Properties

Label 1458.3.b.c.1457.2
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.2
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.35

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -8.36153i q^{5} +9.16954 q^{7} +2.82843i q^{8} -11.8250 q^{10} +6.57978i q^{11} +6.00695 q^{13} -12.9677i q^{14} +4.00000 q^{16} -1.01616i q^{17} -21.1186 q^{19} +16.7231i q^{20} +9.30521 q^{22} -21.4417i q^{23} -44.9152 q^{25} -8.49512i q^{26} -18.3391 q^{28} -48.4543i q^{29} +6.60708 q^{31} -5.65685i q^{32} -1.43707 q^{34} -76.6714i q^{35} +66.5988 q^{37} +29.8663i q^{38} +23.6500 q^{40} -53.0349i q^{41} -47.4986 q^{43} -13.1596i q^{44} -30.3231 q^{46} +6.52510i q^{47} +35.0805 q^{49} +63.5197i q^{50} -12.0139 q^{52} +39.7705i q^{53} +55.0170 q^{55} +25.9354i q^{56} -68.5247 q^{58} -28.0401i q^{59} -41.0906 q^{61} -9.34383i q^{62} -8.00000 q^{64} -50.2274i q^{65} -14.8401 q^{67} +2.03232i q^{68} -108.430 q^{70} -75.8063i q^{71} +53.0280 q^{73} -94.1849i q^{74} +42.2373 q^{76} +60.3336i q^{77} -81.8603 q^{79} -33.4461i q^{80} -75.0026 q^{82} +46.9255i q^{83} -8.49667 q^{85} +67.1732i q^{86} -18.6104 q^{88} -23.4400i q^{89} +55.0810 q^{91} +42.8833i q^{92} +9.22788 q^{94} +176.584i q^{95} +35.0019 q^{97} -49.6113i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 8.36153i − 1.67231i −0.548496 0.836153i \(-0.684799\pi\)
0.548496 0.836153i \(-0.315201\pi\)
\(6\) 0 0
\(7\) 9.16954 1.30993 0.654967 0.755657i \(-0.272682\pi\)
0.654967 + 0.755657i \(0.272682\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −11.8250 −1.18250
\(11\) 6.57978i 0.598162i 0.954228 + 0.299081i \(0.0966800\pi\)
−0.954228 + 0.299081i \(0.903320\pi\)
\(12\) 0 0
\(13\) 6.00695 0.462073 0.231037 0.972945i \(-0.425788\pi\)
0.231037 + 0.972945i \(0.425788\pi\)
\(14\) − 12.9677i − 0.926264i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 1.01616i − 0.0597742i −0.999553 0.0298871i \(-0.990485\pi\)
0.999553 0.0298871i \(-0.00951478\pi\)
\(18\) 0 0
\(19\) −21.1186 −1.11151 −0.555754 0.831347i \(-0.687570\pi\)
−0.555754 + 0.831347i \(0.687570\pi\)
\(20\) 16.7231i 0.836153i
\(21\) 0 0
\(22\) 9.30521 0.422964
\(23\) − 21.4417i − 0.932247i −0.884720 0.466123i \(-0.845650\pi\)
0.884720 0.466123i \(-0.154350\pi\)
\(24\) 0 0
\(25\) −44.9152 −1.79661
\(26\) − 8.49512i − 0.326735i
\(27\) 0 0
\(28\) −18.3391 −0.654967
\(29\) − 48.4543i − 1.67084i −0.549615 0.835418i \(-0.685226\pi\)
0.549615 0.835418i \(-0.314774\pi\)
\(30\) 0 0
\(31\) 6.60708 0.213132 0.106566 0.994306i \(-0.466014\pi\)
0.106566 + 0.994306i \(0.466014\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −1.43707 −0.0422667
\(35\) − 76.6714i − 2.19061i
\(36\) 0 0
\(37\) 66.5988 1.79997 0.899984 0.435923i \(-0.143578\pi\)
0.899984 + 0.435923i \(0.143578\pi\)
\(38\) 29.8663i 0.785955i
\(39\) 0 0
\(40\) 23.6500 0.591250
\(41\) − 53.0349i − 1.29353i −0.762688 0.646767i \(-0.776121\pi\)
0.762688 0.646767i \(-0.223879\pi\)
\(42\) 0 0
\(43\) −47.4986 −1.10462 −0.552310 0.833639i \(-0.686253\pi\)
−0.552310 + 0.833639i \(0.686253\pi\)
\(44\) − 13.1596i − 0.299081i
\(45\) 0 0
\(46\) −30.3231 −0.659198
\(47\) 6.52510i 0.138832i 0.997588 + 0.0694160i \(0.0221136\pi\)
−0.997588 + 0.0694160i \(0.977886\pi\)
\(48\) 0 0
\(49\) 35.0805 0.715929
\(50\) 63.5197i 1.27039i
\(51\) 0 0
\(52\) −12.0139 −0.231037
\(53\) 39.7705i 0.750386i 0.926947 + 0.375193i \(0.122424\pi\)
−0.926947 + 0.375193i \(0.877576\pi\)
\(54\) 0 0
\(55\) 55.0170 1.00031
\(56\) 25.9354i 0.463132i
\(57\) 0 0
\(58\) −68.5247 −1.18146
\(59\) − 28.0401i − 0.475255i −0.971356 0.237628i \(-0.923630\pi\)
0.971356 0.237628i \(-0.0763698\pi\)
\(60\) 0 0
\(61\) −41.0906 −0.673616 −0.336808 0.941573i \(-0.609347\pi\)
−0.336808 + 0.941573i \(0.609347\pi\)
\(62\) − 9.34383i − 0.150707i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 50.2274i − 0.772728i
\(66\) 0 0
\(67\) −14.8401 −0.221493 −0.110747 0.993849i \(-0.535324\pi\)
−0.110747 + 0.993849i \(0.535324\pi\)
\(68\) 2.03232i 0.0298871i
\(69\) 0 0
\(70\) −108.430 −1.54900
\(71\) − 75.8063i − 1.06769i −0.845581 0.533847i \(-0.820746\pi\)
0.845581 0.533847i \(-0.179254\pi\)
\(72\) 0 0
\(73\) 53.0280 0.726411 0.363205 0.931709i \(-0.381682\pi\)
0.363205 + 0.931709i \(0.381682\pi\)
\(74\) − 94.1849i − 1.27277i
\(75\) 0 0
\(76\) 42.2373 0.555754
\(77\) 60.3336i 0.783553i
\(78\) 0 0
\(79\) −81.8603 −1.03621 −0.518103 0.855318i \(-0.673362\pi\)
−0.518103 + 0.855318i \(0.673362\pi\)
\(80\) − 33.4461i − 0.418077i
\(81\) 0 0
\(82\) −75.0026 −0.914666
\(83\) 46.9255i 0.565367i 0.959213 + 0.282683i \(0.0912246\pi\)
−0.959213 + 0.282683i \(0.908775\pi\)
\(84\) 0 0
\(85\) −8.49667 −0.0999608
\(86\) 67.1732i 0.781084i
\(87\) 0 0
\(88\) −18.6104 −0.211482
\(89\) − 23.4400i − 0.263370i −0.991292 0.131685i \(-0.957961\pi\)
0.991292 0.131685i \(-0.0420388\pi\)
\(90\) 0 0
\(91\) 55.0810 0.605286
\(92\) 42.8833i 0.466123i
\(93\) 0 0
\(94\) 9.22788 0.0981690
\(95\) 176.584i 1.85878i
\(96\) 0 0
\(97\) 35.0019 0.360844 0.180422 0.983589i \(-0.442254\pi\)
0.180422 + 0.983589i \(0.442254\pi\)
\(98\) − 49.6113i − 0.506238i
\(99\) 0 0
\(100\) 89.8305 0.898305
\(101\) 121.268i 1.20067i 0.799747 + 0.600337i \(0.204967\pi\)
−0.799747 + 0.600337i \(0.795033\pi\)
\(102\) 0 0
\(103\) −188.927 −1.83424 −0.917121 0.398609i \(-0.869493\pi\)
−0.917121 + 0.398609i \(0.869493\pi\)
\(104\) 16.9902i 0.163368i
\(105\) 0 0
\(106\) 56.2439 0.530603
\(107\) − 76.4765i − 0.714733i −0.933964 0.357367i \(-0.883675\pi\)
0.933964 0.357367i \(-0.116325\pi\)
\(108\) 0 0
\(109\) 43.7808 0.401659 0.200829 0.979626i \(-0.435636\pi\)
0.200829 + 0.979626i \(0.435636\pi\)
\(110\) − 77.8059i − 0.707326i
\(111\) 0 0
\(112\) 36.6782 0.327484
\(113\) − 0.207620i − 0.00183734i −1.00000 0.000918672i \(-0.999708\pi\)
1.00000 0.000918672i \(-0.000292422\pi\)
\(114\) 0 0
\(115\) −179.285 −1.55900
\(116\) 96.9085i 0.835418i
\(117\) 0 0
\(118\) −39.6546 −0.336056
\(119\) − 9.31774i − 0.0783003i
\(120\) 0 0
\(121\) 77.7065 0.642203
\(122\) 58.1108i 0.476318i
\(123\) 0 0
\(124\) −13.2142 −0.106566
\(125\) 166.522i 1.33218i
\(126\) 0 0
\(127\) −155.090 −1.22118 −0.610589 0.791948i \(-0.709067\pi\)
−0.610589 + 0.791948i \(0.709067\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −71.0322 −0.546402
\(131\) − 135.408i − 1.03365i −0.856092 0.516824i \(-0.827114\pi\)
0.856092 0.516824i \(-0.172886\pi\)
\(132\) 0 0
\(133\) −193.648 −1.45600
\(134\) 20.9870i 0.156619i
\(135\) 0 0
\(136\) 2.87414 0.0211334
\(137\) 47.0098i 0.343138i 0.985172 + 0.171569i \(0.0548836\pi\)
−0.985172 + 0.171569i \(0.945116\pi\)
\(138\) 0 0
\(139\) 48.4431 0.348512 0.174256 0.984700i \(-0.444248\pi\)
0.174256 + 0.984700i \(0.444248\pi\)
\(140\) 153.343i 1.09531i
\(141\) 0 0
\(142\) −107.206 −0.754974
\(143\) 39.5244i 0.276395i
\(144\) 0 0
\(145\) −405.152 −2.79415
\(146\) − 74.9929i − 0.513650i
\(147\) 0 0
\(148\) −133.198 −0.899984
\(149\) − 83.9193i − 0.563217i −0.959529 0.281608i \(-0.909132\pi\)
0.959529 0.281608i \(-0.0908679\pi\)
\(150\) 0 0
\(151\) −129.080 −0.854835 −0.427417 0.904054i \(-0.640577\pi\)
−0.427417 + 0.904054i \(0.640577\pi\)
\(152\) − 59.7326i − 0.392977i
\(153\) 0 0
\(154\) 85.3245 0.554055
\(155\) − 55.2454i − 0.356422i
\(156\) 0 0
\(157\) 207.631 1.32249 0.661244 0.750171i \(-0.270029\pi\)
0.661244 + 0.750171i \(0.270029\pi\)
\(158\) 115.768i 0.732708i
\(159\) 0 0
\(160\) −47.3000 −0.295625
\(161\) − 196.610i − 1.22118i
\(162\) 0 0
\(163\) −171.033 −1.04928 −0.524641 0.851324i \(-0.675800\pi\)
−0.524641 + 0.851324i \(0.675800\pi\)
\(164\) 106.070i 0.646767i
\(165\) 0 0
\(166\) 66.3626 0.399775
\(167\) − 157.706i − 0.944348i −0.881505 0.472174i \(-0.843469\pi\)
0.881505 0.472174i \(-0.156531\pi\)
\(168\) 0 0
\(169\) −132.916 −0.786488
\(170\) 12.0161i 0.0706830i
\(171\) 0 0
\(172\) 94.9973 0.552310
\(173\) 16.7551i 0.0968505i 0.998827 + 0.0484252i \(0.0154203\pi\)
−0.998827 + 0.0484252i \(0.984580\pi\)
\(174\) 0 0
\(175\) −411.852 −2.35344
\(176\) 26.3191i 0.149540i
\(177\) 0 0
\(178\) −33.1491 −0.186231
\(179\) − 108.838i − 0.608031i −0.952667 0.304016i \(-0.901673\pi\)
0.952667 0.304016i \(-0.0983275\pi\)
\(180\) 0 0
\(181\) 37.1568 0.205286 0.102643 0.994718i \(-0.467270\pi\)
0.102643 + 0.994718i \(0.467270\pi\)
\(182\) − 77.8963i − 0.428002i
\(183\) 0 0
\(184\) 60.6462 0.329599
\(185\) − 556.868i − 3.01010i
\(186\) 0 0
\(187\) 6.68612 0.0357546
\(188\) − 13.0502i − 0.0694160i
\(189\) 0 0
\(190\) 249.728 1.31436
\(191\) 214.731i 1.12425i 0.827053 + 0.562123i \(0.190015\pi\)
−0.827053 + 0.562123i \(0.809985\pi\)
\(192\) 0 0
\(193\) 283.820 1.47057 0.735284 0.677759i \(-0.237049\pi\)
0.735284 + 0.677759i \(0.237049\pi\)
\(194\) − 49.5001i − 0.255155i
\(195\) 0 0
\(196\) −70.1610 −0.357964
\(197\) 178.058i 0.903849i 0.892056 + 0.451925i \(0.149262\pi\)
−0.892056 + 0.451925i \(0.850738\pi\)
\(198\) 0 0
\(199\) 145.687 0.732096 0.366048 0.930596i \(-0.380711\pi\)
0.366048 + 0.930596i \(0.380711\pi\)
\(200\) − 127.039i − 0.635197i
\(201\) 0 0
\(202\) 171.499 0.849005
\(203\) − 444.303i − 2.18869i
\(204\) 0 0
\(205\) −443.453 −2.16318
\(206\) 267.183i 1.29700i
\(207\) 0 0
\(208\) 24.0278 0.115518
\(209\) − 138.956i − 0.664861i
\(210\) 0 0
\(211\) −297.265 −1.40884 −0.704419 0.709784i \(-0.748792\pi\)
−0.704419 + 0.709784i \(0.748792\pi\)
\(212\) − 79.5409i − 0.375193i
\(213\) 0 0
\(214\) −108.154 −0.505393
\(215\) 397.161i 1.84726i
\(216\) 0 0
\(217\) 60.5839 0.279189
\(218\) − 61.9154i − 0.284016i
\(219\) 0 0
\(220\) −110.034 −0.500155
\(221\) − 6.10404i − 0.0276201i
\(222\) 0 0
\(223\) −211.291 −0.947493 −0.473747 0.880661i \(-0.657099\pi\)
−0.473747 + 0.880661i \(0.657099\pi\)
\(224\) − 51.8708i − 0.231566i
\(225\) 0 0
\(226\) −0.293619 −0.00129920
\(227\) − 16.0908i − 0.0708847i −0.999372 0.0354424i \(-0.988716\pi\)
0.999372 0.0354424i \(-0.0112840\pi\)
\(228\) 0 0
\(229\) 261.364 1.14133 0.570664 0.821183i \(-0.306686\pi\)
0.570664 + 0.821183i \(0.306686\pi\)
\(230\) 253.548i 1.10238i
\(231\) 0 0
\(232\) 137.049 0.590730
\(233\) 321.716i 1.38075i 0.723450 + 0.690377i \(0.242555\pi\)
−0.723450 + 0.690377i \(0.757445\pi\)
\(234\) 0 0
\(235\) 54.5598 0.232170
\(236\) 56.0801i 0.237628i
\(237\) 0 0
\(238\) −13.1773 −0.0553667
\(239\) 78.8788i 0.330037i 0.986290 + 0.165019i \(0.0527684\pi\)
−0.986290 + 0.165019i \(0.947232\pi\)
\(240\) 0 0
\(241\) 302.958 1.25709 0.628543 0.777775i \(-0.283652\pi\)
0.628543 + 0.777775i \(0.283652\pi\)
\(242\) − 109.894i − 0.454106i
\(243\) 0 0
\(244\) 82.1811 0.336808
\(245\) − 293.327i − 1.19725i
\(246\) 0 0
\(247\) −126.859 −0.513598
\(248\) 18.6877i 0.0753535i
\(249\) 0 0
\(250\) 235.498 0.941991
\(251\) 82.4240i 0.328382i 0.986429 + 0.164191i \(0.0525014\pi\)
−0.986429 + 0.164191i \(0.947499\pi\)
\(252\) 0 0
\(253\) 141.081 0.557634
\(254\) 219.330i 0.863503i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 21.5924i 0.0840170i 0.999117 + 0.0420085i \(0.0133757\pi\)
−0.999117 + 0.0420085i \(0.986624\pi\)
\(258\) 0 0
\(259\) 610.680 2.35784
\(260\) 100.455i 0.386364i
\(261\) 0 0
\(262\) −191.496 −0.730900
\(263\) 50.1675i 0.190751i 0.995441 + 0.0953755i \(0.0304052\pi\)
−0.995441 + 0.0953755i \(0.969595\pi\)
\(264\) 0 0
\(265\) 332.542 1.25488
\(266\) 273.860i 1.02955i
\(267\) 0 0
\(268\) 29.6801 0.110747
\(269\) 119.776i 0.445263i 0.974903 + 0.222632i \(0.0714648\pi\)
−0.974903 + 0.222632i \(0.928535\pi\)
\(270\) 0 0
\(271\) −146.752 −0.541522 −0.270761 0.962647i \(-0.587275\pi\)
−0.270761 + 0.962647i \(0.587275\pi\)
\(272\) − 4.06465i − 0.0149436i
\(273\) 0 0
\(274\) 66.4820 0.242635
\(275\) − 295.532i − 1.07466i
\(276\) 0 0
\(277\) 326.132 1.17737 0.588685 0.808362i \(-0.299646\pi\)
0.588685 + 0.808362i \(0.299646\pi\)
\(278\) − 68.5089i − 0.246435i
\(279\) 0 0
\(280\) 216.860 0.774498
\(281\) 13.6658i 0.0486327i 0.999704 + 0.0243164i \(0.00774090\pi\)
−0.999704 + 0.0243164i \(0.992259\pi\)
\(282\) 0 0
\(283\) 455.600 1.60990 0.804948 0.593346i \(-0.202193\pi\)
0.804948 + 0.593346i \(0.202193\pi\)
\(284\) 151.613i 0.533847i
\(285\) 0 0
\(286\) 55.8960 0.195441
\(287\) − 486.305i − 1.69444i
\(288\) 0 0
\(289\) 287.967 0.996427
\(290\) 572.971i 1.97576i
\(291\) 0 0
\(292\) −106.056 −0.363205
\(293\) 487.823i 1.66493i 0.554080 + 0.832463i \(0.313070\pi\)
−0.554080 + 0.832463i \(0.686930\pi\)
\(294\) 0 0
\(295\) −234.458 −0.794773
\(296\) 188.370i 0.636385i
\(297\) 0 0
\(298\) −118.680 −0.398254
\(299\) − 128.799i − 0.430766i
\(300\) 0 0
\(301\) −435.541 −1.44698
\(302\) 182.547i 0.604460i
\(303\) 0 0
\(304\) −84.4746 −0.277877
\(305\) 343.580i 1.12649i
\(306\) 0 0
\(307\) −8.74703 −0.0284920 −0.0142460 0.999899i \(-0.504535\pi\)
−0.0142460 + 0.999899i \(0.504535\pi\)
\(308\) − 120.667i − 0.391776i
\(309\) 0 0
\(310\) −78.1287 −0.252028
\(311\) − 51.8808i − 0.166819i −0.996515 0.0834097i \(-0.973419\pi\)
0.996515 0.0834097i \(-0.0265810\pi\)
\(312\) 0 0
\(313\) −365.478 −1.16766 −0.583831 0.811875i \(-0.698447\pi\)
−0.583831 + 0.811875i \(0.698447\pi\)
\(314\) − 293.634i − 0.935140i
\(315\) 0 0
\(316\) 163.721 0.518103
\(317\) − 458.443i − 1.44619i −0.690747 0.723097i \(-0.742718\pi\)
0.690747 0.723097i \(-0.257282\pi\)
\(318\) 0 0
\(319\) 318.818 0.999430
\(320\) 66.8923i 0.209038i
\(321\) 0 0
\(322\) −278.049 −0.863506
\(323\) 21.4600i 0.0664395i
\(324\) 0 0
\(325\) −269.804 −0.830166
\(326\) 241.877i 0.741954i
\(327\) 0 0
\(328\) 150.005 0.457333
\(329\) 59.8322i 0.181861i
\(330\) 0 0
\(331\) 444.349 1.34244 0.671222 0.741257i \(-0.265770\pi\)
0.671222 + 0.741257i \(0.265770\pi\)
\(332\) − 93.8509i − 0.282683i
\(333\) 0 0
\(334\) −223.030 −0.667755
\(335\) 124.086i 0.370405i
\(336\) 0 0
\(337\) −89.9513 −0.266918 −0.133459 0.991054i \(-0.542608\pi\)
−0.133459 + 0.991054i \(0.542608\pi\)
\(338\) 187.972i 0.556131i
\(339\) 0 0
\(340\) 16.9933 0.0499804
\(341\) 43.4732i 0.127487i
\(342\) 0 0
\(343\) −127.635 −0.372115
\(344\) − 134.346i − 0.390542i
\(345\) 0 0
\(346\) 23.6953 0.0684836
\(347\) 496.609i 1.43115i 0.698535 + 0.715576i \(0.253836\pi\)
−0.698535 + 0.715576i \(0.746164\pi\)
\(348\) 0 0
\(349\) 339.160 0.971806 0.485903 0.874013i \(-0.338491\pi\)
0.485903 + 0.874013i \(0.338491\pi\)
\(350\) 582.447i 1.66413i
\(351\) 0 0
\(352\) 37.2209 0.105741
\(353\) − 220.805i − 0.625511i −0.949834 0.312756i \(-0.898748\pi\)
0.949834 0.312756i \(-0.101252\pi\)
\(354\) 0 0
\(355\) −633.857 −1.78551
\(356\) 46.8799i 0.131685i
\(357\) 0 0
\(358\) −153.920 −0.429943
\(359\) − 570.658i − 1.58958i −0.606887 0.794788i \(-0.707582\pi\)
0.606887 0.794788i \(-0.292418\pi\)
\(360\) 0 0
\(361\) 84.9973 0.235450
\(362\) − 52.5477i − 0.145159i
\(363\) 0 0
\(364\) −110.162 −0.302643
\(365\) − 443.395i − 1.21478i
\(366\) 0 0
\(367\) −211.449 −0.576155 −0.288078 0.957607i \(-0.593016\pi\)
−0.288078 + 0.957607i \(0.593016\pi\)
\(368\) − 85.7667i − 0.233062i
\(369\) 0 0
\(370\) −787.530 −2.12846
\(371\) 364.677i 0.982957i
\(372\) 0 0
\(373\) −69.4639 −0.186230 −0.0931151 0.995655i \(-0.529682\pi\)
−0.0931151 + 0.995655i \(0.529682\pi\)
\(374\) − 9.45560i − 0.0252824i
\(375\) 0 0
\(376\) −18.4558 −0.0490845
\(377\) − 291.063i − 0.772049i
\(378\) 0 0
\(379\) 390.211 1.02958 0.514791 0.857316i \(-0.327870\pi\)
0.514791 + 0.857316i \(0.327870\pi\)
\(380\) − 353.169i − 0.929391i
\(381\) 0 0
\(382\) 303.676 0.794962
\(383\) − 181.340i − 0.473473i −0.971574 0.236736i \(-0.923922\pi\)
0.971574 0.236736i \(-0.0760777\pi\)
\(384\) 0 0
\(385\) 504.481 1.31034
\(386\) − 401.382i − 1.03985i
\(387\) 0 0
\(388\) −70.0038 −0.180422
\(389\) 672.929i 1.72989i 0.501864 + 0.864947i \(0.332648\pi\)
−0.501864 + 0.864947i \(0.667352\pi\)
\(390\) 0 0
\(391\) −21.7882 −0.0557243
\(392\) 99.2226i 0.253119i
\(393\) 0 0
\(394\) 251.812 0.639118
\(395\) 684.478i 1.73285i
\(396\) 0 0
\(397\) −453.644 −1.14268 −0.571340 0.820713i \(-0.693576\pi\)
−0.571340 + 0.820713i \(0.693576\pi\)
\(398\) − 206.033i − 0.517670i
\(399\) 0 0
\(400\) −179.661 −0.449152
\(401\) − 313.979i − 0.782989i −0.920180 0.391495i \(-0.871958\pi\)
0.920180 0.391495i \(-0.128042\pi\)
\(402\) 0 0
\(403\) 39.6885 0.0984825
\(404\) − 242.536i − 0.600337i
\(405\) 0 0
\(406\) −628.340 −1.54763
\(407\) 438.205i 1.07667i
\(408\) 0 0
\(409\) 1.70186 0.00416104 0.00208052 0.999998i \(-0.499338\pi\)
0.00208052 + 0.999998i \(0.499338\pi\)
\(410\) 627.137i 1.52960i
\(411\) 0 0
\(412\) 377.854 0.917121
\(413\) − 257.115i − 0.622553i
\(414\) 0 0
\(415\) 392.369 0.945467
\(416\) − 33.9805i − 0.0816838i
\(417\) 0 0
\(418\) −196.514 −0.470128
\(419\) 100.066i 0.238822i 0.992845 + 0.119411i \(0.0381006\pi\)
−0.992845 + 0.119411i \(0.961899\pi\)
\(420\) 0 0
\(421\) 635.229 1.50886 0.754429 0.656381i \(-0.227914\pi\)
0.754429 + 0.656381i \(0.227914\pi\)
\(422\) 420.396i 0.996199i
\(423\) 0 0
\(424\) −112.488 −0.265302
\(425\) 45.6411i 0.107391i
\(426\) 0 0
\(427\) −376.782 −0.882393
\(428\) 152.953i 0.357367i
\(429\) 0 0
\(430\) 561.671 1.30621
\(431\) − 180.242i − 0.418195i −0.977895 0.209098i \(-0.932947\pi\)
0.977895 0.209098i \(-0.0670526\pi\)
\(432\) 0 0
\(433\) 161.992 0.374115 0.187058 0.982349i \(-0.440105\pi\)
0.187058 + 0.982349i \(0.440105\pi\)
\(434\) − 85.6786i − 0.197416i
\(435\) 0 0
\(436\) −87.5616 −0.200829
\(437\) 452.819i 1.03620i
\(438\) 0 0
\(439\) −321.743 −0.732899 −0.366450 0.930438i \(-0.619427\pi\)
−0.366450 + 0.930438i \(0.619427\pi\)
\(440\) 155.612i 0.353663i
\(441\) 0 0
\(442\) −8.63241 −0.0195303
\(443\) − 505.673i − 1.14147i −0.821133 0.570737i \(-0.806657\pi\)
0.821133 0.570737i \(-0.193343\pi\)
\(444\) 0 0
\(445\) −195.994 −0.440436
\(446\) 298.811i 0.669979i
\(447\) 0 0
\(448\) −73.3563 −0.163742
\(449\) − 717.640i − 1.59831i −0.601127 0.799153i \(-0.705281\pi\)
0.601127 0.799153i \(-0.294719\pi\)
\(450\) 0 0
\(451\) 348.958 0.773742
\(452\) 0.415240i 0 0.000918672i
\(453\) 0 0
\(454\) −22.7559 −0.0501231
\(455\) − 460.562i − 1.01222i
\(456\) 0 0
\(457\) 417.465 0.913490 0.456745 0.889598i \(-0.349015\pi\)
0.456745 + 0.889598i \(0.349015\pi\)
\(458\) − 369.625i − 0.807041i
\(459\) 0 0
\(460\) 358.570 0.779501
\(461\) − 819.949i − 1.77863i −0.457293 0.889316i \(-0.651181\pi\)
0.457293 0.889316i \(-0.348819\pi\)
\(462\) 0 0
\(463\) 851.724 1.83958 0.919789 0.392414i \(-0.128360\pi\)
0.919789 + 0.392414i \(0.128360\pi\)
\(464\) − 193.817i − 0.417709i
\(465\) 0 0
\(466\) 454.974 0.976340
\(467\) 643.170i 1.37724i 0.725124 + 0.688619i \(0.241783\pi\)
−0.725124 + 0.688619i \(0.758217\pi\)
\(468\) 0 0
\(469\) −136.077 −0.290142
\(470\) − 77.1593i − 0.164169i
\(471\) 0 0
\(472\) 79.3093 0.168028
\(473\) − 312.531i − 0.660741i
\(474\) 0 0
\(475\) 948.549 1.99695
\(476\) 18.6355i 0.0391501i
\(477\) 0 0
\(478\) 111.552 0.233371
\(479\) 302.308i 0.631124i 0.948905 + 0.315562i \(0.102193\pi\)
−0.948905 + 0.315562i \(0.897807\pi\)
\(480\) 0 0
\(481\) 400.056 0.831717
\(482\) − 428.447i − 0.888894i
\(483\) 0 0
\(484\) −155.413 −0.321101
\(485\) − 292.669i − 0.603442i
\(486\) 0 0
\(487\) 584.450 1.20010 0.600052 0.799961i \(-0.295147\pi\)
0.600052 + 0.799961i \(0.295147\pi\)
\(488\) − 116.222i − 0.238159i
\(489\) 0 0
\(490\) −414.827 −0.846585
\(491\) − 275.382i − 0.560858i −0.959875 0.280429i \(-0.909523\pi\)
0.959875 0.280429i \(-0.0904768\pi\)
\(492\) 0 0
\(493\) −49.2373 −0.0998729
\(494\) 179.405i 0.363169i
\(495\) 0 0
\(496\) 26.4283 0.0532829
\(497\) − 695.109i − 1.39861i
\(498\) 0 0
\(499\) −170.516 −0.341716 −0.170858 0.985296i \(-0.554654\pi\)
−0.170858 + 0.985296i \(0.554654\pi\)
\(500\) − 333.044i − 0.666088i
\(501\) 0 0
\(502\) 116.565 0.232201
\(503\) − 15.2624i − 0.0303428i −0.999885 0.0151714i \(-0.995171\pi\)
0.999885 0.0151714i \(-0.00482939\pi\)
\(504\) 0 0
\(505\) 1013.99 2.00790
\(506\) − 199.519i − 0.394307i
\(507\) 0 0
\(508\) 310.179 0.610589
\(509\) − 517.546i − 1.01679i −0.861124 0.508395i \(-0.830239\pi\)
0.861124 0.508395i \(-0.169761\pi\)
\(510\) 0 0
\(511\) 486.242 0.951550
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) 30.5362 0.0594090
\(515\) 1579.72i 3.06741i
\(516\) 0 0
\(517\) −42.9337 −0.0830439
\(518\) − 863.633i − 1.66724i
\(519\) 0 0
\(520\) 142.064 0.273201
\(521\) − 974.047i − 1.86957i −0.355211 0.934786i \(-0.615591\pi\)
0.355211 0.934786i \(-0.384409\pi\)
\(522\) 0 0
\(523\) −319.090 −0.610115 −0.305058 0.952334i \(-0.598676\pi\)
−0.305058 + 0.952334i \(0.598676\pi\)
\(524\) 270.816i 0.516824i
\(525\) 0 0
\(526\) 70.9476 0.134881
\(527\) − 6.71387i − 0.0127398i
\(528\) 0 0
\(529\) 69.2548 0.130916
\(530\) − 470.286i − 0.887331i
\(531\) 0 0
\(532\) 387.297 0.728001
\(533\) − 318.578i − 0.597707i
\(534\) 0 0
\(535\) −639.460 −1.19525
\(536\) − 41.9740i − 0.0783097i
\(537\) 0 0
\(538\) 169.389 0.314849
\(539\) 230.822i 0.428241i
\(540\) 0 0
\(541\) −604.682 −1.11771 −0.558856 0.829265i \(-0.688759\pi\)
−0.558856 + 0.829265i \(0.688759\pi\)
\(542\) 207.539i 0.382914i
\(543\) 0 0
\(544\) −5.74828 −0.0105667
\(545\) − 366.075i − 0.671697i
\(546\) 0 0
\(547\) 839.957 1.53557 0.767785 0.640707i \(-0.221359\pi\)
0.767785 + 0.640707i \(0.221359\pi\)
\(548\) − 94.0197i − 0.171569i
\(549\) 0 0
\(550\) −417.946 −0.759902
\(551\) 1023.29i 1.85715i
\(552\) 0 0
\(553\) −750.621 −1.35736
\(554\) − 461.220i − 0.832527i
\(555\) 0 0
\(556\) −96.8862 −0.174256
\(557\) − 907.425i − 1.62913i −0.580072 0.814565i \(-0.696976\pi\)
0.580072 0.814565i \(-0.303024\pi\)
\(558\) 0 0
\(559\) −285.322 −0.510415
\(560\) − 306.686i − 0.547653i
\(561\) 0 0
\(562\) 19.3263 0.0343885
\(563\) 68.6119i 0.121868i 0.998142 + 0.0609342i \(0.0194080\pi\)
−0.998142 + 0.0609342i \(0.980592\pi\)
\(564\) 0 0
\(565\) −1.73602 −0.00307260
\(566\) − 644.316i − 1.13837i
\(567\) 0 0
\(568\) 214.413 0.377487
\(569\) − 466.167i − 0.819274i −0.912249 0.409637i \(-0.865655\pi\)
0.912249 0.409637i \(-0.134345\pi\)
\(570\) 0 0
\(571\) 527.916 0.924546 0.462273 0.886738i \(-0.347034\pi\)
0.462273 + 0.886738i \(0.347034\pi\)
\(572\) − 79.0489i − 0.138197i
\(573\) 0 0
\(574\) −687.740 −1.19815
\(575\) 963.058i 1.67488i
\(576\) 0 0
\(577\) −343.674 −0.595622 −0.297811 0.954625i \(-0.596257\pi\)
−0.297811 + 0.954625i \(0.596257\pi\)
\(578\) − 407.247i − 0.704580i
\(579\) 0 0
\(580\) 810.304 1.39708
\(581\) 430.285i 0.740594i
\(582\) 0 0
\(583\) −261.681 −0.448852
\(584\) 149.986i 0.256825i
\(585\) 0 0
\(586\) 689.887 1.17728
\(587\) 164.396i 0.280061i 0.990147 + 0.140031i \(0.0447201\pi\)
−0.990147 + 0.140031i \(0.955280\pi\)
\(588\) 0 0
\(589\) −139.533 −0.236898
\(590\) 331.574i 0.561989i
\(591\) 0 0
\(592\) 266.395 0.449992
\(593\) − 349.285i − 0.589014i −0.955649 0.294507i \(-0.904845\pi\)
0.955649 0.294507i \(-0.0951555\pi\)
\(594\) 0 0
\(595\) −77.9106 −0.130942
\(596\) 167.839i 0.281608i
\(597\) 0 0
\(598\) −182.149 −0.304598
\(599\) − 602.848i − 1.00642i −0.864163 0.503212i \(-0.832152\pi\)
0.864163 0.503212i \(-0.167848\pi\)
\(600\) 0 0
\(601\) −40.0570 −0.0666505 −0.0333253 0.999445i \(-0.510610\pi\)
−0.0333253 + 0.999445i \(0.510610\pi\)
\(602\) 615.948i 1.02317i
\(603\) 0 0
\(604\) 258.160 0.427417
\(605\) − 649.746i − 1.07396i
\(606\) 0 0
\(607\) 1001.73 1.65030 0.825150 0.564914i \(-0.191091\pi\)
0.825150 + 0.564914i \(0.191091\pi\)
\(608\) 119.465i 0.196489i
\(609\) 0 0
\(610\) 485.896 0.796550
\(611\) 39.1960i 0.0641505i
\(612\) 0 0
\(613\) 90.5651 0.147741 0.0738704 0.997268i \(-0.476465\pi\)
0.0738704 + 0.997268i \(0.476465\pi\)
\(614\) 12.3702i 0.0201469i
\(615\) 0 0
\(616\) −170.649 −0.277028
\(617\) − 986.293i − 1.59853i −0.600979 0.799265i \(-0.705222\pi\)
0.600979 0.799265i \(-0.294778\pi\)
\(618\) 0 0
\(619\) 974.221 1.57386 0.786931 0.617041i \(-0.211669\pi\)
0.786931 + 0.617041i \(0.211669\pi\)
\(620\) 110.491i 0.178211i
\(621\) 0 0
\(622\) −73.3706 −0.117959
\(623\) − 214.934i − 0.344998i
\(624\) 0 0
\(625\) 269.498 0.431197
\(626\) 516.864i 0.825661i
\(627\) 0 0
\(628\) −415.261 −0.661244
\(629\) − 67.6751i − 0.107592i
\(630\) 0 0
\(631\) −10.0349 −0.0159032 −0.00795160 0.999968i \(-0.502531\pi\)
−0.00795160 + 0.999968i \(0.502531\pi\)
\(632\) − 231.536i − 0.366354i
\(633\) 0 0
\(634\) −648.337 −1.02261
\(635\) 1296.79i 2.04218i
\(636\) 0 0
\(637\) 210.727 0.330812
\(638\) − 450.877i − 0.706704i
\(639\) 0 0
\(640\) 94.6000 0.147812
\(641\) 236.054i 0.368259i 0.982902 + 0.184130i \(0.0589466\pi\)
−0.982902 + 0.184130i \(0.941053\pi\)
\(642\) 0 0
\(643\) −28.7071 −0.0446456 −0.0223228 0.999751i \(-0.507106\pi\)
−0.0223228 + 0.999751i \(0.507106\pi\)
\(644\) 393.221i 0.610591i
\(645\) 0 0
\(646\) 30.3490 0.0469798
\(647\) − 230.995i − 0.357024i −0.983938 0.178512i \(-0.942872\pi\)
0.983938 0.178512i \(-0.0571284\pi\)
\(648\) 0 0
\(649\) 184.497 0.284280
\(650\) 381.560i 0.587016i
\(651\) 0 0
\(652\) 342.066 0.524641
\(653\) 1095.46i 1.67759i 0.544451 + 0.838793i \(0.316738\pi\)
−0.544451 + 0.838793i \(0.683262\pi\)
\(654\) 0 0
\(655\) −1132.22 −1.72858
\(656\) − 212.139i − 0.323383i
\(657\) 0 0
\(658\) 84.6155 0.128595
\(659\) − 360.182i − 0.546558i −0.961935 0.273279i \(-0.911892\pi\)
0.961935 0.273279i \(-0.0881083\pi\)
\(660\) 0 0
\(661\) −156.404 −0.236617 −0.118308 0.992977i \(-0.537747\pi\)
−0.118308 + 0.992977i \(0.537747\pi\)
\(662\) − 628.404i − 0.949251i
\(663\) 0 0
\(664\) −132.725 −0.199887
\(665\) 1619.20i 2.43488i
\(666\) 0 0
\(667\) −1038.94 −1.55763
\(668\) 315.412i 0.472174i
\(669\) 0 0
\(670\) 175.484 0.261916
\(671\) − 270.367i − 0.402931i
\(672\) 0 0
\(673\) −758.880 −1.12761 −0.563804 0.825909i \(-0.690663\pi\)
−0.563804 + 0.825909i \(0.690663\pi\)
\(674\) 127.210i 0.188739i
\(675\) 0 0
\(676\) 265.833 0.393244
\(677\) 1060.04i 1.56579i 0.622153 + 0.782896i \(0.286258\pi\)
−0.622153 + 0.782896i \(0.713742\pi\)
\(678\) 0 0
\(679\) 320.951 0.472682
\(680\) − 24.0322i − 0.0353415i
\(681\) 0 0
\(682\) 61.4803 0.0901471
\(683\) − 1071.02i − 1.56811i −0.620694 0.784053i \(-0.713149\pi\)
0.620694 0.784053i \(-0.286851\pi\)
\(684\) 0 0
\(685\) 393.074 0.573831
\(686\) 180.504i 0.263125i
\(687\) 0 0
\(688\) −189.995 −0.276155
\(689\) 238.899i 0.346733i
\(690\) 0 0
\(691\) 442.462 0.640321 0.320161 0.947363i \(-0.396263\pi\)
0.320161 + 0.947363i \(0.396263\pi\)
\(692\) − 33.5103i − 0.0484252i
\(693\) 0 0
\(694\) 702.312 1.01198
\(695\) − 405.059i − 0.582818i
\(696\) 0 0
\(697\) −53.8920 −0.0773199
\(698\) − 479.645i − 0.687170i
\(699\) 0 0
\(700\) 823.704 1.17672
\(701\) 77.6184i 0.110725i 0.998466 + 0.0553626i \(0.0176315\pi\)
−0.998466 + 0.0553626i \(0.982369\pi\)
\(702\) 0 0
\(703\) −1406.48 −2.00068
\(704\) − 52.6382i − 0.0747702i
\(705\) 0 0
\(706\) −312.266 −0.442303
\(707\) 1111.97i 1.57281i
\(708\) 0 0
\(709\) 148.778 0.209842 0.104921 0.994481i \(-0.466541\pi\)
0.104921 + 0.994481i \(0.466541\pi\)
\(710\) 896.409i 1.26255i
\(711\) 0 0
\(712\) 66.2982 0.0931155
\(713\) − 141.667i − 0.198691i
\(714\) 0 0
\(715\) 330.485 0.462217
\(716\) 217.675i 0.304016i
\(717\) 0 0
\(718\) −807.032 −1.12400
\(719\) − 26.1111i − 0.0363159i −0.999835 0.0181580i \(-0.994220\pi\)
0.999835 0.0181580i \(-0.00578018\pi\)
\(720\) 0 0
\(721\) −1732.37 −2.40274
\(722\) − 120.204i − 0.166488i
\(723\) 0 0
\(724\) −74.3136 −0.102643
\(725\) 2176.33i 3.00184i
\(726\) 0 0
\(727\) −919.807 −1.26521 −0.632605 0.774475i \(-0.718014\pi\)
−0.632605 + 0.774475i \(0.718014\pi\)
\(728\) 155.793i 0.214001i
\(729\) 0 0
\(730\) −627.056 −0.858980
\(731\) 48.2663i 0.0660277i
\(732\) 0 0
\(733\) −354.173 −0.483183 −0.241592 0.970378i \(-0.577669\pi\)
−0.241592 + 0.970378i \(0.577669\pi\)
\(734\) 299.034i 0.407403i
\(735\) 0 0
\(736\) −121.292 −0.164799
\(737\) − 97.6443i − 0.132489i
\(738\) 0 0
\(739\) −820.692 −1.11054 −0.555272 0.831669i \(-0.687386\pi\)
−0.555272 + 0.831669i \(0.687386\pi\)
\(740\) 1113.74i 1.50505i
\(741\) 0 0
\(742\) 515.731 0.695055
\(743\) 134.956i 0.181636i 0.995867 + 0.0908182i \(0.0289482\pi\)
−0.995867 + 0.0908182i \(0.971052\pi\)
\(744\) 0 0
\(745\) −701.694 −0.941871
\(746\) 98.2368i 0.131685i
\(747\) 0 0
\(748\) −13.3722 −0.0178773
\(749\) − 701.254i − 0.936254i
\(750\) 0 0
\(751\) 1224.90 1.63102 0.815511 0.578741i \(-0.196456\pi\)
0.815511 + 0.578741i \(0.196456\pi\)
\(752\) 26.1004i 0.0347080i
\(753\) 0 0
\(754\) −411.625 −0.545921
\(755\) 1079.31i 1.42955i
\(756\) 0 0
\(757\) 915.003 1.20872 0.604361 0.796710i \(-0.293428\pi\)
0.604361 + 0.796710i \(0.293428\pi\)
\(758\) − 551.842i − 0.728024i
\(759\) 0 0
\(760\) −499.456 −0.657179
\(761\) − 749.875i − 0.985381i −0.870205 0.492690i \(-0.836013\pi\)
0.870205 0.492690i \(-0.163987\pi\)
\(762\) 0 0
\(763\) 401.450 0.526147
\(764\) − 429.462i − 0.562123i
\(765\) 0 0
\(766\) −256.454 −0.334796
\(767\) − 168.435i − 0.219603i
\(768\) 0 0
\(769\) −919.543 −1.19576 −0.597882 0.801584i \(-0.703991\pi\)
−0.597882 + 0.801584i \(0.703991\pi\)
\(770\) − 713.444i − 0.926551i
\(771\) 0 0
\(772\) −567.639 −0.735284
\(773\) − 278.063i − 0.359720i −0.983692 0.179860i \(-0.942436\pi\)
0.983692 0.179860i \(-0.0575644\pi\)
\(774\) 0 0
\(775\) −296.759 −0.382915
\(776\) 99.0003i 0.127578i
\(777\) 0 0
\(778\) 951.665 1.22322
\(779\) 1120.02i 1.43777i
\(780\) 0 0
\(781\) 498.789 0.638654
\(782\) 30.8132i 0.0394030i
\(783\) 0 0
\(784\) 140.322 0.178982
\(785\) − 1736.11i − 2.21161i
\(786\) 0 0
\(787\) 819.583 1.04140 0.520701 0.853739i \(-0.325671\pi\)
0.520701 + 0.853739i \(0.325671\pi\)
\(788\) − 356.117i − 0.451925i
\(789\) 0 0
\(790\) 967.997 1.22531
\(791\) − 1.90378i − 0.00240680i
\(792\) 0 0
\(793\) −246.829 −0.311260
\(794\) 641.550i 0.807997i
\(795\) 0 0
\(796\) −291.374 −0.366048
\(797\) 1128.82i 1.41634i 0.706043 + 0.708169i \(0.250478\pi\)
−0.706043 + 0.708169i \(0.749522\pi\)
\(798\) 0 0
\(799\) 6.63055 0.00829857
\(800\) 254.079i 0.317599i
\(801\) 0 0
\(802\) −444.033 −0.553657
\(803\) 348.912i 0.434511i
\(804\) 0 0
\(805\) −1643.96 −2.04219
\(806\) − 56.1280i − 0.0696377i
\(807\) 0 0
\(808\) −342.998 −0.424503
\(809\) 1010.80i 1.24945i 0.780846 + 0.624724i \(0.214788\pi\)
−0.780846 + 0.624724i \(0.785212\pi\)
\(810\) 0 0
\(811\) 481.599 0.593834 0.296917 0.954903i \(-0.404042\pi\)
0.296917 + 0.954903i \(0.404042\pi\)
\(812\) 888.607i 1.09434i
\(813\) 0 0
\(814\) 619.716 0.761322
\(815\) 1430.10i 1.75472i
\(816\) 0 0
\(817\) 1003.11 1.22779
\(818\) − 2.40680i − 0.00294230i
\(819\) 0 0
\(820\) 886.906 1.08159
\(821\) − 1066.52i − 1.29905i −0.760340 0.649525i \(-0.774968\pi\)
0.760340 0.649525i \(-0.225032\pi\)
\(822\) 0 0
\(823\) −81.3728 −0.0988734 −0.0494367 0.998777i \(-0.515743\pi\)
−0.0494367 + 0.998777i \(0.515743\pi\)
\(824\) − 534.366i − 0.648502i
\(825\) 0 0
\(826\) −363.615 −0.440212
\(827\) 107.815i 0.130369i 0.997873 + 0.0651845i \(0.0207636\pi\)
−0.997873 + 0.0651845i \(0.979236\pi\)
\(828\) 0 0
\(829\) 1315.48 1.58683 0.793415 0.608681i \(-0.208301\pi\)
0.793415 + 0.608681i \(0.208301\pi\)
\(830\) − 554.893i − 0.668546i
\(831\) 0 0
\(832\) −48.0556 −0.0577592
\(833\) − 35.6475i − 0.0427941i
\(834\) 0 0
\(835\) −1318.66 −1.57924
\(836\) 277.912i 0.332431i
\(837\) 0 0
\(838\) 141.515 0.168873
\(839\) − 1312.55i − 1.56442i −0.623015 0.782210i \(-0.714093\pi\)
0.623015 0.782210i \(-0.285907\pi\)
\(840\) 0 0
\(841\) −1506.81 −1.79169
\(842\) − 898.350i − 1.06692i
\(843\) 0 0
\(844\) 594.530 0.704419
\(845\) 1111.39i 1.31525i
\(846\) 0 0
\(847\) 712.533 0.841243
\(848\) 159.082i 0.187597i
\(849\) 0 0
\(850\) 64.5463 0.0759369
\(851\) − 1427.99i − 1.67801i
\(852\) 0 0
\(853\) 1104.43 1.29476 0.647381 0.762167i \(-0.275864\pi\)
0.647381 + 0.762167i \(0.275864\pi\)
\(854\) 532.850i 0.623946i
\(855\) 0 0
\(856\) 216.308 0.252696
\(857\) 1599.58i 1.86649i 0.359245 + 0.933243i \(0.383034\pi\)
−0.359245 + 0.933243i \(0.616966\pi\)
\(858\) 0 0
\(859\) 1113.15 1.29586 0.647931 0.761699i \(-0.275635\pi\)
0.647931 + 0.761699i \(0.275635\pi\)
\(860\) − 794.323i − 0.923631i
\(861\) 0 0
\(862\) −254.901 −0.295709
\(863\) 172.993i 0.200455i 0.994965 + 0.100227i \(0.0319570\pi\)
−0.994965 + 0.100227i \(0.968043\pi\)
\(864\) 0 0
\(865\) 140.099 0.161964
\(866\) − 229.091i − 0.264539i
\(867\) 0 0
\(868\) −121.168 −0.139594
\(869\) − 538.623i − 0.619819i
\(870\) 0 0
\(871\) −89.1436 −0.102346
\(872\) 123.831i 0.142008i
\(873\) 0 0
\(874\) 640.383 0.732704
\(875\) 1526.93i 1.74506i
\(876\) 0 0
\(877\) 1070.17 1.22027 0.610134 0.792299i \(-0.291116\pi\)
0.610134 + 0.792299i \(0.291116\pi\)
\(878\) 455.013i 0.518238i
\(879\) 0 0
\(880\) 220.068 0.250077
\(881\) 401.070i 0.455244i 0.973750 + 0.227622i \(0.0730950\pi\)
−0.973750 + 0.227622i \(0.926905\pi\)
\(882\) 0 0
\(883\) 331.125 0.375000 0.187500 0.982265i \(-0.439961\pi\)
0.187500 + 0.982265i \(0.439961\pi\)
\(884\) 12.2081i 0.0138100i
\(885\) 0 0
\(886\) −715.130 −0.807145
\(887\) 237.408i 0.267653i 0.991005 + 0.133826i \(0.0427265\pi\)
−0.991005 + 0.133826i \(0.957274\pi\)
\(888\) 0 0
\(889\) −1422.10 −1.59966
\(890\) 277.177i 0.311435i
\(891\) 0 0
\(892\) 422.582 0.473747
\(893\) − 137.801i − 0.154313i
\(894\) 0 0
\(895\) −910.049 −1.01681
\(896\) 103.742i 0.115783i
\(897\) 0 0
\(898\) −1014.90 −1.13017
\(899\) − 320.141i − 0.356108i
\(900\) 0 0
\(901\) 40.4132 0.0448537
\(902\) − 493.501i − 0.547118i
\(903\) 0 0
\(904\) 0.587238 0.000649599 0
\(905\) − 310.688i − 0.343302i
\(906\) 0 0
\(907\) −1058.30 −1.16681 −0.583406 0.812181i \(-0.698280\pi\)
−0.583406 + 0.812181i \(0.698280\pi\)
\(908\) 32.1817i 0.0354424i
\(909\) 0 0
\(910\) −651.333 −0.715750
\(911\) 1803.13i 1.97928i 0.143562 + 0.989641i \(0.454144\pi\)
−0.143562 + 0.989641i \(0.545856\pi\)
\(912\) 0 0
\(913\) −308.759 −0.338181
\(914\) − 590.384i − 0.645935i
\(915\) 0 0
\(916\) −522.729 −0.570664
\(917\) − 1241.63i − 1.35401i
\(918\) 0 0
\(919\) 185.717 0.202086 0.101043 0.994882i \(-0.467782\pi\)
0.101043 + 0.994882i \(0.467782\pi\)
\(920\) − 507.095i − 0.551190i
\(921\) 0 0
\(922\) −1159.58 −1.25768
\(923\) − 455.365i − 0.493353i
\(924\) 0 0
\(925\) −2991.30 −3.23384
\(926\) − 1204.52i − 1.30078i
\(927\) 0 0
\(928\) −274.099 −0.295365
\(929\) − 270.218i − 0.290870i −0.989368 0.145435i \(-0.953542\pi\)
0.989368 0.145435i \(-0.0464582\pi\)
\(930\) 0 0
\(931\) −740.853 −0.795760
\(932\) − 643.431i − 0.690377i
\(933\) 0 0
\(934\) 909.580 0.973854
\(935\) − 55.9062i − 0.0597927i
\(936\) 0 0
\(937\) −193.983 −0.207025 −0.103513 0.994628i \(-0.533008\pi\)
−0.103513 + 0.994628i \(0.533008\pi\)
\(938\) 192.441i 0.205161i
\(939\) 0 0
\(940\) −109.120 −0.116085
\(941\) 54.6376i 0.0580633i 0.999578 + 0.0290317i \(0.00924236\pi\)
−0.999578 + 0.0290317i \(0.990758\pi\)
\(942\) 0 0
\(943\) −1137.16 −1.20589
\(944\) − 112.160i − 0.118814i
\(945\) 0 0
\(946\) −441.985 −0.467214
\(947\) 52.6925i 0.0556415i 0.999613 + 0.0278207i \(0.00885676\pi\)
−0.999613 + 0.0278207i \(0.991143\pi\)
\(948\) 0 0
\(949\) 318.537 0.335655
\(950\) − 1341.45i − 1.41205i
\(951\) 0 0
\(952\) 26.3545 0.0276833
\(953\) 290.679i 0.305015i 0.988302 + 0.152508i \(0.0487348\pi\)
−0.988302 + 0.152508i \(0.951265\pi\)
\(954\) 0 0
\(955\) 1795.48 1.88008
\(956\) − 157.758i − 0.165019i
\(957\) 0 0
\(958\) 427.528 0.446272
\(959\) 431.059i 0.449488i
\(960\) 0 0
\(961\) −917.346 −0.954575
\(962\) − 565.765i − 0.588113i
\(963\) 0 0
\(964\) −605.916 −0.628543
\(965\) − 2373.17i − 2.45924i
\(966\) 0 0
\(967\) 443.361 0.458492 0.229246 0.973369i \(-0.426374\pi\)
0.229246 + 0.973369i \(0.426374\pi\)
\(968\) 219.787i 0.227053i
\(969\) 0 0
\(970\) −413.897 −0.426698
\(971\) − 437.137i − 0.450193i −0.974337 0.225096i \(-0.927730\pi\)
0.974337 0.225096i \(-0.0722697\pi\)
\(972\) 0 0
\(973\) 444.201 0.456527
\(974\) − 826.538i − 0.848601i
\(975\) 0 0
\(976\) −164.362 −0.168404
\(977\) 38.9780i 0.0398956i 0.999801 + 0.0199478i \(0.00635000\pi\)
−0.999801 + 0.0199478i \(0.993650\pi\)
\(978\) 0 0
\(979\) 154.230 0.157538
\(980\) 586.654i 0.598626i
\(981\) 0 0
\(982\) −389.448 −0.396587
\(983\) 1776.23i 1.80695i 0.428643 + 0.903474i \(0.358992\pi\)
−0.428643 + 0.903474i \(0.641008\pi\)
\(984\) 0 0
\(985\) 1488.84 1.51151
\(986\) 69.6321i 0.0706208i
\(987\) 0 0
\(988\) 253.718 0.256799
\(989\) 1018.45i 1.02978i
\(990\) 0 0
\(991\) 1388.38 1.40098 0.700492 0.713660i \(-0.252964\pi\)
0.700492 + 0.713660i \(0.252964\pi\)
\(992\) − 37.3753i − 0.0376767i
\(993\) 0 0
\(994\) −983.032 −0.988966
\(995\) − 1218.17i − 1.22429i
\(996\) 0 0
\(997\) −242.014 −0.242742 −0.121371 0.992607i \(-0.538729\pi\)
−0.121371 + 0.992607i \(0.538729\pi\)
\(998\) 241.147i 0.241630i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.2 36
3.2 odd 2 inner 1458.3.b.c.1457.35 36
27.5 odd 18 162.3.f.a.89.6 36
27.11 odd 18 54.3.f.a.41.2 yes 36
27.16 even 9 162.3.f.a.71.6 36
27.22 even 9 54.3.f.a.29.2 36
108.11 even 18 432.3.bc.c.257.5 36
108.103 odd 18 432.3.bc.c.353.5 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.29.2 36 27.22 even 9
54.3.f.a.41.2 yes 36 27.11 odd 18
162.3.f.a.71.6 36 27.16 even 9
162.3.f.a.89.6 36 27.5 odd 18
432.3.bc.c.257.5 36 108.11 even 18
432.3.bc.c.353.5 36 108.103 odd 18
1458.3.b.c.1457.2 36 1.1 even 1 trivial
1458.3.b.c.1457.35 36 3.2 odd 2 inner