Properties

Label 1458.3.b.c.1457.4
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.4
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.33

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -5.99439i q^{5} +7.30820 q^{7} +2.82843i q^{8} -8.47735 q^{10} -20.6977i q^{11} -6.81957 q^{13} -10.3353i q^{14} +4.00000 q^{16} +2.26910i q^{17} +24.3267 q^{19} +11.9888i q^{20} -29.2710 q^{22} -24.1635i q^{23} -10.9327 q^{25} +9.64433i q^{26} -14.6164 q^{28} -18.5012i q^{29} +21.7310 q^{31} -5.65685i q^{32} +3.20899 q^{34} -43.8082i q^{35} -44.7664 q^{37} -34.4032i q^{38} +16.9547 q^{40} +51.2829i q^{41} +36.9408 q^{43} +41.3954i q^{44} -34.1723 q^{46} -12.6884i q^{47} +4.40972 q^{49} +15.4612i q^{50} +13.6391 q^{52} +17.7730i q^{53} -124.070 q^{55} +20.6707i q^{56} -26.1646 q^{58} -65.9062i q^{59} +42.2218 q^{61} -30.7323i q^{62} -8.00000 q^{64} +40.8792i q^{65} +118.326 q^{67} -4.53820i q^{68} -61.9541 q^{70} -53.3127i q^{71} -67.7138 q^{73} +63.3092i q^{74} -48.6534 q^{76} -151.263i q^{77} -111.324 q^{79} -23.9776i q^{80} +72.5250 q^{82} -25.2483i q^{83} +13.6019 q^{85} -52.2421i q^{86} +58.5419 q^{88} +40.9280i q^{89} -49.8388 q^{91} +48.3269i q^{92} -17.9441 q^{94} -145.824i q^{95} +40.4271 q^{97} -6.23628i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 5.99439i − 1.19888i −0.800420 0.599439i \(-0.795390\pi\)
0.800420 0.599439i \(-0.204610\pi\)
\(6\) 0 0
\(7\) 7.30820 1.04403 0.522014 0.852937i \(-0.325181\pi\)
0.522014 + 0.852937i \(0.325181\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −8.47735 −0.847735
\(11\) − 20.6977i − 1.88161i −0.338951 0.940804i \(-0.610072\pi\)
0.338951 0.940804i \(-0.389928\pi\)
\(12\) 0 0
\(13\) −6.81957 −0.524582 −0.262291 0.964989i \(-0.584478\pi\)
−0.262291 + 0.964989i \(0.584478\pi\)
\(14\) − 10.3353i − 0.738239i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 2.26910i 0.133476i 0.997771 + 0.0667382i \(0.0212592\pi\)
−0.997771 + 0.0667382i \(0.978741\pi\)
\(18\) 0 0
\(19\) 24.3267 1.28035 0.640176 0.768228i \(-0.278861\pi\)
0.640176 + 0.768228i \(0.278861\pi\)
\(20\) 11.9888i 0.599439i
\(21\) 0 0
\(22\) −29.2710 −1.33050
\(23\) − 24.1635i − 1.05059i −0.850922 0.525293i \(-0.823956\pi\)
0.850922 0.525293i \(-0.176044\pi\)
\(24\) 0 0
\(25\) −10.9327 −0.437308
\(26\) 9.64433i 0.370936i
\(27\) 0 0
\(28\) −14.6164 −0.522014
\(29\) − 18.5012i − 0.637971i −0.947760 0.318986i \(-0.896658\pi\)
0.947760 0.318986i \(-0.103342\pi\)
\(30\) 0 0
\(31\) 21.7310 0.701001 0.350501 0.936562i \(-0.386011\pi\)
0.350501 + 0.936562i \(0.386011\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 3.20899 0.0943821
\(35\) − 43.8082i − 1.25166i
\(36\) 0 0
\(37\) −44.7664 −1.20990 −0.604951 0.796263i \(-0.706807\pi\)
−0.604951 + 0.796263i \(0.706807\pi\)
\(38\) − 34.4032i − 0.905346i
\(39\) 0 0
\(40\) 16.9547 0.423867
\(41\) 51.2829i 1.25080i 0.780303 + 0.625402i \(0.215065\pi\)
−0.780303 + 0.625402i \(0.784935\pi\)
\(42\) 0 0
\(43\) 36.9408 0.859088 0.429544 0.903046i \(-0.358674\pi\)
0.429544 + 0.903046i \(0.358674\pi\)
\(44\) 41.3954i 0.940804i
\(45\) 0 0
\(46\) −34.1723 −0.742876
\(47\) − 12.6884i − 0.269966i −0.990848 0.134983i \(-0.956902\pi\)
0.990848 0.134983i \(-0.0430980\pi\)
\(48\) 0 0
\(49\) 4.40972 0.0899943
\(50\) 15.4612i 0.309224i
\(51\) 0 0
\(52\) 13.6391 0.262291
\(53\) 17.7730i 0.335339i 0.985843 + 0.167670i \(0.0536242\pi\)
−0.985843 + 0.167670i \(0.946376\pi\)
\(54\) 0 0
\(55\) −124.070 −2.25582
\(56\) 20.6707i 0.369120i
\(57\) 0 0
\(58\) −26.1646 −0.451114
\(59\) − 65.9062i − 1.11705i −0.829486 0.558527i \(-0.811367\pi\)
0.829486 0.558527i \(-0.188633\pi\)
\(60\) 0 0
\(61\) 42.2218 0.692160 0.346080 0.938205i \(-0.387513\pi\)
0.346080 + 0.938205i \(0.387513\pi\)
\(62\) − 30.7323i − 0.495683i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 40.8792i 0.628910i
\(66\) 0 0
\(67\) 118.326 1.76607 0.883033 0.469311i \(-0.155498\pi\)
0.883033 + 0.469311i \(0.155498\pi\)
\(68\) − 4.53820i − 0.0667382i
\(69\) 0 0
\(70\) −61.9541 −0.885059
\(71\) − 53.3127i − 0.750883i −0.926846 0.375442i \(-0.877491\pi\)
0.926846 0.375442i \(-0.122509\pi\)
\(72\) 0 0
\(73\) −67.7138 −0.927587 −0.463793 0.885943i \(-0.653512\pi\)
−0.463793 + 0.885943i \(0.653512\pi\)
\(74\) 63.3092i 0.855529i
\(75\) 0 0
\(76\) −48.6534 −0.640176
\(77\) − 151.263i − 1.96445i
\(78\) 0 0
\(79\) −111.324 −1.40916 −0.704582 0.709623i \(-0.748865\pi\)
−0.704582 + 0.709623i \(0.748865\pi\)
\(80\) − 23.9776i − 0.299719i
\(81\) 0 0
\(82\) 72.5250 0.884452
\(83\) − 25.2483i − 0.304196i −0.988365 0.152098i \(-0.951397\pi\)
0.988365 0.152098i \(-0.0486030\pi\)
\(84\) 0 0
\(85\) 13.6019 0.160022
\(86\) − 52.2421i − 0.607467i
\(87\) 0 0
\(88\) 58.5419 0.665249
\(89\) 40.9280i 0.459865i 0.973207 + 0.229932i \(0.0738505\pi\)
−0.973207 + 0.229932i \(0.926150\pi\)
\(90\) 0 0
\(91\) −49.8388 −0.547679
\(92\) 48.3269i 0.525293i
\(93\) 0 0
\(94\) −17.9441 −0.190895
\(95\) − 145.824i − 1.53499i
\(96\) 0 0
\(97\) 40.4271 0.416775 0.208387 0.978046i \(-0.433179\pi\)
0.208387 + 0.978046i \(0.433179\pi\)
\(98\) − 6.23628i − 0.0636356i
\(99\) 0 0
\(100\) 21.8654 0.218654
\(101\) − 11.6008i − 0.114860i −0.998350 0.0574299i \(-0.981709\pi\)
0.998350 0.0574299i \(-0.0182906\pi\)
\(102\) 0 0
\(103\) 124.649 1.21019 0.605094 0.796154i \(-0.293136\pi\)
0.605094 + 0.796154i \(0.293136\pi\)
\(104\) − 19.2887i − 0.185468i
\(105\) 0 0
\(106\) 25.1348 0.237121
\(107\) 142.548i 1.33223i 0.745850 + 0.666113i \(0.232043\pi\)
−0.745850 + 0.666113i \(0.767957\pi\)
\(108\) 0 0
\(109\) −119.276 −1.09427 −0.547137 0.837043i \(-0.684282\pi\)
−0.547137 + 0.837043i \(0.684282\pi\)
\(110\) 175.461i 1.59510i
\(111\) 0 0
\(112\) 29.2328 0.261007
\(113\) 103.667i 0.917408i 0.888589 + 0.458704i \(0.151686\pi\)
−0.888589 + 0.458704i \(0.848314\pi\)
\(114\) 0 0
\(115\) −144.845 −1.25952
\(116\) 37.0023i 0.318986i
\(117\) 0 0
\(118\) −93.2054 −0.789876
\(119\) 16.5830i 0.139353i
\(120\) 0 0
\(121\) −307.394 −2.54045
\(122\) − 59.7106i − 0.489431i
\(123\) 0 0
\(124\) −43.4621 −0.350501
\(125\) − 84.3248i − 0.674599i
\(126\) 0 0
\(127\) −219.539 −1.72866 −0.864329 0.502927i \(-0.832256\pi\)
−0.864329 + 0.502927i \(0.832256\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 57.8119 0.444707
\(131\) 130.641i 0.997261i 0.866815 + 0.498631i \(0.166164\pi\)
−0.866815 + 0.498631i \(0.833836\pi\)
\(132\) 0 0
\(133\) 177.784 1.33672
\(134\) − 167.339i − 1.24880i
\(135\) 0 0
\(136\) −6.41798 −0.0471911
\(137\) − 77.2169i − 0.563627i −0.959469 0.281814i \(-0.909064\pi\)
0.959469 0.281814i \(-0.0909360\pi\)
\(138\) 0 0
\(139\) −106.850 −0.768704 −0.384352 0.923187i \(-0.625575\pi\)
−0.384352 + 0.923187i \(0.625575\pi\)
\(140\) 87.6163i 0.625831i
\(141\) 0 0
\(142\) −75.3956 −0.530955
\(143\) 141.149i 0.987059i
\(144\) 0 0
\(145\) −110.903 −0.764849
\(146\) 95.7618i 0.655903i
\(147\) 0 0
\(148\) 89.5327 0.604951
\(149\) 155.115i 1.04104i 0.853850 + 0.520520i \(0.174262\pi\)
−0.853850 + 0.520520i \(0.825738\pi\)
\(150\) 0 0
\(151\) −155.055 −1.02685 −0.513427 0.858133i \(-0.671624\pi\)
−0.513427 + 0.858133i \(0.671624\pi\)
\(152\) 68.8063i 0.452673i
\(153\) 0 0
\(154\) −213.918 −1.38908
\(155\) − 130.264i − 0.840415i
\(156\) 0 0
\(157\) −121.480 −0.773758 −0.386879 0.922131i \(-0.626447\pi\)
−0.386879 + 0.922131i \(0.626447\pi\)
\(158\) 157.436i 0.996429i
\(159\) 0 0
\(160\) −33.9094 −0.211934
\(161\) − 176.591i − 1.09684i
\(162\) 0 0
\(163\) −66.9033 −0.410450 −0.205225 0.978715i \(-0.565793\pi\)
−0.205225 + 0.978715i \(0.565793\pi\)
\(164\) − 102.566i − 0.625402i
\(165\) 0 0
\(166\) −35.7065 −0.215099
\(167\) 7.25256i 0.0434285i 0.999764 + 0.0217143i \(0.00691240\pi\)
−0.999764 + 0.0217143i \(0.993088\pi\)
\(168\) 0 0
\(169\) −122.493 −0.724813
\(170\) − 19.2360i − 0.113153i
\(171\) 0 0
\(172\) −73.8816 −0.429544
\(173\) − 72.5019i − 0.419086i −0.977799 0.209543i \(-0.932802\pi\)
0.977799 0.209543i \(-0.0671976\pi\)
\(174\) 0 0
\(175\) −79.8983 −0.456562
\(176\) − 82.7908i − 0.470402i
\(177\) 0 0
\(178\) 57.8809 0.325173
\(179\) 253.302i 1.41509i 0.706667 + 0.707547i \(0.250198\pi\)
−0.706667 + 0.707547i \(0.749802\pi\)
\(180\) 0 0
\(181\) −38.8301 −0.214531 −0.107265 0.994230i \(-0.534209\pi\)
−0.107265 + 0.994230i \(0.534209\pi\)
\(182\) 70.4827i 0.387267i
\(183\) 0 0
\(184\) 68.3446 0.371438
\(185\) 268.347i 1.45052i
\(186\) 0 0
\(187\) 46.9651 0.251150
\(188\) 25.3768i 0.134983i
\(189\) 0 0
\(190\) −206.226 −1.08540
\(191\) − 198.458i − 1.03905i −0.854456 0.519524i \(-0.826109\pi\)
0.854456 0.519524i \(-0.173891\pi\)
\(192\) 0 0
\(193\) 56.9955 0.295314 0.147657 0.989039i \(-0.452827\pi\)
0.147657 + 0.989039i \(0.452827\pi\)
\(194\) − 57.1726i − 0.294704i
\(195\) 0 0
\(196\) −8.81944 −0.0449971
\(197\) 74.8536i 0.379967i 0.981787 + 0.189984i \(0.0608435\pi\)
−0.981787 + 0.189984i \(0.939157\pi\)
\(198\) 0 0
\(199\) 130.432 0.655435 0.327717 0.944776i \(-0.393721\pi\)
0.327717 + 0.944776i \(0.393721\pi\)
\(200\) − 30.9224i − 0.154612i
\(201\) 0 0
\(202\) −16.4061 −0.0812182
\(203\) − 135.210i − 0.666060i
\(204\) 0 0
\(205\) 307.410 1.49956
\(206\) − 176.281i − 0.855732i
\(207\) 0 0
\(208\) −27.2783 −0.131146
\(209\) − 503.507i − 2.40912i
\(210\) 0 0
\(211\) 31.6175 0.149846 0.0749230 0.997189i \(-0.476129\pi\)
0.0749230 + 0.997189i \(0.476129\pi\)
\(212\) − 35.5459i − 0.167670i
\(213\) 0 0
\(214\) 201.594 0.942027
\(215\) − 221.437i − 1.02994i
\(216\) 0 0
\(217\) 158.815 0.731865
\(218\) 168.682i 0.773769i
\(219\) 0 0
\(220\) 248.140 1.12791
\(221\) − 15.4743i − 0.0700194i
\(222\) 0 0
\(223\) 102.053 0.457636 0.228818 0.973469i \(-0.426514\pi\)
0.228818 + 0.973469i \(0.426514\pi\)
\(224\) − 41.3414i − 0.184560i
\(225\) 0 0
\(226\) 146.607 0.648706
\(227\) − 257.217i − 1.13311i −0.824023 0.566557i \(-0.808275\pi\)
0.824023 0.566557i \(-0.191725\pi\)
\(228\) 0 0
\(229\) 274.974 1.20076 0.600381 0.799714i \(-0.295016\pi\)
0.600381 + 0.799714i \(0.295016\pi\)
\(230\) 204.842i 0.890618i
\(231\) 0 0
\(232\) 52.3292 0.225557
\(233\) − 257.857i − 1.10668i −0.832955 0.553341i \(-0.813353\pi\)
0.832955 0.553341i \(-0.186647\pi\)
\(234\) 0 0
\(235\) −76.0593 −0.323657
\(236\) 131.812i 0.558527i
\(237\) 0 0
\(238\) 23.4519 0.0985376
\(239\) − 124.546i − 0.521113i −0.965459 0.260557i \(-0.916094\pi\)
0.965459 0.260557i \(-0.0839060\pi\)
\(240\) 0 0
\(241\) 65.4473 0.271566 0.135783 0.990739i \(-0.456645\pi\)
0.135783 + 0.990739i \(0.456645\pi\)
\(242\) 434.721i 1.79637i
\(243\) 0 0
\(244\) −84.4436 −0.346080
\(245\) − 26.4336i − 0.107892i
\(246\) 0 0
\(247\) −165.898 −0.671651
\(248\) 61.4647i 0.247841i
\(249\) 0 0
\(250\) −119.253 −0.477013
\(251\) − 233.859i − 0.931710i −0.884861 0.465855i \(-0.845747\pi\)
0.884861 0.465855i \(-0.154253\pi\)
\(252\) 0 0
\(253\) −500.128 −1.97679
\(254\) 310.476i 1.22235i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 75.1638i 0.292466i 0.989250 + 0.146233i \(0.0467149\pi\)
−0.989250 + 0.146233i \(0.953285\pi\)
\(258\) 0 0
\(259\) −327.161 −1.26317
\(260\) − 81.7583i − 0.314455i
\(261\) 0 0
\(262\) 184.755 0.705170
\(263\) 151.467i 0.575919i 0.957643 + 0.287960i \(0.0929769\pi\)
−0.957643 + 0.287960i \(0.907023\pi\)
\(264\) 0 0
\(265\) 106.538 0.402031
\(266\) − 251.425i − 0.945207i
\(267\) 0 0
\(268\) −236.653 −0.883033
\(269\) 170.868i 0.635198i 0.948225 + 0.317599i \(0.102877\pi\)
−0.948225 + 0.317599i \(0.897123\pi\)
\(270\) 0 0
\(271\) −8.46530 −0.0312373 −0.0156186 0.999878i \(-0.504972\pi\)
−0.0156186 + 0.999878i \(0.504972\pi\)
\(272\) 9.07640i 0.0333691i
\(273\) 0 0
\(274\) −109.201 −0.398545
\(275\) 226.282i 0.822843i
\(276\) 0 0
\(277\) 499.814 1.80438 0.902192 0.431335i \(-0.141957\pi\)
0.902192 + 0.431335i \(0.141957\pi\)
\(278\) 151.108i 0.543556i
\(279\) 0 0
\(280\) 123.908 0.442529
\(281\) − 70.0190i − 0.249178i −0.992208 0.124589i \(-0.960239\pi\)
0.992208 0.124589i \(-0.0397612\pi\)
\(282\) 0 0
\(283\) −35.8457 −0.126663 −0.0633317 0.997993i \(-0.520173\pi\)
−0.0633317 + 0.997993i \(0.520173\pi\)
\(284\) 106.625i 0.375442i
\(285\) 0 0
\(286\) 199.615 0.697956
\(287\) 374.786i 1.30587i
\(288\) 0 0
\(289\) 283.851 0.982184
\(290\) 156.841i 0.540830i
\(291\) 0 0
\(292\) 135.428 0.463793
\(293\) − 34.1314i − 0.116489i −0.998302 0.0582447i \(-0.981450\pi\)
0.998302 0.0582447i \(-0.0185503\pi\)
\(294\) 0 0
\(295\) −395.067 −1.33921
\(296\) − 126.618i − 0.427765i
\(297\) 0 0
\(298\) 219.366 0.736126
\(299\) 164.784i 0.551119i
\(300\) 0 0
\(301\) 269.970 0.896912
\(302\) 219.281i 0.726096i
\(303\) 0 0
\(304\) 97.3068 0.320088
\(305\) − 253.094i − 0.829816i
\(306\) 0 0
\(307\) 330.610 1.07690 0.538452 0.842656i \(-0.319009\pi\)
0.538452 + 0.842656i \(0.319009\pi\)
\(308\) 302.526i 0.982226i
\(309\) 0 0
\(310\) −184.222 −0.594263
\(311\) 241.634i 0.776958i 0.921458 + 0.388479i \(0.126999\pi\)
−0.921458 + 0.388479i \(0.873001\pi\)
\(312\) 0 0
\(313\) −313.281 −1.00090 −0.500448 0.865766i \(-0.666831\pi\)
−0.500448 + 0.865766i \(0.666831\pi\)
\(314\) 171.799i 0.547129i
\(315\) 0 0
\(316\) 222.648 0.704582
\(317\) 493.706i 1.55743i 0.627376 + 0.778717i \(0.284129\pi\)
−0.627376 + 0.778717i \(0.715871\pi\)
\(318\) 0 0
\(319\) −382.931 −1.20041
\(320\) 47.9551i 0.149860i
\(321\) 0 0
\(322\) −249.738 −0.775583
\(323\) 55.1997i 0.170897i
\(324\) 0 0
\(325\) 74.5564 0.229404
\(326\) 94.6156i 0.290232i
\(327\) 0 0
\(328\) −145.050 −0.442226
\(329\) − 92.7294i − 0.281852i
\(330\) 0 0
\(331\) 259.182 0.783026 0.391513 0.920172i \(-0.371952\pi\)
0.391513 + 0.920172i \(0.371952\pi\)
\(332\) 50.4966i 0.152098i
\(333\) 0 0
\(334\) 10.2567 0.0307086
\(335\) − 709.295i − 2.11730i
\(336\) 0 0
\(337\) 458.840 1.36154 0.680771 0.732496i \(-0.261645\pi\)
0.680771 + 0.732496i \(0.261645\pi\)
\(338\) 173.232i 0.512520i
\(339\) 0 0
\(340\) −27.2037 −0.0800110
\(341\) − 449.782i − 1.31901i
\(342\) 0 0
\(343\) −325.874 −0.950071
\(344\) 104.484i 0.303733i
\(345\) 0 0
\(346\) −102.533 −0.296339
\(347\) 270.459i 0.779421i 0.920937 + 0.389711i \(0.127425\pi\)
−0.920937 + 0.389711i \(0.872575\pi\)
\(348\) 0 0
\(349\) 334.313 0.957917 0.478959 0.877837i \(-0.341014\pi\)
0.478959 + 0.877837i \(0.341014\pi\)
\(350\) 112.993i 0.322838i
\(351\) 0 0
\(352\) −117.084 −0.332624
\(353\) − 523.598i − 1.48328i −0.670798 0.741640i \(-0.734048\pi\)
0.670798 0.741640i \(-0.265952\pi\)
\(354\) 0 0
\(355\) −319.577 −0.900217
\(356\) − 81.8559i − 0.229932i
\(357\) 0 0
\(358\) 358.223 1.00062
\(359\) 53.1770i 0.148125i 0.997254 + 0.0740627i \(0.0235965\pi\)
−0.997254 + 0.0740627i \(0.976404\pi\)
\(360\) 0 0
\(361\) 230.789 0.639304
\(362\) 54.9140i 0.151696i
\(363\) 0 0
\(364\) 99.6775 0.273839
\(365\) 405.903i 1.11206i
\(366\) 0 0
\(367\) 439.214 1.19677 0.598384 0.801210i \(-0.295810\pi\)
0.598384 + 0.801210i \(0.295810\pi\)
\(368\) − 96.6539i − 0.262646i
\(369\) 0 0
\(370\) 379.500 1.02568
\(371\) 129.888i 0.350103i
\(372\) 0 0
\(373\) −591.646 −1.58618 −0.793091 0.609103i \(-0.791529\pi\)
−0.793091 + 0.609103i \(0.791529\pi\)
\(374\) − 66.4187i − 0.177590i
\(375\) 0 0
\(376\) 35.8882 0.0954475
\(377\) 126.170i 0.334668i
\(378\) 0 0
\(379\) 198.665 0.524183 0.262092 0.965043i \(-0.415588\pi\)
0.262092 + 0.965043i \(0.415588\pi\)
\(380\) 291.647i 0.767493i
\(381\) 0 0
\(382\) −280.662 −0.734718
\(383\) − 32.3369i − 0.0844306i −0.999109 0.0422153i \(-0.986558\pi\)
0.999109 0.0422153i \(-0.0134415\pi\)
\(384\) 0 0
\(385\) −906.728 −2.35514
\(386\) − 80.6038i − 0.208818i
\(387\) 0 0
\(388\) −80.8543 −0.208387
\(389\) 218.700i 0.562212i 0.959677 + 0.281106i \(0.0907013\pi\)
−0.959677 + 0.281106i \(0.909299\pi\)
\(390\) 0 0
\(391\) 54.8293 0.140228
\(392\) 12.4726i 0.0318178i
\(393\) 0 0
\(394\) 105.859 0.268677
\(395\) 667.319i 1.68941i
\(396\) 0 0
\(397\) 529.397 1.33349 0.666746 0.745285i \(-0.267686\pi\)
0.666746 + 0.745285i \(0.267686\pi\)
\(398\) − 184.458i − 0.463462i
\(399\) 0 0
\(400\) −43.7308 −0.109327
\(401\) − 261.096i − 0.651111i −0.945523 0.325556i \(-0.894449\pi\)
0.945523 0.325556i \(-0.105551\pi\)
\(402\) 0 0
\(403\) −148.196 −0.367733
\(404\) 23.2017i 0.0574299i
\(405\) 0 0
\(406\) −191.216 −0.470975
\(407\) 926.560i 2.27656i
\(408\) 0 0
\(409\) 639.558 1.56371 0.781856 0.623459i \(-0.214273\pi\)
0.781856 + 0.623459i \(0.214273\pi\)
\(410\) − 434.743i − 1.06035i
\(411\) 0 0
\(412\) −249.299 −0.605094
\(413\) − 481.655i − 1.16624i
\(414\) 0 0
\(415\) −151.348 −0.364694
\(416\) 38.5773i 0.0927340i
\(417\) 0 0
\(418\) −712.066 −1.70351
\(419\) − 714.100i − 1.70430i −0.523301 0.852148i \(-0.675300\pi\)
0.523301 0.852148i \(-0.324700\pi\)
\(420\) 0 0
\(421\) −70.0167 −0.166310 −0.0831552 0.996537i \(-0.526500\pi\)
−0.0831552 + 0.996537i \(0.526500\pi\)
\(422\) − 44.7139i − 0.105957i
\(423\) 0 0
\(424\) −50.2696 −0.118560
\(425\) − 24.8074i − 0.0583704i
\(426\) 0 0
\(427\) 308.565 0.722635
\(428\) − 285.097i − 0.666113i
\(429\) 0 0
\(430\) −313.160 −0.728279
\(431\) − 76.1177i − 0.176607i −0.996094 0.0883036i \(-0.971855\pi\)
0.996094 0.0883036i \(-0.0281446\pi\)
\(432\) 0 0
\(433\) 109.713 0.253380 0.126690 0.991942i \(-0.459565\pi\)
0.126690 + 0.991942i \(0.459565\pi\)
\(434\) − 224.598i − 0.517507i
\(435\) 0 0
\(436\) 238.552 0.547137
\(437\) − 587.817i − 1.34512i
\(438\) 0 0
\(439\) 113.996 0.259672 0.129836 0.991536i \(-0.458555\pi\)
0.129836 + 0.991536i \(0.458555\pi\)
\(440\) − 350.923i − 0.797552i
\(441\) 0 0
\(442\) −21.8840 −0.0495112
\(443\) 172.711i 0.389867i 0.980816 + 0.194933i \(0.0624491\pi\)
−0.980816 + 0.194933i \(0.937551\pi\)
\(444\) 0 0
\(445\) 245.338 0.551322
\(446\) − 144.324i − 0.323597i
\(447\) 0 0
\(448\) −58.4656 −0.130503
\(449\) 190.458i 0.424182i 0.977250 + 0.212091i \(0.0680273\pi\)
−0.977250 + 0.212091i \(0.931973\pi\)
\(450\) 0 0
\(451\) 1061.44 2.35352
\(452\) − 207.334i − 0.458704i
\(453\) 0 0
\(454\) −363.759 −0.801232
\(455\) 298.753i 0.656600i
\(456\) 0 0
\(457\) 143.739 0.314528 0.157264 0.987557i \(-0.449733\pi\)
0.157264 + 0.987557i \(0.449733\pi\)
\(458\) − 388.872i − 0.849066i
\(459\) 0 0
\(460\) 289.690 0.629762
\(461\) − 653.134i − 1.41678i −0.705823 0.708388i \(-0.749423\pi\)
0.705823 0.708388i \(-0.250577\pi\)
\(462\) 0 0
\(463\) 22.4229 0.0484296 0.0242148 0.999707i \(-0.492291\pi\)
0.0242148 + 0.999707i \(0.492291\pi\)
\(464\) − 74.0047i − 0.159493i
\(465\) 0 0
\(466\) −364.665 −0.782542
\(467\) 477.267i 1.02199i 0.859585 + 0.510993i \(0.170722\pi\)
−0.859585 + 0.510993i \(0.829278\pi\)
\(468\) 0 0
\(469\) 864.753 1.84382
\(470\) 107.564i 0.228860i
\(471\) 0 0
\(472\) 186.411 0.394938
\(473\) − 764.589i − 1.61647i
\(474\) 0 0
\(475\) −265.957 −0.559909
\(476\) − 33.1661i − 0.0696766i
\(477\) 0 0
\(478\) −176.135 −0.368483
\(479\) − 597.164i − 1.24669i −0.781948 0.623344i \(-0.785774\pi\)
0.781948 0.623344i \(-0.214226\pi\)
\(480\) 0 0
\(481\) 305.287 0.634693
\(482\) − 92.5565i − 0.192026i
\(483\) 0 0
\(484\) 614.789 1.27022
\(485\) − 242.336i − 0.499662i
\(486\) 0 0
\(487\) 758.948 1.55842 0.779208 0.626766i \(-0.215622\pi\)
0.779208 + 0.626766i \(0.215622\pi\)
\(488\) 119.421i 0.244716i
\(489\) 0 0
\(490\) −37.3827 −0.0762913
\(491\) − 262.641i − 0.534910i −0.963570 0.267455i \(-0.913817\pi\)
0.963570 0.267455i \(-0.0861826\pi\)
\(492\) 0 0
\(493\) 41.9810 0.0851541
\(494\) 234.615i 0.474929i
\(495\) 0 0
\(496\) 86.9242 0.175250
\(497\) − 389.620i − 0.783943i
\(498\) 0 0
\(499\) −90.9231 −0.182211 −0.0911054 0.995841i \(-0.529040\pi\)
−0.0911054 + 0.995841i \(0.529040\pi\)
\(500\) 168.650i 0.337299i
\(501\) 0 0
\(502\) −330.727 −0.658818
\(503\) − 425.234i − 0.845395i −0.906271 0.422698i \(-0.861083\pi\)
0.906271 0.422698i \(-0.138917\pi\)
\(504\) 0 0
\(505\) −69.5400 −0.137703
\(506\) 707.288i 1.39780i
\(507\) 0 0
\(508\) 439.079 0.864329
\(509\) − 675.840i − 1.32778i −0.747830 0.663890i \(-0.768904\pi\)
0.747830 0.663890i \(-0.231096\pi\)
\(510\) 0 0
\(511\) −494.866 −0.968427
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) 106.298 0.206805
\(515\) − 747.196i − 1.45087i
\(516\) 0 0
\(517\) −262.621 −0.507971
\(518\) 462.676i 0.893197i
\(519\) 0 0
\(520\) −115.624 −0.222353
\(521\) 782.422i 1.50177i 0.660433 + 0.750885i \(0.270373\pi\)
−0.660433 + 0.750885i \(0.729627\pi\)
\(522\) 0 0
\(523\) 685.818 1.31132 0.655658 0.755058i \(-0.272392\pi\)
0.655658 + 0.755058i \(0.272392\pi\)
\(524\) − 261.282i − 0.498631i
\(525\) 0 0
\(526\) 214.206 0.407236
\(527\) 49.3099i 0.0935672i
\(528\) 0 0
\(529\) −54.8729 −0.103730
\(530\) − 150.668i − 0.284279i
\(531\) 0 0
\(532\) −355.569 −0.668362
\(533\) − 349.728i − 0.656150i
\(534\) 0 0
\(535\) 854.490 1.59718
\(536\) 334.678i 0.624399i
\(537\) 0 0
\(538\) 241.644 0.449153
\(539\) − 91.2710i − 0.169334i
\(540\) 0 0
\(541\) 884.789 1.63547 0.817735 0.575595i \(-0.195229\pi\)
0.817735 + 0.575595i \(0.195229\pi\)
\(542\) 11.9717i 0.0220881i
\(543\) 0 0
\(544\) 12.8360 0.0235955
\(545\) 714.986i 1.31190i
\(546\) 0 0
\(547\) 344.105 0.629077 0.314538 0.949245i \(-0.398150\pi\)
0.314538 + 0.949245i \(0.398150\pi\)
\(548\) 154.434i 0.281814i
\(549\) 0 0
\(550\) 320.011 0.581838
\(551\) − 450.072i − 0.816828i
\(552\) 0 0
\(553\) −813.577 −1.47121
\(554\) − 706.844i − 1.27589i
\(555\) 0 0
\(556\) 213.700 0.384352
\(557\) − 317.052i − 0.569213i −0.958644 0.284606i \(-0.908137\pi\)
0.958644 0.284606i \(-0.0918629\pi\)
\(558\) 0 0
\(559\) −251.920 −0.450662
\(560\) − 175.233i − 0.312915i
\(561\) 0 0
\(562\) −99.0218 −0.176195
\(563\) 203.004i 0.360575i 0.983614 + 0.180287i \(0.0577028\pi\)
−0.983614 + 0.180287i \(0.942297\pi\)
\(564\) 0 0
\(565\) 621.421 1.09986
\(566\) 50.6935i 0.0895646i
\(567\) 0 0
\(568\) 150.791 0.265477
\(569\) 235.365i 0.413646i 0.978378 + 0.206823i \(0.0663124\pi\)
−0.978378 + 0.206823i \(0.933688\pi\)
\(570\) 0 0
\(571\) 65.6422 0.114960 0.0574800 0.998347i \(-0.481693\pi\)
0.0574800 + 0.998347i \(0.481693\pi\)
\(572\) − 282.299i − 0.493529i
\(573\) 0 0
\(574\) 530.027 0.923392
\(575\) 264.172i 0.459430i
\(576\) 0 0
\(577\) −144.256 −0.250011 −0.125005 0.992156i \(-0.539895\pi\)
−0.125005 + 0.992156i \(0.539895\pi\)
\(578\) − 401.426i − 0.694509i
\(579\) 0 0
\(580\) 221.806 0.382425
\(581\) − 184.519i − 0.317589i
\(582\) 0 0
\(583\) 367.859 0.630977
\(584\) − 191.524i − 0.327951i
\(585\) 0 0
\(586\) −48.2690 −0.0823704
\(587\) − 567.446i − 0.966687i −0.875431 0.483344i \(-0.839422\pi\)
0.875431 0.483344i \(-0.160578\pi\)
\(588\) 0 0
\(589\) 528.645 0.897529
\(590\) 558.710i 0.946965i
\(591\) 0 0
\(592\) −179.065 −0.302475
\(593\) − 174.635i − 0.294494i −0.989100 0.147247i \(-0.952959\pi\)
0.989100 0.147247i \(-0.0470412\pi\)
\(594\) 0 0
\(595\) 99.4051 0.167067
\(596\) − 310.230i − 0.520520i
\(597\) 0 0
\(598\) 233.040 0.389700
\(599\) 431.459i 0.720300i 0.932894 + 0.360150i \(0.117274\pi\)
−0.932894 + 0.360150i \(0.882726\pi\)
\(600\) 0 0
\(601\) −830.822 −1.38240 −0.691200 0.722664i \(-0.742917\pi\)
−0.691200 + 0.722664i \(0.742917\pi\)
\(602\) − 381.796i − 0.634212i
\(603\) 0 0
\(604\) 310.110 0.513427
\(605\) 1842.64i 3.04569i
\(606\) 0 0
\(607\) −375.433 −0.618506 −0.309253 0.950980i \(-0.600079\pi\)
−0.309253 + 0.950980i \(0.600079\pi\)
\(608\) − 137.613i − 0.226337i
\(609\) 0 0
\(610\) −357.929 −0.586768
\(611\) 86.5295i 0.141620i
\(612\) 0 0
\(613\) −384.933 −0.627949 −0.313974 0.949431i \(-0.601661\pi\)
−0.313974 + 0.949431i \(0.601661\pi\)
\(614\) − 467.553i − 0.761487i
\(615\) 0 0
\(616\) 427.836 0.694538
\(617\) − 165.163i − 0.267688i −0.991002 0.133844i \(-0.957268\pi\)
0.991002 0.133844i \(-0.0427321\pi\)
\(618\) 0 0
\(619\) 478.604 0.773189 0.386594 0.922250i \(-0.373651\pi\)
0.386594 + 0.922250i \(0.373651\pi\)
\(620\) 260.529i 0.420208i
\(621\) 0 0
\(622\) 341.722 0.549392
\(623\) 299.110i 0.480112i
\(624\) 0 0
\(625\) −778.794 −1.24607
\(626\) 443.046i 0.707741i
\(627\) 0 0
\(628\) 242.960 0.386879
\(629\) − 101.579i − 0.161493i
\(630\) 0 0
\(631\) −249.236 −0.394985 −0.197493 0.980304i \(-0.563280\pi\)
−0.197493 + 0.980304i \(0.563280\pi\)
\(632\) − 314.872i − 0.498214i
\(633\) 0 0
\(634\) 698.206 1.10127
\(635\) 1316.01i 2.07245i
\(636\) 0 0
\(637\) −30.0724 −0.0472094
\(638\) 541.547i 0.848819i
\(639\) 0 0
\(640\) 67.8188 0.105967
\(641\) − 224.655i − 0.350476i −0.984526 0.175238i \(-0.943931\pi\)
0.984526 0.175238i \(-0.0560695\pi\)
\(642\) 0 0
\(643\) −364.144 −0.566320 −0.283160 0.959073i \(-0.591383\pi\)
−0.283160 + 0.959073i \(0.591383\pi\)
\(644\) 353.183i 0.548420i
\(645\) 0 0
\(646\) 78.0642 0.120842
\(647\) 1200.78i 1.85593i 0.372671 + 0.927964i \(0.378442\pi\)
−0.372671 + 0.927964i \(0.621558\pi\)
\(648\) 0 0
\(649\) −1364.11 −2.10186
\(650\) − 105.439i − 0.162213i
\(651\) 0 0
\(652\) 133.807 0.205225
\(653\) − 635.854i − 0.973742i −0.873474 0.486871i \(-0.838138\pi\)
0.873474 0.486871i \(-0.161862\pi\)
\(654\) 0 0
\(655\) 783.114 1.19559
\(656\) 205.132i 0.312701i
\(657\) 0 0
\(658\) −131.139 −0.199300
\(659\) 1165.55i 1.76866i 0.466862 + 0.884330i \(0.345384\pi\)
−0.466862 + 0.884330i \(0.654616\pi\)
\(660\) 0 0
\(661\) −962.967 −1.45683 −0.728417 0.685134i \(-0.759743\pi\)
−0.728417 + 0.685134i \(0.759743\pi\)
\(662\) − 366.538i − 0.553683i
\(663\) 0 0
\(664\) 71.4129 0.107550
\(665\) − 1065.71i − 1.60257i
\(666\) 0 0
\(667\) −447.052 −0.670243
\(668\) − 14.5051i − 0.0217143i
\(669\) 0 0
\(670\) −1003.09 −1.49716
\(671\) − 873.893i − 1.30237i
\(672\) 0 0
\(673\) −652.015 −0.968819 −0.484409 0.874841i \(-0.660965\pi\)
−0.484409 + 0.874841i \(0.660965\pi\)
\(674\) − 648.897i − 0.962755i
\(675\) 0 0
\(676\) 244.987 0.362407
\(677\) 754.458i 1.11441i 0.830374 + 0.557207i \(0.188127\pi\)
−0.830374 + 0.557207i \(0.811873\pi\)
\(678\) 0 0
\(679\) 295.449 0.435124
\(680\) 38.4719i 0.0565763i
\(681\) 0 0
\(682\) −636.088 −0.932681
\(683\) 468.538i 0.686000i 0.939335 + 0.343000i \(0.111443\pi\)
−0.939335 + 0.343000i \(0.888557\pi\)
\(684\) 0 0
\(685\) −462.868 −0.675720
\(686\) 460.856i 0.671802i
\(687\) 0 0
\(688\) 147.763 0.214772
\(689\) − 121.204i − 0.175913i
\(690\) 0 0
\(691\) 215.048 0.311213 0.155607 0.987819i \(-0.450267\pi\)
0.155607 + 0.987819i \(0.450267\pi\)
\(692\) 145.004i 0.209543i
\(693\) 0 0
\(694\) 382.487 0.551134
\(695\) 640.500i 0.921582i
\(696\) 0 0
\(697\) −116.366 −0.166953
\(698\) − 472.790i − 0.677350i
\(699\) 0 0
\(700\) 159.797 0.228281
\(701\) − 848.227i − 1.21002i −0.796216 0.605012i \(-0.793168\pi\)
0.796216 0.605012i \(-0.206832\pi\)
\(702\) 0 0
\(703\) −1089.02 −1.54910
\(704\) 165.582i 0.235201i
\(705\) 0 0
\(706\) −740.479 −1.04884
\(707\) − 84.7813i − 0.119917i
\(708\) 0 0
\(709\) −83.4604 −0.117716 −0.0588578 0.998266i \(-0.518746\pi\)
−0.0588578 + 0.998266i \(0.518746\pi\)
\(710\) 451.950i 0.636550i
\(711\) 0 0
\(712\) −115.762 −0.162587
\(713\) − 525.097i − 0.736462i
\(714\) 0 0
\(715\) 846.104 1.18336
\(716\) − 506.603i − 0.707547i
\(717\) 0 0
\(718\) 75.2037 0.104740
\(719\) 1191.73i 1.65749i 0.559628 + 0.828744i \(0.310944\pi\)
−0.559628 + 0.828744i \(0.689056\pi\)
\(720\) 0 0
\(721\) 910.961 1.26347
\(722\) − 326.384i − 0.452056i
\(723\) 0 0
\(724\) 77.6602 0.107265
\(725\) 202.268i 0.278990i
\(726\) 0 0
\(727\) 674.507 0.927795 0.463898 0.885889i \(-0.346451\pi\)
0.463898 + 0.885889i \(0.346451\pi\)
\(728\) − 140.965i − 0.193634i
\(729\) 0 0
\(730\) 574.034 0.786348
\(731\) 83.8223i 0.114668i
\(732\) 0 0
\(733\) −195.294 −0.266431 −0.133215 0.991087i \(-0.542530\pi\)
−0.133215 + 0.991087i \(0.542530\pi\)
\(734\) − 621.142i − 0.846242i
\(735\) 0 0
\(736\) −136.689 −0.185719
\(737\) − 2449.08i − 3.32304i
\(738\) 0 0
\(739\) 1437.81 1.94561 0.972807 0.231616i \(-0.0744012\pi\)
0.972807 + 0.231616i \(0.0744012\pi\)
\(740\) − 536.694i − 0.725262i
\(741\) 0 0
\(742\) 183.690 0.247560
\(743\) − 1001.88i − 1.34842i −0.738538 0.674212i \(-0.764484\pi\)
0.738538 0.674212i \(-0.235516\pi\)
\(744\) 0 0
\(745\) 929.819 1.24808
\(746\) 836.713i 1.12160i
\(747\) 0 0
\(748\) −93.9303 −0.125575
\(749\) 1041.77i 1.39088i
\(750\) 0 0
\(751\) −748.089 −0.996124 −0.498062 0.867142i \(-0.665955\pi\)
−0.498062 + 0.867142i \(0.665955\pi\)
\(752\) − 50.7536i − 0.0674916i
\(753\) 0 0
\(754\) 178.431 0.236646
\(755\) 929.460i 1.23107i
\(756\) 0 0
\(757\) 788.946 1.04220 0.521100 0.853496i \(-0.325522\pi\)
0.521100 + 0.853496i \(0.325522\pi\)
\(758\) − 280.955i − 0.370653i
\(759\) 0 0
\(760\) 412.452 0.542700
\(761\) − 520.026i − 0.683346i −0.939819 0.341673i \(-0.889006\pi\)
0.939819 0.341673i \(-0.110994\pi\)
\(762\) 0 0
\(763\) −871.691 −1.14245
\(764\) 396.916i 0.519524i
\(765\) 0 0
\(766\) −45.7313 −0.0597015
\(767\) 449.452i 0.585987i
\(768\) 0 0
\(769\) −727.857 −0.946498 −0.473249 0.880929i \(-0.656919\pi\)
−0.473249 + 0.880929i \(0.656919\pi\)
\(770\) 1282.31i 1.66533i
\(771\) 0 0
\(772\) −113.991 −0.147657
\(773\) − 1132.26i − 1.46476i −0.680894 0.732382i \(-0.738409\pi\)
0.680894 0.732382i \(-0.261591\pi\)
\(774\) 0 0
\(775\) −237.579 −0.306554
\(776\) 114.345i 0.147352i
\(777\) 0 0
\(778\) 309.289 0.397544
\(779\) 1247.55i 1.60147i
\(780\) 0 0
\(781\) −1103.45 −1.41287
\(782\) − 77.5404i − 0.0991565i
\(783\) 0 0
\(784\) 17.6389 0.0224986
\(785\) 728.198i 0.927641i
\(786\) 0 0
\(787\) −772.596 −0.981698 −0.490849 0.871245i \(-0.663313\pi\)
−0.490849 + 0.871245i \(0.663313\pi\)
\(788\) − 149.707i − 0.189984i
\(789\) 0 0
\(790\) 943.731 1.19460
\(791\) 757.620i 0.957800i
\(792\) 0 0
\(793\) −287.934 −0.363095
\(794\) − 748.680i − 0.942922i
\(795\) 0 0
\(796\) −260.863 −0.327717
\(797\) 1121.73i 1.40745i 0.710474 + 0.703723i \(0.248481\pi\)
−0.710474 + 0.703723i \(0.751519\pi\)
\(798\) 0 0
\(799\) 28.7913 0.0360341
\(800\) 61.8447i 0.0773059i
\(801\) 0 0
\(802\) −369.245 −0.460405
\(803\) 1401.52i 1.74536i
\(804\) 0 0
\(805\) −1058.56 −1.31498
\(806\) 209.581i 0.260027i
\(807\) 0 0
\(808\) 32.8122 0.0406091
\(809\) − 1053.93i − 1.30275i −0.758754 0.651377i \(-0.774192\pi\)
0.758754 0.651377i \(-0.225808\pi\)
\(810\) 0 0
\(811\) −440.011 −0.542554 −0.271277 0.962501i \(-0.587446\pi\)
−0.271277 + 0.962501i \(0.587446\pi\)
\(812\) 270.420i 0.333030i
\(813\) 0 0
\(814\) 1310.35 1.60977
\(815\) 401.045i 0.492079i
\(816\) 0 0
\(817\) 898.647 1.09994
\(818\) − 904.472i − 1.10571i
\(819\) 0 0
\(820\) −614.820 −0.749780
\(821\) − 297.697i − 0.362603i −0.983428 0.181302i \(-0.941969\pi\)
0.983428 0.181302i \(-0.0580310\pi\)
\(822\) 0 0
\(823\) 481.048 0.584505 0.292253 0.956341i \(-0.405595\pi\)
0.292253 + 0.956341i \(0.405595\pi\)
\(824\) 352.561i 0.427866i
\(825\) 0 0
\(826\) −681.163 −0.824653
\(827\) − 313.336i − 0.378882i −0.981892 0.189441i \(-0.939332\pi\)
0.981892 0.189441i \(-0.0606676\pi\)
\(828\) 0 0
\(829\) −641.243 −0.773514 −0.386757 0.922182i \(-0.626405\pi\)
−0.386757 + 0.922182i \(0.626405\pi\)
\(830\) 214.038i 0.257878i
\(831\) 0 0
\(832\) 54.5566 0.0655728
\(833\) 10.0061i 0.0120121i
\(834\) 0 0
\(835\) 43.4747 0.0520655
\(836\) 1007.01i 1.20456i
\(837\) 0 0
\(838\) −1009.89 −1.20512
\(839\) − 882.670i − 1.05205i −0.850469 0.526025i \(-0.823682\pi\)
0.850469 0.526025i \(-0.176318\pi\)
\(840\) 0 0
\(841\) 498.707 0.592993
\(842\) 99.0185i 0.117599i
\(843\) 0 0
\(844\) −63.2350 −0.0749230
\(845\) 734.273i 0.868963i
\(846\) 0 0
\(847\) −2246.50 −2.65230
\(848\) 71.0919i 0.0838348i
\(849\) 0 0
\(850\) −35.0830 −0.0412741
\(851\) 1081.71i 1.27110i
\(852\) 0 0
\(853\) −1393.02 −1.63308 −0.816539 0.577291i \(-0.804110\pi\)
−0.816539 + 0.577291i \(0.804110\pi\)
\(854\) − 436.377i − 0.510980i
\(855\) 0 0
\(856\) −403.187 −0.471013
\(857\) 126.277i 0.147348i 0.997282 + 0.0736741i \(0.0234724\pi\)
−0.997282 + 0.0736741i \(0.976528\pi\)
\(858\) 0 0
\(859\) 1137.20 1.32386 0.661931 0.749565i \(-0.269737\pi\)
0.661931 + 0.749565i \(0.269737\pi\)
\(860\) 442.875i 0.514971i
\(861\) 0 0
\(862\) −107.647 −0.124880
\(863\) − 458.427i − 0.531202i −0.964083 0.265601i \(-0.914430\pi\)
0.964083 0.265601i \(-0.0855703\pi\)
\(864\) 0 0
\(865\) −434.605 −0.502433
\(866\) − 155.158i − 0.179167i
\(867\) 0 0
\(868\) −317.629 −0.365933
\(869\) 2304.15i 2.65149i
\(870\) 0 0
\(871\) −806.935 −0.926447
\(872\) − 337.363i − 0.386884i
\(873\) 0 0
\(874\) −831.299 −0.951143
\(875\) − 616.262i − 0.704300i
\(876\) 0 0
\(877\) 1314.14 1.49845 0.749224 0.662316i \(-0.230426\pi\)
0.749224 + 0.662316i \(0.230426\pi\)
\(878\) − 161.214i − 0.183615i
\(879\) 0 0
\(880\) −496.280 −0.563955
\(881\) 1517.25i 1.72219i 0.508442 + 0.861096i \(0.330222\pi\)
−0.508442 + 0.861096i \(0.669778\pi\)
\(882\) 0 0
\(883\) 1523.38 1.72524 0.862619 0.505855i \(-0.168823\pi\)
0.862619 + 0.505855i \(0.168823\pi\)
\(884\) 30.9486i 0.0350097i
\(885\) 0 0
\(886\) 244.250 0.275677
\(887\) − 787.826i − 0.888192i −0.895979 0.444096i \(-0.853525\pi\)
0.895979 0.444096i \(-0.146475\pi\)
\(888\) 0 0
\(889\) −1604.44 −1.80477
\(890\) − 346.960i − 0.389843i
\(891\) 0 0
\(892\) −204.105 −0.228818
\(893\) − 308.667i − 0.345652i
\(894\) 0 0
\(895\) 1518.39 1.69652
\(896\) 82.6828i 0.0922799i
\(897\) 0 0
\(898\) 269.348 0.299942
\(899\) − 402.050i − 0.447219i
\(900\) 0 0
\(901\) −40.3287 −0.0447599
\(902\) − 1501.10i − 1.66419i
\(903\) 0 0
\(904\) −293.215 −0.324353
\(905\) 232.763i 0.257196i
\(906\) 0 0
\(907\) 1700.38 1.87473 0.937366 0.348345i \(-0.113256\pi\)
0.937366 + 0.348345i \(0.113256\pi\)
\(908\) 514.433i 0.566557i
\(909\) 0 0
\(910\) 422.500 0.464286
\(911\) 303.682i 0.333350i 0.986012 + 0.166675i \(0.0533031\pi\)
−0.986012 + 0.166675i \(0.946697\pi\)
\(912\) 0 0
\(913\) −522.581 −0.572378
\(914\) − 203.278i − 0.222405i
\(915\) 0 0
\(916\) −549.949 −0.600381
\(917\) 954.751i 1.04117i
\(918\) 0 0
\(919\) −682.579 −0.742741 −0.371370 0.928485i \(-0.621112\pi\)
−0.371370 + 0.928485i \(0.621112\pi\)
\(920\) − 409.684i − 0.445309i
\(921\) 0 0
\(922\) −923.670 −1.00181
\(923\) 363.570i 0.393900i
\(924\) 0 0
\(925\) 489.417 0.529100
\(926\) − 31.7108i − 0.0342449i
\(927\) 0 0
\(928\) −104.658 −0.112778
\(929\) − 798.487i − 0.859512i −0.902945 0.429756i \(-0.858600\pi\)
0.902945 0.429756i \(-0.141400\pi\)
\(930\) 0 0
\(931\) 107.274 0.115224
\(932\) 515.714i 0.553341i
\(933\) 0 0
\(934\) 674.958 0.722653
\(935\) − 281.527i − 0.301099i
\(936\) 0 0
\(937\) 773.853 0.825884 0.412942 0.910757i \(-0.364501\pi\)
0.412942 + 0.910757i \(0.364501\pi\)
\(938\) − 1222.94i − 1.30378i
\(939\) 0 0
\(940\) 152.119 0.161828
\(941\) 1304.24i 1.38601i 0.720930 + 0.693007i \(0.243715\pi\)
−0.720930 + 0.693007i \(0.756285\pi\)
\(942\) 0 0
\(943\) 1239.17 1.31408
\(944\) − 263.625i − 0.279263i
\(945\) 0 0
\(946\) −1081.29 −1.14301
\(947\) 825.166i 0.871347i 0.900105 + 0.435674i \(0.143490\pi\)
−0.900105 + 0.435674i \(0.856510\pi\)
\(948\) 0 0
\(949\) 461.779 0.486596
\(950\) 376.120i 0.395915i
\(951\) 0 0
\(952\) −46.9039 −0.0492688
\(953\) − 1221.99i − 1.28226i −0.767434 0.641128i \(-0.778467\pi\)
0.767434 0.641128i \(-0.221533\pi\)
\(954\) 0 0
\(955\) −1189.63 −1.24569
\(956\) 249.092i 0.260557i
\(957\) 0 0
\(958\) −844.517 −0.881542
\(959\) − 564.316i − 0.588443i
\(960\) 0 0
\(961\) −488.762 −0.508597
\(962\) − 431.742i − 0.448796i
\(963\) 0 0
\(964\) −130.895 −0.135783
\(965\) − 341.653i − 0.354045i
\(966\) 0 0
\(967\) −270.308 −0.279532 −0.139766 0.990185i \(-0.544635\pi\)
−0.139766 + 0.990185i \(0.544635\pi\)
\(968\) − 869.442i − 0.898184i
\(969\) 0 0
\(970\) −342.715 −0.353314
\(971\) 1817.80i 1.87209i 0.351883 + 0.936044i \(0.385542\pi\)
−0.351883 + 0.936044i \(0.614458\pi\)
\(972\) 0 0
\(973\) −780.879 −0.802548
\(974\) − 1073.31i − 1.10197i
\(975\) 0 0
\(976\) 168.887 0.173040
\(977\) − 1315.58i − 1.34655i −0.739391 0.673276i \(-0.764886\pi\)
0.739391 0.673276i \(-0.235114\pi\)
\(978\) 0 0
\(979\) 847.114 0.865285
\(980\) 52.8671i 0.0539461i
\(981\) 0 0
\(982\) −371.430 −0.378238
\(983\) 633.484i 0.644439i 0.946665 + 0.322220i \(0.104429\pi\)
−0.946665 + 0.322220i \(0.895571\pi\)
\(984\) 0 0
\(985\) 448.701 0.455534
\(986\) − 59.3701i − 0.0602131i
\(987\) 0 0
\(988\) 331.795 0.335825
\(989\) − 892.617i − 0.902545i
\(990\) 0 0
\(991\) −1634.77 −1.64961 −0.824806 0.565416i \(-0.808716\pi\)
−0.824806 + 0.565416i \(0.808716\pi\)
\(992\) − 122.929i − 0.123921i
\(993\) 0 0
\(994\) −551.006 −0.554332
\(995\) − 781.857i − 0.785786i
\(996\) 0 0
\(997\) −439.024 −0.440345 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(998\) 128.585i 0.128842i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.4 36
3.2 odd 2 inner 1458.3.b.c.1457.33 36
27.2 odd 18 54.3.f.a.23.5 36
27.13 even 9 54.3.f.a.47.5 yes 36
27.14 odd 18 162.3.f.a.143.1 36
27.25 even 9 162.3.f.a.17.1 36
108.67 odd 18 432.3.bc.c.209.2 36
108.83 even 18 432.3.bc.c.401.2 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.23.5 36 27.2 odd 18
54.3.f.a.47.5 yes 36 27.13 even 9
162.3.f.a.17.1 36 27.25 even 9
162.3.f.a.143.1 36 27.14 odd 18
432.3.bc.c.209.2 36 108.67 odd 18
432.3.bc.c.401.2 36 108.83 even 18
1458.3.b.c.1457.4 36 1.1 even 1 trivial
1458.3.b.c.1457.33 36 3.2 odd 2 inner