − 1.41659i
\(990\) 0 0
\(991\) 549.168 0.554155 0.277078 0.960848i \(-0.410634\pi\)
0.277078 + 0.960848i \(0.410634\pi\)
\(992\) − 90.5347i − 0.0912648i
\(993\) 0 0
\(994\) −332.990 −0.335000
\(995\) − 1092.57i − 1.09806i
\(996\) 0 0
\(997\) −1378.50 −1.38265 −0.691325 0.722544i \(-0.742973\pi\)
−0.691325 + 0.722544i \(0.742973\pi\)
\(998\) 1016.79i 1.01883i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.16 36
3.2 odd 2 inner 1458.3.b.c.1457.21 36
27.2 odd 18 162.3.f.a.17.4 36
27.13 even 9 162.3.f.a.143.4 36
27.14 odd 18 54.3.f.a.47.3 yes 36
27.25 even 9 54.3.f.a.23.3 36
108.79 odd 18 432.3.bc.c.401.3 36
108.95 even 18 432.3.bc.c.209.3 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.23.3 36 27.25 even 9
54.3.f.a.47.3 yes 36 27.14 odd 18
162.3.f.a.17.4 36 27.2 odd 18
162.3.f.a.143.4 36 27.13 even 9
432.3.bc.c.209.3 36 108.95 even 18
432.3.bc.c.401.3 36 108.79 odd 18
1458.3.b.c.1457.16 36 1.1 even 1 trivial
1458.3.b.c.1457.21 36 3.2 odd 2 inner