Properties

Label 1458.3.b.c.1457.6
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.6
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -2.89319i q^{5} -2.31381 q^{7} +2.82843i q^{8} -4.09159 q^{10} -0.623989i q^{11} -23.4295 q^{13} +3.27222i q^{14} +4.00000 q^{16} -3.13795i q^{17} -4.08237 q^{19} +5.78639i q^{20} -0.882453 q^{22} +45.3388i q^{23} +16.6294 q^{25} +33.1344i q^{26} +4.62762 q^{28} -19.9603i q^{29} +45.3593 q^{31} -5.65685i q^{32} -4.43774 q^{34} +6.69429i q^{35} -37.5461 q^{37} +5.77335i q^{38} +8.18319 q^{40} -46.4043i q^{41} +60.5559 q^{43} +1.24798i q^{44} +64.1187 q^{46} +3.10162i q^{47} -43.6463 q^{49} -23.5176i q^{50} +46.8591 q^{52} +79.9023i q^{53} -1.80532 q^{55} -6.54444i q^{56} -28.2281 q^{58} +65.3035i q^{59} +35.3203 q^{61} -64.1478i q^{62} -8.00000 q^{64} +67.7862i q^{65} -28.3848 q^{67} +6.27591i q^{68} +9.46716 q^{70} +81.6675i q^{71} +25.2095 q^{73} +53.0982i q^{74} +8.16474 q^{76} +1.44379i q^{77} +66.5457 q^{79} -11.5728i q^{80} -65.6256 q^{82} -49.9266i q^{83} -9.07871 q^{85} -85.6389i q^{86} +1.76491 q^{88} +128.325i q^{89} +54.2115 q^{91} -90.6776i q^{92} +4.38636 q^{94} +11.8111i q^{95} +140.945 q^{97} +61.7252i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 2.89319i − 0.578639i −0.957233 0.289319i \(-0.906571\pi\)
0.957233 0.289319i \(-0.0934289\pi\)
\(6\) 0 0
\(7\) −2.31381 −0.330544 −0.165272 0.986248i \(-0.552850\pi\)
−0.165272 + 0.986248i \(0.552850\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −4.09159 −0.409159
\(11\) − 0.623989i − 0.0567263i −0.999598 0.0283631i \(-0.990971\pi\)
0.999598 0.0283631i \(-0.00902948\pi\)
\(12\) 0 0
\(13\) −23.4295 −1.80227 −0.901136 0.433536i \(-0.857266\pi\)
−0.901136 + 0.433536i \(0.857266\pi\)
\(14\) 3.27222i 0.233730i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 3.13795i − 0.184586i −0.995732 0.0922928i \(-0.970580\pi\)
0.995732 0.0922928i \(-0.0294196\pi\)
\(18\) 0 0
\(19\) −4.08237 −0.214862 −0.107431 0.994213i \(-0.534262\pi\)
−0.107431 + 0.994213i \(0.534262\pi\)
\(20\) 5.78639i 0.289319i
\(21\) 0 0
\(22\) −0.882453 −0.0401115
\(23\) 45.3388i 1.97125i 0.168942 + 0.985626i \(0.445965\pi\)
−0.168942 + 0.985626i \(0.554035\pi\)
\(24\) 0 0
\(25\) 16.6294 0.665177
\(26\) 33.1344i 1.27440i
\(27\) 0 0
\(28\) 4.62762 0.165272
\(29\) − 19.9603i − 0.688285i −0.938917 0.344142i \(-0.888170\pi\)
0.938917 0.344142i \(-0.111830\pi\)
\(30\) 0 0
\(31\) 45.3593 1.46320 0.731602 0.681732i \(-0.238773\pi\)
0.731602 + 0.681732i \(0.238773\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −4.43774 −0.130522
\(35\) 6.69429i 0.191266i
\(36\) 0 0
\(37\) −37.5461 −1.01476 −0.507379 0.861723i \(-0.669386\pi\)
−0.507379 + 0.861723i \(0.669386\pi\)
\(38\) 5.77335i 0.151930i
\(39\) 0 0
\(40\) 8.18319 0.204580
\(41\) − 46.4043i − 1.13181i −0.824470 0.565906i \(-0.808526\pi\)
0.824470 0.565906i \(-0.191474\pi\)
\(42\) 0 0
\(43\) 60.5559 1.40828 0.704138 0.710063i \(-0.251334\pi\)
0.704138 + 0.710063i \(0.251334\pi\)
\(44\) 1.24798i 0.0283631i
\(45\) 0 0
\(46\) 64.1187 1.39389
\(47\) 3.10162i 0.0659920i 0.999455 + 0.0329960i \(0.0105049\pi\)
−0.999455 + 0.0329960i \(0.989495\pi\)
\(48\) 0 0
\(49\) −43.6463 −0.890741
\(50\) − 23.5176i − 0.470351i
\(51\) 0 0
\(52\) 46.8591 0.901136
\(53\) 79.9023i 1.50759i 0.657109 + 0.753795i \(0.271779\pi\)
−0.657109 + 0.753795i \(0.728221\pi\)
\(54\) 0 0
\(55\) −1.80532 −0.0328240
\(56\) − 6.54444i − 0.116865i
\(57\) 0 0
\(58\) −28.2281 −0.486691
\(59\) 65.3035i 1.10684i 0.832903 + 0.553420i \(0.186677\pi\)
−0.832903 + 0.553420i \(0.813323\pi\)
\(60\) 0 0
\(61\) 35.3203 0.579022 0.289511 0.957175i \(-0.406507\pi\)
0.289511 + 0.957175i \(0.406507\pi\)
\(62\) − 64.1478i − 1.03464i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 67.7862i 1.04286i
\(66\) 0 0
\(67\) −28.3848 −0.423653 −0.211827 0.977307i \(-0.567941\pi\)
−0.211827 + 0.977307i \(0.567941\pi\)
\(68\) 6.27591i 0.0922928i
\(69\) 0 0
\(70\) 9.46716 0.135245
\(71\) 81.6675i 1.15025i 0.818067 + 0.575123i \(0.195046\pi\)
−0.818067 + 0.575123i \(0.804954\pi\)
\(72\) 0 0
\(73\) 25.2095 0.345336 0.172668 0.984980i \(-0.444761\pi\)
0.172668 + 0.984980i \(0.444761\pi\)
\(74\) 53.0982i 0.717543i
\(75\) 0 0
\(76\) 8.16474 0.107431
\(77\) 1.44379i 0.0187505i
\(78\) 0 0
\(79\) 66.5457 0.842350 0.421175 0.906979i \(-0.361618\pi\)
0.421175 + 0.906979i \(0.361618\pi\)
\(80\) − 11.5728i − 0.144660i
\(81\) 0 0
\(82\) −65.6256 −0.800312
\(83\) − 49.9266i − 0.601526i −0.953699 0.300763i \(-0.902759\pi\)
0.953699 0.300763i \(-0.0972413\pi\)
\(84\) 0 0
\(85\) −9.07871 −0.106808
\(86\) − 85.6389i − 0.995801i
\(87\) 0 0
\(88\) 1.76491 0.0200558
\(89\) 128.325i 1.44186i 0.693010 + 0.720928i \(0.256284\pi\)
−0.693010 + 0.720928i \(0.743716\pi\)
\(90\) 0 0
\(91\) 54.2115 0.595731
\(92\) − 90.6776i − 0.985626i
\(93\) 0 0
\(94\) 4.38636 0.0466634
\(95\) 11.8111i 0.124327i
\(96\) 0 0
\(97\) 140.945 1.45304 0.726521 0.687145i \(-0.241136\pi\)
0.726521 + 0.687145i \(0.241136\pi\)
\(98\) 61.7252i 0.629849i
\(99\) 0 0
\(100\) −33.2589 −0.332589
\(101\) − 39.7372i − 0.393438i −0.980460 0.196719i \(-0.936971\pi\)
0.980460 0.196719i \(-0.0630286\pi\)
\(102\) 0 0
\(103\) 46.5321 0.451768 0.225884 0.974154i \(-0.427473\pi\)
0.225884 + 0.974154i \(0.427473\pi\)
\(104\) − 66.2688i − 0.637200i
\(105\) 0 0
\(106\) 112.999 1.06603
\(107\) − 107.937i − 1.00876i −0.863482 0.504379i \(-0.831721\pi\)
0.863482 0.504379i \(-0.168279\pi\)
\(108\) 0 0
\(109\) 61.3938 0.563246 0.281623 0.959525i \(-0.409127\pi\)
0.281623 + 0.959525i \(0.409127\pi\)
\(110\) 2.55311i 0.0232101i
\(111\) 0 0
\(112\) −9.25523 −0.0826360
\(113\) − 40.9196i − 0.362121i −0.983472 0.181060i \(-0.942047\pi\)
0.983472 0.181060i \(-0.0579529\pi\)
\(114\) 0 0
\(115\) 131.174 1.14064
\(116\) 39.9205i 0.344142i
\(117\) 0 0
\(118\) 92.3531 0.782653
\(119\) 7.26063i 0.0610137i
\(120\) 0 0
\(121\) 120.611 0.996782
\(122\) − 49.9505i − 0.409430i
\(123\) 0 0
\(124\) −90.7187 −0.731602
\(125\) − 120.442i − 0.963536i
\(126\) 0 0
\(127\) −213.683 −1.68254 −0.841272 0.540613i \(-0.818192\pi\)
−0.841272 + 0.540613i \(0.818192\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 95.8642 0.737417
\(131\) 14.6591i 0.111902i 0.998434 + 0.0559509i \(0.0178190\pi\)
−0.998434 + 0.0559509i \(0.982181\pi\)
\(132\) 0 0
\(133\) 9.44583 0.0710213
\(134\) 40.1421i 0.299568i
\(135\) 0 0
\(136\) 8.87548 0.0652609
\(137\) 135.210i 0.986932i 0.869765 + 0.493466i \(0.164270\pi\)
−0.869765 + 0.493466i \(0.835730\pi\)
\(138\) 0 0
\(139\) 74.6479 0.537035 0.268518 0.963275i \(-0.413466\pi\)
0.268518 + 0.963275i \(0.413466\pi\)
\(140\) − 13.3886i − 0.0956328i
\(141\) 0 0
\(142\) 115.495 0.813347
\(143\) 14.6198i 0.102236i
\(144\) 0 0
\(145\) −57.7489 −0.398268
\(146\) − 35.6516i − 0.244189i
\(147\) 0 0
\(148\) 75.0922 0.507379
\(149\) 219.693i 1.47445i 0.675646 + 0.737226i \(0.263865\pi\)
−0.675646 + 0.737226i \(0.736135\pi\)
\(150\) 0 0
\(151\) 121.176 0.802487 0.401244 0.915971i \(-0.368578\pi\)
0.401244 + 0.915971i \(0.368578\pi\)
\(152\) − 11.5467i − 0.0759651i
\(153\) 0 0
\(154\) 2.04183 0.0132586
\(155\) − 131.233i − 0.846667i
\(156\) 0 0
\(157\) 69.6092 0.443370 0.221685 0.975118i \(-0.428844\pi\)
0.221685 + 0.975118i \(0.428844\pi\)
\(158\) − 94.1098i − 0.595632i
\(159\) 0 0
\(160\) −16.3664 −0.102290
\(161\) − 104.905i − 0.651586i
\(162\) 0 0
\(163\) 67.8167 0.416054 0.208027 0.978123i \(-0.433296\pi\)
0.208027 + 0.978123i \(0.433296\pi\)
\(164\) 92.8086i 0.565906i
\(165\) 0 0
\(166\) −70.6069 −0.425343
\(167\) 234.053i 1.40151i 0.713400 + 0.700757i \(0.247154\pi\)
−0.713400 + 0.700757i \(0.752846\pi\)
\(168\) 0 0
\(169\) 379.944 2.24819
\(170\) 12.8392i 0.0755249i
\(171\) 0 0
\(172\) −121.112 −0.704138
\(173\) − 53.5839i − 0.309734i −0.987935 0.154867i \(-0.950505\pi\)
0.987935 0.154867i \(-0.0494949\pi\)
\(174\) 0 0
\(175\) −38.4773 −0.219870
\(176\) − 2.49596i − 0.0141816i
\(177\) 0 0
\(178\) 181.479 1.01955
\(179\) 9.91919i 0.0554145i 0.999616 + 0.0277072i \(0.00882062\pi\)
−0.999616 + 0.0277072i \(0.991179\pi\)
\(180\) 0 0
\(181\) 108.312 0.598407 0.299203 0.954189i \(-0.403279\pi\)
0.299203 + 0.954189i \(0.403279\pi\)
\(182\) − 76.6666i − 0.421245i
\(183\) 0 0
\(184\) −128.237 −0.696943
\(185\) 108.628i 0.587179i
\(186\) 0 0
\(187\) −1.95805 −0.0104708
\(188\) − 6.20324i − 0.0329960i
\(189\) 0 0
\(190\) 16.7034 0.0879127
\(191\) 156.045i 0.816990i 0.912760 + 0.408495i \(0.133946\pi\)
−0.912760 + 0.408495i \(0.866054\pi\)
\(192\) 0 0
\(193\) −263.364 −1.36458 −0.682289 0.731083i \(-0.739015\pi\)
−0.682289 + 0.731083i \(0.739015\pi\)
\(194\) − 199.326i − 1.02746i
\(195\) 0 0
\(196\) 87.2926 0.445370
\(197\) − 144.239i − 0.732178i −0.930580 0.366089i \(-0.880696\pi\)
0.930580 0.366089i \(-0.119304\pi\)
\(198\) 0 0
\(199\) 266.274 1.33806 0.669030 0.743235i \(-0.266710\pi\)
0.669030 + 0.743235i \(0.266710\pi\)
\(200\) 47.0351i 0.235176i
\(201\) 0 0
\(202\) −56.1969 −0.278202
\(203\) 46.1842i 0.227508i
\(204\) 0 0
\(205\) −134.257 −0.654910
\(206\) − 65.8064i − 0.319448i
\(207\) 0 0
\(208\) −93.7182 −0.450568
\(209\) 2.54735i 0.0121883i
\(210\) 0 0
\(211\) −204.009 −0.966867 −0.483434 0.875381i \(-0.660611\pi\)
−0.483434 + 0.875381i \(0.660611\pi\)
\(212\) − 159.805i − 0.753795i
\(213\) 0 0
\(214\) −152.646 −0.713299
\(215\) − 175.200i − 0.814883i
\(216\) 0 0
\(217\) −104.953 −0.483654
\(218\) − 86.8240i − 0.398275i
\(219\) 0 0
\(220\) 3.61064 0.0164120
\(221\) 73.5209i 0.332674i
\(222\) 0 0
\(223\) −18.0316 −0.0808592 −0.0404296 0.999182i \(-0.512873\pi\)
−0.0404296 + 0.999182i \(0.512873\pi\)
\(224\) 13.0889i 0.0584325i
\(225\) 0 0
\(226\) −57.8691 −0.256058
\(227\) − 107.573i − 0.473888i −0.971523 0.236944i \(-0.923854\pi\)
0.971523 0.236944i \(-0.0761458\pi\)
\(228\) 0 0
\(229\) −139.356 −0.608540 −0.304270 0.952586i \(-0.598412\pi\)
−0.304270 + 0.952586i \(0.598412\pi\)
\(230\) − 185.508i − 0.806556i
\(231\) 0 0
\(232\) 56.4561 0.243345
\(233\) − 65.2969i − 0.280244i −0.990134 0.140122i \(-0.955250\pi\)
0.990134 0.140122i \(-0.0447495\pi\)
\(234\) 0 0
\(235\) 8.97359 0.0381855
\(236\) − 130.607i − 0.553420i
\(237\) 0 0
\(238\) 10.2681 0.0431432
\(239\) 79.9321i 0.334444i 0.985919 + 0.167222i \(0.0534796\pi\)
−0.985919 + 0.167222i \(0.946520\pi\)
\(240\) 0 0
\(241\) 242.780 1.00739 0.503693 0.863883i \(-0.331974\pi\)
0.503693 + 0.863883i \(0.331974\pi\)
\(242\) − 170.569i − 0.704831i
\(243\) 0 0
\(244\) −70.6406 −0.289511
\(245\) 126.277i 0.515417i
\(246\) 0 0
\(247\) 95.6481 0.387239
\(248\) 128.296i 0.517321i
\(249\) 0 0
\(250\) −170.331 −0.681323
\(251\) − 127.798i − 0.509157i −0.967052 0.254579i \(-0.918063\pi\)
0.967052 0.254579i \(-0.0819368\pi\)
\(252\) 0 0
\(253\) 28.2909 0.111822
\(254\) 302.193i 1.18974i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 309.939i 1.20599i 0.797746 + 0.602994i \(0.206026\pi\)
−0.797746 + 0.602994i \(0.793974\pi\)
\(258\) 0 0
\(259\) 86.8744 0.335423
\(260\) − 135.572i − 0.521432i
\(261\) 0 0
\(262\) 20.7312 0.0791266
\(263\) 376.490i 1.43152i 0.698346 + 0.715760i \(0.253920\pi\)
−0.698346 + 0.715760i \(0.746080\pi\)
\(264\) 0 0
\(265\) 231.173 0.872350
\(266\) − 13.3584i − 0.0502196i
\(267\) 0 0
\(268\) 56.7695 0.211827
\(269\) 265.016i 0.985188i 0.870259 + 0.492594i \(0.163951\pi\)
−0.870259 + 0.492594i \(0.836049\pi\)
\(270\) 0 0
\(271\) 32.4939 0.119904 0.0599518 0.998201i \(-0.480905\pi\)
0.0599518 + 0.998201i \(0.480905\pi\)
\(272\) − 12.5518i − 0.0461464i
\(273\) 0 0
\(274\) 191.215 0.697866
\(275\) − 10.3766i − 0.0377330i
\(276\) 0 0
\(277\) −467.389 −1.68733 −0.843663 0.536873i \(-0.819605\pi\)
−0.843663 + 0.536873i \(0.819605\pi\)
\(278\) − 105.568i − 0.379741i
\(279\) 0 0
\(280\) −18.9343 −0.0676226
\(281\) − 120.373i − 0.428374i −0.976793 0.214187i \(-0.931290\pi\)
0.976793 0.214187i \(-0.0687102\pi\)
\(282\) 0 0
\(283\) 320.113 1.13114 0.565570 0.824700i \(-0.308656\pi\)
0.565570 + 0.824700i \(0.308656\pi\)
\(284\) − 163.335i − 0.575123i
\(285\) 0 0
\(286\) 20.6755 0.0722919
\(287\) 107.371i 0.374114i
\(288\) 0 0
\(289\) 279.153 0.965928
\(290\) 81.6692i 0.281618i
\(291\) 0 0
\(292\) −50.4190 −0.172668
\(293\) 374.267i 1.27736i 0.769472 + 0.638680i \(0.220519\pi\)
−0.769472 + 0.638680i \(0.779481\pi\)
\(294\) 0 0
\(295\) 188.936 0.640460
\(296\) − 106.196i − 0.358771i
\(297\) 0 0
\(298\) 310.693 1.04260
\(299\) − 1062.27i − 3.55273i
\(300\) 0 0
\(301\) −140.115 −0.465497
\(302\) − 171.368i − 0.567444i
\(303\) 0 0
\(304\) −16.3295 −0.0537154
\(305\) − 102.188i − 0.335044i
\(306\) 0 0
\(307\) −328.889 −1.07130 −0.535650 0.844440i \(-0.679933\pi\)
−0.535650 + 0.844440i \(0.679933\pi\)
\(308\) − 2.88758i − 0.00937526i
\(309\) 0 0
\(310\) −185.592 −0.598684
\(311\) − 117.218i − 0.376906i −0.982082 0.188453i \(-0.939653\pi\)
0.982082 0.188453i \(-0.0603473\pi\)
\(312\) 0 0
\(313\) −373.935 −1.19468 −0.597340 0.801988i \(-0.703776\pi\)
−0.597340 + 0.801988i \(0.703776\pi\)
\(314\) − 98.4422i − 0.313510i
\(315\) 0 0
\(316\) −133.091 −0.421175
\(317\) 186.406i 0.588031i 0.955801 + 0.294016i \(0.0949917\pi\)
−0.955801 + 0.294016i \(0.905008\pi\)
\(318\) 0 0
\(319\) −12.4550 −0.0390438
\(320\) 23.1455i 0.0723298i
\(321\) 0 0
\(322\) −148.358 −0.460741
\(323\) 12.8103i 0.0396604i
\(324\) 0 0
\(325\) −389.620 −1.19883
\(326\) − 95.9073i − 0.294194i
\(327\) 0 0
\(328\) 131.251 0.400156
\(329\) − 7.17656i − 0.0218132i
\(330\) 0 0
\(331\) −465.115 −1.40518 −0.702590 0.711595i \(-0.747973\pi\)
−0.702590 + 0.711595i \(0.747973\pi\)
\(332\) 99.8533i 0.300763i
\(333\) 0 0
\(334\) 331.001 0.991020
\(335\) 82.1226i 0.245142i
\(336\) 0 0
\(337\) −445.216 −1.32112 −0.660558 0.750775i \(-0.729680\pi\)
−0.660558 + 0.750775i \(0.729680\pi\)
\(338\) − 537.321i − 1.58971i
\(339\) 0 0
\(340\) 18.1574 0.0534042
\(341\) − 28.3037i − 0.0830021i
\(342\) 0 0
\(343\) 214.366 0.624973
\(344\) 171.278i 0.497901i
\(345\) 0 0
\(346\) −75.7791 −0.219015
\(347\) − 485.183i − 1.39822i −0.715013 0.699111i \(-0.753579\pi\)
0.715013 0.699111i \(-0.246421\pi\)
\(348\) 0 0
\(349\) 237.937 0.681767 0.340883 0.940106i \(-0.389274\pi\)
0.340883 + 0.940106i \(0.389274\pi\)
\(350\) 54.4152i 0.155472i
\(351\) 0 0
\(352\) −3.52981 −0.0100279
\(353\) 508.399i 1.44022i 0.693858 + 0.720111i \(0.255909\pi\)
−0.693858 + 0.720111i \(0.744091\pi\)
\(354\) 0 0
\(355\) 236.280 0.665577
\(356\) − 256.651i − 0.720928i
\(357\) 0 0
\(358\) 14.0279 0.0391839
\(359\) − 507.938i − 1.41487i −0.706779 0.707435i \(-0.749852\pi\)
0.706779 0.707435i \(-0.250148\pi\)
\(360\) 0 0
\(361\) −344.334 −0.953834
\(362\) − 153.176i − 0.423137i
\(363\) 0 0
\(364\) −108.423 −0.297865
\(365\) − 72.9360i − 0.199825i
\(366\) 0 0
\(367\) 91.5734 0.249519 0.124759 0.992187i \(-0.460184\pi\)
0.124759 + 0.992187i \(0.460184\pi\)
\(368\) 181.355i 0.492813i
\(369\) 0 0
\(370\) 153.623 0.415198
\(371\) − 184.879i − 0.498325i
\(372\) 0 0
\(373\) −229.014 −0.613979 −0.306990 0.951713i \(-0.599322\pi\)
−0.306990 + 0.951713i \(0.599322\pi\)
\(374\) 2.76910i 0.00740401i
\(375\) 0 0
\(376\) −8.77271 −0.0233317
\(377\) 467.660i 1.24048i
\(378\) 0 0
\(379\) −143.466 −0.378539 −0.189269 0.981925i \(-0.560612\pi\)
−0.189269 + 0.981925i \(0.560612\pi\)
\(380\) − 23.6222i − 0.0621636i
\(381\) 0 0
\(382\) 220.681 0.577699
\(383\) 158.007i 0.412551i 0.978494 + 0.206275i \(0.0661343\pi\)
−0.978494 + 0.206275i \(0.933866\pi\)
\(384\) 0 0
\(385\) 4.17716 0.0108498
\(386\) 372.452i 0.964902i
\(387\) 0 0
\(388\) −281.890 −0.726521
\(389\) 219.357i 0.563899i 0.959429 + 0.281950i \(0.0909811\pi\)
−0.959429 + 0.281950i \(0.909019\pi\)
\(390\) 0 0
\(391\) 142.271 0.363865
\(392\) − 123.450i − 0.314924i
\(393\) 0 0
\(394\) −203.985 −0.517728
\(395\) − 192.529i − 0.487416i
\(396\) 0 0
\(397\) 79.9691 0.201433 0.100717 0.994915i \(-0.467886\pi\)
0.100717 + 0.994915i \(0.467886\pi\)
\(398\) − 376.568i − 0.946151i
\(399\) 0 0
\(400\) 66.5177 0.166294
\(401\) 598.931i 1.49359i 0.665052 + 0.746797i \(0.268409\pi\)
−0.665052 + 0.746797i \(0.731591\pi\)
\(402\) 0 0
\(403\) −1062.75 −2.63709
\(404\) 79.4744i 0.196719i
\(405\) 0 0
\(406\) 65.3143 0.160873
\(407\) 23.4283i 0.0575635i
\(408\) 0 0
\(409\) −93.7542 −0.229228 −0.114614 0.993410i \(-0.536563\pi\)
−0.114614 + 0.993410i \(0.536563\pi\)
\(410\) 189.868i 0.463092i
\(411\) 0 0
\(412\) −93.0642 −0.225884
\(413\) − 151.100i − 0.365859i
\(414\) 0 0
\(415\) −144.447 −0.348066
\(416\) 132.538i 0.318600i
\(417\) 0 0
\(418\) 3.60250 0.00861843
\(419\) 480.847i 1.14761i 0.818993 + 0.573804i \(0.194533\pi\)
−0.818993 + 0.573804i \(0.805467\pi\)
\(420\) 0 0
\(421\) −209.796 −0.498328 −0.249164 0.968461i \(-0.580156\pi\)
−0.249164 + 0.968461i \(0.580156\pi\)
\(422\) 288.512i 0.683678i
\(423\) 0 0
\(424\) −225.998 −0.533014
\(425\) − 52.1824i − 0.122782i
\(426\) 0 0
\(427\) −81.7244 −0.191392
\(428\) 215.874i 0.504379i
\(429\) 0 0
\(430\) −247.770 −0.576209
\(431\) 323.120i 0.749698i 0.927086 + 0.374849i \(0.122305\pi\)
−0.927086 + 0.374849i \(0.877695\pi\)
\(432\) 0 0
\(433\) 382.089 0.882422 0.441211 0.897403i \(-0.354549\pi\)
0.441211 + 0.897403i \(0.354549\pi\)
\(434\) 148.426i 0.341995i
\(435\) 0 0
\(436\) −122.788 −0.281623
\(437\) − 185.090i − 0.423547i
\(438\) 0 0
\(439\) −280.589 −0.639154 −0.319577 0.947560i \(-0.603541\pi\)
−0.319577 + 0.947560i \(0.603541\pi\)
\(440\) − 5.10622i − 0.0116050i
\(441\) 0 0
\(442\) 103.974 0.235236
\(443\) − 90.2873i − 0.203809i −0.994794 0.101904i \(-0.967506\pi\)
0.994794 0.101904i \(-0.0324936\pi\)
\(444\) 0 0
\(445\) 371.270 0.834314
\(446\) 25.5005i 0.0571761i
\(447\) 0 0
\(448\) 18.5105 0.0413180
\(449\) − 378.572i − 0.843146i −0.906795 0.421573i \(-0.861478\pi\)
0.906795 0.421573i \(-0.138522\pi\)
\(450\) 0 0
\(451\) −28.9558 −0.0642035
\(452\) 81.8393i 0.181060i
\(453\) 0 0
\(454\) −152.131 −0.335090
\(455\) − 156.844i − 0.344713i
\(456\) 0 0
\(457\) −397.770 −0.870395 −0.435197 0.900335i \(-0.643321\pi\)
−0.435197 + 0.900335i \(0.643321\pi\)
\(458\) 197.079i 0.430302i
\(459\) 0 0
\(460\) −262.348 −0.570321
\(461\) 401.965i 0.871941i 0.899961 + 0.435970i \(0.143595\pi\)
−0.899961 + 0.435970i \(0.856405\pi\)
\(462\) 0 0
\(463\) 190.589 0.411638 0.205819 0.978590i \(-0.434014\pi\)
0.205819 + 0.978590i \(0.434014\pi\)
\(464\) − 79.8410i − 0.172071i
\(465\) 0 0
\(466\) −92.3438 −0.198163
\(467\) 861.682i 1.84514i 0.385825 + 0.922572i \(0.373917\pi\)
−0.385825 + 0.922572i \(0.626083\pi\)
\(468\) 0 0
\(469\) 65.6769 0.140036
\(470\) − 12.6906i − 0.0270012i
\(471\) 0 0
\(472\) −184.706 −0.391327
\(473\) − 37.7862i − 0.0798862i
\(474\) 0 0
\(475\) −67.8875 −0.142921
\(476\) − 14.5213i − 0.0305068i
\(477\) 0 0
\(478\) 113.041 0.236487
\(479\) − 474.105i − 0.989782i −0.868955 0.494891i \(-0.835208\pi\)
0.868955 0.494891i \(-0.164792\pi\)
\(480\) 0 0
\(481\) 879.688 1.82887
\(482\) − 343.343i − 0.712330i
\(483\) 0 0
\(484\) −241.221 −0.498391
\(485\) − 407.781i − 0.840786i
\(486\) 0 0
\(487\) 118.562 0.243454 0.121727 0.992564i \(-0.461157\pi\)
0.121727 + 0.992564i \(0.461157\pi\)
\(488\) 99.9009i 0.204715i
\(489\) 0 0
\(490\) 178.583 0.364455
\(491\) 391.163i 0.796666i 0.917241 + 0.398333i \(0.130411\pi\)
−0.917241 + 0.398333i \(0.869589\pi\)
\(492\) 0 0
\(493\) −62.6344 −0.127047
\(494\) − 135.267i − 0.273820i
\(495\) 0 0
\(496\) 181.437 0.365801
\(497\) − 188.963i − 0.380207i
\(498\) 0 0
\(499\) 184.423 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(500\) 240.884i 0.481768i
\(501\) 0 0
\(502\) −180.734 −0.360029
\(503\) 875.816i 1.74119i 0.492004 + 0.870593i \(0.336264\pi\)
−0.492004 + 0.870593i \(0.663736\pi\)
\(504\) 0 0
\(505\) −114.967 −0.227658
\(506\) − 40.0094i − 0.0790699i
\(507\) 0 0
\(508\) 427.366 0.841272
\(509\) − 63.6850i − 0.125118i −0.998041 0.0625589i \(-0.980074\pi\)
0.998041 0.0625589i \(-0.0199261\pi\)
\(510\) 0 0
\(511\) −58.3300 −0.114149
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) 438.320 0.852762
\(515\) − 134.626i − 0.261410i
\(516\) 0 0
\(517\) 1.93538 0.00374348
\(518\) − 122.859i − 0.237180i
\(519\) 0 0
\(520\) −191.728 −0.368708
\(521\) 483.372i 0.927778i 0.885893 + 0.463889i \(0.153546\pi\)
−0.885893 + 0.463889i \(0.846454\pi\)
\(522\) 0 0
\(523\) 706.918 1.35166 0.675830 0.737058i \(-0.263785\pi\)
0.675830 + 0.737058i \(0.263785\pi\)
\(524\) − 29.3183i − 0.0559509i
\(525\) 0 0
\(526\) 532.437 1.01224
\(527\) − 142.336i − 0.270086i
\(528\) 0 0
\(529\) −1526.61 −2.88584
\(530\) − 326.928i − 0.616845i
\(531\) 0 0
\(532\) −18.8917 −0.0355106
\(533\) 1087.23i 2.03983i
\(534\) 0 0
\(535\) −312.283 −0.583706
\(536\) − 80.2843i − 0.149784i
\(537\) 0 0
\(538\) 374.789 0.696633
\(539\) 27.2348i 0.0505284i
\(540\) 0 0
\(541\) −64.3040 −0.118861 −0.0594307 0.998232i \(-0.518929\pi\)
−0.0594307 + 0.998232i \(0.518929\pi\)
\(542\) − 45.9533i − 0.0847847i
\(543\) 0 0
\(544\) −17.7510 −0.0326304
\(545\) − 177.624i − 0.325916i
\(546\) 0 0
\(547\) 172.930 0.316142 0.158071 0.987428i \(-0.449473\pi\)
0.158071 + 0.987428i \(0.449473\pi\)
\(548\) − 270.419i − 0.493466i
\(549\) 0 0
\(550\) −14.6747 −0.0266813
\(551\) 81.4852i 0.147886i
\(552\) 0 0
\(553\) −153.974 −0.278434
\(554\) 660.988i 1.19312i
\(555\) 0 0
\(556\) −149.296 −0.268518
\(557\) 664.213i 1.19248i 0.802805 + 0.596242i \(0.203340\pi\)
−0.802805 + 0.596242i \(0.796660\pi\)
\(558\) 0 0
\(559\) −1418.80 −2.53810
\(560\) 26.7772i 0.0478164i
\(561\) 0 0
\(562\) −170.233 −0.302906
\(563\) 310.996i 0.552390i 0.961102 + 0.276195i \(0.0890736\pi\)
−0.961102 + 0.276195i \(0.910926\pi\)
\(564\) 0 0
\(565\) −118.388 −0.209537
\(566\) − 452.707i − 0.799837i
\(567\) 0 0
\(568\) −230.991 −0.406673
\(569\) 327.687i 0.575899i 0.957646 + 0.287950i \(0.0929736\pi\)
−0.957646 + 0.287950i \(0.907026\pi\)
\(570\) 0 0
\(571\) −593.059 −1.03863 −0.519316 0.854582i \(-0.673813\pi\)
−0.519316 + 0.854582i \(0.673813\pi\)
\(572\) − 29.2395i − 0.0511181i
\(573\) 0 0
\(574\) 151.845 0.264538
\(575\) 753.959i 1.31123i
\(576\) 0 0
\(577\) 174.098 0.301729 0.150864 0.988554i \(-0.451794\pi\)
0.150864 + 0.988554i \(0.451794\pi\)
\(578\) − 394.782i − 0.683014i
\(579\) 0 0
\(580\) 115.498 0.199134
\(581\) 115.521i 0.198831i
\(582\) 0 0
\(583\) 49.8582 0.0855200
\(584\) 71.3033i 0.122095i
\(585\) 0 0
\(586\) 529.293 0.903230
\(587\) − 627.083i − 1.06828i −0.845395 0.534142i \(-0.820635\pi\)
0.845395 0.534142i \(-0.179365\pi\)
\(588\) 0 0
\(589\) −185.174 −0.314387
\(590\) − 267.195i − 0.452874i
\(591\) 0 0
\(592\) −150.184 −0.253690
\(593\) − 495.118i − 0.834938i −0.908691 0.417469i \(-0.862917\pi\)
0.908691 0.417469i \(-0.137083\pi\)
\(594\) 0 0
\(595\) 21.0064 0.0353049
\(596\) − 439.387i − 0.737226i
\(597\) 0 0
\(598\) −1502.27 −2.51216
\(599\) 169.737i 0.283368i 0.989912 + 0.141684i \(0.0452516\pi\)
−0.989912 + 0.141684i \(0.954748\pi\)
\(600\) 0 0
\(601\) −338.065 −0.562504 −0.281252 0.959634i \(-0.590750\pi\)
−0.281252 + 0.959634i \(0.590750\pi\)
\(602\) 198.152i 0.329156i
\(603\) 0 0
\(604\) −242.351 −0.401244
\(605\) − 348.950i − 0.576777i
\(606\) 0 0
\(607\) −924.685 −1.52337 −0.761685 0.647948i \(-0.775627\pi\)
−0.761685 + 0.647948i \(0.775627\pi\)
\(608\) 23.0934i 0.0379825i
\(609\) 0 0
\(610\) −144.516 −0.236912
\(611\) − 72.6696i − 0.118935i
\(612\) 0 0
\(613\) −113.083 −0.184475 −0.0922375 0.995737i \(-0.529402\pi\)
−0.0922375 + 0.995737i \(0.529402\pi\)
\(614\) 465.119i 0.757523i
\(615\) 0 0
\(616\) −4.08366 −0.00662931
\(617\) − 903.974i − 1.46511i −0.680707 0.732556i \(-0.738327\pi\)
0.680707 0.732556i \(-0.261673\pi\)
\(618\) 0 0
\(619\) −329.626 −0.532514 −0.266257 0.963902i \(-0.585787\pi\)
−0.266257 + 0.963902i \(0.585787\pi\)
\(620\) 262.467i 0.423333i
\(621\) 0 0
\(622\) −165.771 −0.266513
\(623\) − 296.920i − 0.476597i
\(624\) 0 0
\(625\) 67.2739 0.107638
\(626\) 528.824i 0.844766i
\(627\) 0 0
\(628\) −139.218 −0.221685
\(629\) 117.818i 0.187310i
\(630\) 0 0
\(631\) 583.986 0.925492 0.462746 0.886491i \(-0.346864\pi\)
0.462746 + 0.886491i \(0.346864\pi\)
\(632\) 188.220i 0.297816i
\(633\) 0 0
\(634\) 263.618 0.415801
\(635\) 618.226i 0.973585i
\(636\) 0 0
\(637\) 1022.61 1.60536
\(638\) 17.6140i 0.0276081i
\(639\) 0 0
\(640\) 32.7327 0.0511449
\(641\) − 883.002i − 1.37754i −0.724981 0.688769i \(-0.758152\pi\)
0.724981 0.688769i \(-0.241848\pi\)
\(642\) 0 0
\(643\) −637.657 −0.991690 −0.495845 0.868411i \(-0.665142\pi\)
−0.495845 + 0.868411i \(0.665142\pi\)
\(644\) 209.811i 0.325793i
\(645\) 0 0
\(646\) 18.1165 0.0280441
\(647\) − 950.774i − 1.46951i −0.678332 0.734756i \(-0.737297\pi\)
0.678332 0.734756i \(-0.262703\pi\)
\(648\) 0 0
\(649\) 40.7487 0.0627868
\(650\) 551.006i 0.847702i
\(651\) 0 0
\(652\) −135.633 −0.208027
\(653\) − 134.486i − 0.205951i −0.994684 0.102976i \(-0.967164\pi\)
0.994684 0.102976i \(-0.0328364\pi\)
\(654\) 0 0
\(655\) 42.4117 0.0647507
\(656\) − 185.617i − 0.282953i
\(657\) 0 0
\(658\) −10.1492 −0.0154243
\(659\) − 72.1254i − 0.109447i −0.998502 0.0547234i \(-0.982572\pi\)
0.998502 0.0547234i \(-0.0174277\pi\)
\(660\) 0 0
\(661\) 682.102 1.03192 0.515962 0.856612i \(-0.327435\pi\)
0.515962 + 0.856612i \(0.327435\pi\)
\(662\) 657.771i 0.993612i
\(663\) 0 0
\(664\) 141.214 0.212671
\(665\) − 27.3286i − 0.0410956i
\(666\) 0 0
\(667\) 904.974 1.35678
\(668\) − 468.105i − 0.700757i
\(669\) 0 0
\(670\) 116.139 0.173342
\(671\) − 22.0395i − 0.0328457i
\(672\) 0 0
\(673\) −328.704 −0.488416 −0.244208 0.969723i \(-0.578528\pi\)
−0.244208 + 0.969723i \(0.578528\pi\)
\(674\) 629.631i 0.934170i
\(675\) 0 0
\(676\) −759.887 −1.12409
\(677\) 492.508i 0.727485i 0.931499 + 0.363743i \(0.118501\pi\)
−0.931499 + 0.363743i \(0.881499\pi\)
\(678\) 0 0
\(679\) −326.120 −0.480294
\(680\) − 25.6785i − 0.0377625i
\(681\) 0 0
\(682\) −40.0275 −0.0586914
\(683\) − 837.431i − 1.22611i −0.790042 0.613053i \(-0.789941\pi\)
0.790042 0.613053i \(-0.210059\pi\)
\(684\) 0 0
\(685\) 391.188 0.571077
\(686\) − 303.159i − 0.441923i
\(687\) 0 0
\(688\) 242.223 0.352069
\(689\) − 1872.08i − 2.71709i
\(690\) 0 0
\(691\) −163.612 −0.236776 −0.118388 0.992967i \(-0.537773\pi\)
−0.118388 + 0.992967i \(0.537773\pi\)
\(692\) 107.168i 0.154867i
\(693\) 0 0
\(694\) −686.153 −0.988692
\(695\) − 215.971i − 0.310749i
\(696\) 0 0
\(697\) −145.615 −0.208916
\(698\) − 336.493i − 0.482082i
\(699\) 0 0
\(700\) 76.9546 0.109935
\(701\) 730.990i 1.04278i 0.853318 + 0.521391i \(0.174587\pi\)
−0.853318 + 0.521391i \(0.825413\pi\)
\(702\) 0 0
\(703\) 153.277 0.218033
\(704\) 4.99191i 0.00709078i
\(705\) 0 0
\(706\) 718.984 1.01839
\(707\) 91.9443i 0.130048i
\(708\) 0 0
\(709\) 800.431 1.12896 0.564479 0.825447i \(-0.309077\pi\)
0.564479 + 0.825447i \(0.309077\pi\)
\(710\) − 334.150i − 0.470634i
\(711\) 0 0
\(712\) −362.959 −0.509773
\(713\) 2056.54i 2.88435i
\(714\) 0 0
\(715\) 42.2978 0.0591578
\(716\) − 19.8384i − 0.0277072i
\(717\) 0 0
\(718\) −718.333 −1.00046
\(719\) − 119.410i − 0.166078i −0.996546 0.0830392i \(-0.973537\pi\)
0.996546 0.0830392i \(-0.0264627\pi\)
\(720\) 0 0
\(721\) −107.666 −0.149329
\(722\) 486.962i 0.674463i
\(723\) 0 0
\(724\) −216.623 −0.299203
\(725\) − 331.928i − 0.457831i
\(726\) 0 0
\(727\) −135.695 −0.186651 −0.0933254 0.995636i \(-0.529750\pi\)
−0.0933254 + 0.995636i \(0.529750\pi\)
\(728\) 153.333i 0.210623i
\(729\) 0 0
\(730\) −103.147 −0.141297
\(731\) − 190.022i − 0.259947i
\(732\) 0 0
\(733\) 752.046 1.02598 0.512992 0.858393i \(-0.328537\pi\)
0.512992 + 0.858393i \(0.328537\pi\)
\(734\) − 129.504i − 0.176436i
\(735\) 0 0
\(736\) 256.475 0.348471
\(737\) 17.7118i 0.0240323i
\(738\) 0 0
\(739\) −1137.53 −1.53928 −0.769642 0.638476i \(-0.779565\pi\)
−0.769642 + 0.638476i \(0.779565\pi\)
\(740\) − 217.256i − 0.293589i
\(741\) 0 0
\(742\) −261.458 −0.352369
\(743\) − 718.359i − 0.966835i −0.875390 0.483418i \(-0.839395\pi\)
0.875390 0.483418i \(-0.160605\pi\)
\(744\) 0 0
\(745\) 635.616 0.853175
\(746\) 323.875i 0.434149i
\(747\) 0 0
\(748\) 3.91610 0.00523542
\(749\) 249.746i 0.333439i
\(750\) 0 0
\(751\) 628.147 0.836414 0.418207 0.908352i \(-0.362659\pi\)
0.418207 + 0.908352i \(0.362659\pi\)
\(752\) 12.4065i 0.0164980i
\(753\) 0 0
\(754\) 661.371 0.877149
\(755\) − 350.584i − 0.464350i
\(756\) 0 0
\(757\) 393.374 0.519648 0.259824 0.965656i \(-0.416335\pi\)
0.259824 + 0.965656i \(0.416335\pi\)
\(758\) 202.892i 0.267667i
\(759\) 0 0
\(760\) −33.4068 −0.0439563
\(761\) − 808.968i − 1.06303i −0.847048 0.531517i \(-0.821622\pi\)
0.847048 0.531517i \(-0.178378\pi\)
\(762\) 0 0
\(763\) −142.054 −0.186178
\(764\) − 312.090i − 0.408495i
\(765\) 0 0
\(766\) 223.456 0.291717
\(767\) − 1530.03i − 1.99483i
\(768\) 0 0
\(769\) 89.5214 0.116413 0.0582064 0.998305i \(-0.481462\pi\)
0.0582064 + 0.998305i \(0.481462\pi\)
\(770\) − 5.90740i − 0.00767195i
\(771\) 0 0
\(772\) 526.727 0.682289
\(773\) − 1216.61i − 1.57388i −0.617030 0.786939i \(-0.711664\pi\)
0.617030 0.786939i \(-0.288336\pi\)
\(774\) 0 0
\(775\) 754.300 0.973291
\(776\) 398.653i 0.513728i
\(777\) 0 0
\(778\) 310.217 0.398737
\(779\) 189.440i 0.243183i
\(780\) 0 0
\(781\) 50.9596 0.0652492
\(782\) − 201.202i − 0.257291i
\(783\) 0 0
\(784\) −174.585 −0.222685
\(785\) − 201.393i − 0.256551i
\(786\) 0 0
\(787\) 820.609 1.04270 0.521352 0.853341i \(-0.325428\pi\)
0.521352 + 0.853341i \(0.325428\pi\)
\(788\) 288.478i 0.366089i
\(789\) 0 0
\(790\) −272.278 −0.344655
\(791\) 94.6802i 0.119697i
\(792\) 0 0
\(793\) −827.539 −1.04355
\(794\) − 113.093i − 0.142435i
\(795\) 0 0
\(796\) −532.548 −0.669030
\(797\) 957.478i 1.20135i 0.799492 + 0.600676i \(0.205102\pi\)
−0.799492 + 0.600676i \(0.794898\pi\)
\(798\) 0 0
\(799\) 9.73275 0.0121812
\(800\) − 94.0703i − 0.117588i
\(801\) 0 0
\(802\) 847.017 1.05613
\(803\) − 15.7305i − 0.0195896i
\(804\) 0 0
\(805\) −303.511 −0.377033
\(806\) 1502.95i 1.86471i
\(807\) 0 0
\(808\) 112.394 0.139101
\(809\) − 180.576i − 0.223209i −0.993753 0.111605i \(-0.964401\pi\)
0.993753 0.111605i \(-0.0355990\pi\)
\(810\) 0 0
\(811\) 518.424 0.639240 0.319620 0.947546i \(-0.396445\pi\)
0.319620 + 0.947546i \(0.396445\pi\)
\(812\) − 92.3684i − 0.113754i
\(813\) 0 0
\(814\) 33.1327 0.0407035
\(815\) − 196.207i − 0.240745i
\(816\) 0 0
\(817\) −247.212 −0.302585
\(818\) 132.588i 0.162089i
\(819\) 0 0
\(820\) 268.513 0.327455
\(821\) 274.490i 0.334336i 0.985928 + 0.167168i \(0.0534622\pi\)
−0.985928 + 0.167168i \(0.946538\pi\)
\(822\) 0 0
\(823\) −618.304 −0.751281 −0.375640 0.926766i \(-0.622577\pi\)
−0.375640 + 0.926766i \(0.622577\pi\)
\(824\) 131.613i 0.159724i
\(825\) 0 0
\(826\) −213.687 −0.258701
\(827\) − 776.527i − 0.938968i −0.882941 0.469484i \(-0.844440\pi\)
0.882941 0.469484i \(-0.155560\pi\)
\(828\) 0 0
\(829\) −530.515 −0.639946 −0.319973 0.947427i \(-0.603674\pi\)
−0.319973 + 0.947427i \(0.603674\pi\)
\(830\) 204.279i 0.246120i
\(831\) 0 0
\(832\) 187.436 0.225284
\(833\) 136.960i 0.164418i
\(834\) 0 0
\(835\) 677.160 0.810970
\(836\) − 5.09471i − 0.00609415i
\(837\) 0 0
\(838\) 680.021 0.811481
\(839\) − 1007.88i − 1.20129i −0.799516 0.600645i \(-0.794911\pi\)
0.799516 0.600645i \(-0.205089\pi\)
\(840\) 0 0
\(841\) 442.588 0.526264
\(842\) 296.697i 0.352371i
\(843\) 0 0
\(844\) 408.018 0.483434
\(845\) − 1099.25i − 1.30089i
\(846\) 0 0
\(847\) −279.070 −0.329480
\(848\) 319.609i 0.376898i
\(849\) 0 0
\(850\) −73.7971 −0.0868201
\(851\) − 1702.29i − 2.00035i
\(852\) 0 0
\(853\) 872.111 1.02240 0.511202 0.859461i \(-0.329200\pi\)
0.511202 + 0.859461i \(0.329200\pi\)
\(854\) 115.576i 0.135335i
\(855\) 0 0
\(856\) 305.292 0.356650
\(857\) 834.862i 0.974168i 0.873355 + 0.487084i \(0.161939\pi\)
−0.873355 + 0.487084i \(0.838061\pi\)
\(858\) 0 0
\(859\) −67.7280 −0.0788451 −0.0394226 0.999223i \(-0.512552\pi\)
−0.0394226 + 0.999223i \(0.512552\pi\)
\(860\) 350.400i 0.407441i
\(861\) 0 0
\(862\) 456.961 0.530117
\(863\) 1191.58i 1.38074i 0.723456 + 0.690370i \(0.242552\pi\)
−0.723456 + 0.690370i \(0.757448\pi\)
\(864\) 0 0
\(865\) −155.029 −0.179224
\(866\) − 540.355i − 0.623967i
\(867\) 0 0
\(868\) 209.906 0.241827
\(869\) − 41.5238i − 0.0477834i
\(870\) 0 0
\(871\) 665.042 0.763539
\(872\) 173.648i 0.199138i
\(873\) 0 0
\(874\) −261.757 −0.299493
\(875\) 278.680i 0.318491i
\(876\) 0 0
\(877\) −736.389 −0.839668 −0.419834 0.907601i \(-0.637912\pi\)
−0.419834 + 0.907601i \(0.637912\pi\)
\(878\) 396.812i 0.451950i
\(879\) 0 0
\(880\) −7.22128 −0.00820600
\(881\) − 1188.05i − 1.34853i −0.738492 0.674263i \(-0.764462\pi\)
0.738492 0.674263i \(-0.235538\pi\)
\(882\) 0 0
\(883\) −1018.97 −1.15399 −0.576993 0.816749i \(-0.695774\pi\)
−0.576993 + 0.816749i \(0.695774\pi\)
\(884\) − 147.042i − 0.166337i
\(885\) 0 0
\(886\) −127.686 −0.144115
\(887\) 781.771i 0.881365i 0.897663 + 0.440683i \(0.145264\pi\)
−0.897663 + 0.440683i \(0.854736\pi\)
\(888\) 0 0
\(889\) 494.422 0.556155
\(890\) − 525.055i − 0.589949i
\(891\) 0 0
\(892\) 36.0632 0.0404296
\(893\) − 12.6620i − 0.0141791i
\(894\) 0 0
\(895\) 28.6981 0.0320649
\(896\) − 26.1778i − 0.0292162i
\(897\) 0 0
\(898\) −535.382 −0.596194
\(899\) − 905.384i − 1.00710i
\(900\) 0 0
\(901\) 250.730 0.278280
\(902\) 40.9496i 0.0453987i
\(903\) 0 0
\(904\) 115.738 0.128029
\(905\) − 313.366i − 0.346261i
\(906\) 0 0
\(907\) 479.654 0.528835 0.264418 0.964408i \(-0.414820\pi\)
0.264418 + 0.964408i \(0.414820\pi\)
\(908\) 215.145i 0.236944i
\(909\) 0 0
\(910\) −221.811 −0.243749
\(911\) − 639.316i − 0.701774i −0.936418 0.350887i \(-0.885880\pi\)
0.936418 0.350887i \(-0.114120\pi\)
\(912\) 0 0
\(913\) −31.1537 −0.0341223
\(914\) 562.532i 0.615462i
\(915\) 0 0
\(916\) 278.711 0.304270
\(917\) − 33.9184i − 0.0369885i
\(918\) 0 0
\(919\) −14.7768 −0.0160792 −0.00803959 0.999968i \(-0.502559\pi\)
−0.00803959 + 0.999968i \(0.502559\pi\)
\(920\) 371.016i 0.403278i
\(921\) 0 0
\(922\) 568.464 0.616555
\(923\) − 1913.43i − 2.07306i
\(924\) 0 0
\(925\) −624.370 −0.674995
\(926\) − 269.533i − 0.291072i
\(927\) 0 0
\(928\) −112.912 −0.121673
\(929\) 1237.15i 1.33170i 0.746086 + 0.665849i \(0.231931\pi\)
−0.746086 + 0.665849i \(0.768069\pi\)
\(930\) 0 0
\(931\) 178.180 0.191386
\(932\) 130.594i 0.140122i
\(933\) 0 0
\(934\) 1218.60 1.30471
\(935\) 5.66501i 0.00605884i
\(936\) 0 0
\(937\) 1528.09 1.63084 0.815418 0.578873i \(-0.196507\pi\)
0.815418 + 0.578873i \(0.196507\pi\)
\(938\) − 92.8812i − 0.0990205i
\(939\) 0 0
\(940\) −17.9472 −0.0190927
\(941\) − 1029.72i − 1.09428i −0.837042 0.547139i \(-0.815717\pi\)
0.837042 0.547139i \(-0.184283\pi\)
\(942\) 0 0
\(943\) 2103.92 2.23109
\(944\) 261.214i 0.276710i
\(945\) 0 0
\(946\) −53.4377 −0.0564881
\(947\) − 131.201i − 0.138544i −0.997598 0.0692720i \(-0.977932\pi\)
0.997598 0.0692720i \(-0.0220676\pi\)
\(948\) 0 0
\(949\) −590.648 −0.622389
\(950\) 96.0075i 0.101061i
\(951\) 0 0
\(952\) −20.5362 −0.0215716
\(953\) 1412.22i 1.48187i 0.671575 + 0.740936i \(0.265618\pi\)
−0.671575 + 0.740936i \(0.734382\pi\)
\(954\) 0 0
\(955\) 451.469 0.472742
\(956\) − 159.864i − 0.167222i
\(957\) 0 0
\(958\) −670.486 −0.699881
\(959\) − 312.849i − 0.326224i
\(960\) 0 0
\(961\) 1096.47 1.14097
\(962\) − 1244.07i − 1.29321i
\(963\) 0 0
\(964\) −485.560 −0.503693
\(965\) 761.962i 0.789597i
\(966\) 0 0
\(967\) 581.576 0.601423 0.300712 0.953715i \(-0.402776\pi\)
0.300712 + 0.953715i \(0.402776\pi\)
\(968\) 341.138i 0.352416i
\(969\) 0 0
\(970\) −576.690 −0.594525
\(971\) − 208.668i − 0.214900i −0.994210 0.107450i \(-0.965731\pi\)
0.994210 0.107450i \(-0.0342686\pi\)
\(972\) 0 0
\(973\) −172.721 −0.177514
\(974\) − 167.672i − 0.172148i
\(975\) 0 0
\(976\) 141.281 0.144755
\(977\) 1758.66i 1.80006i 0.435826 + 0.900031i \(0.356456\pi\)
−0.435826 + 0.900031i \(0.643544\pi\)
\(978\) 0 0
\(979\) 80.0735 0.0817911
\(980\) − 252.554i − 0.257708i
\(981\) 0 0
\(982\) 553.188 0.563328
\(983\) − 1237.15i − 1.25854i −0.777186 0.629270i \(-0.783354\pi\)
0.777186 0.629270i \(-0.216646\pi\)
\(984\) 0 0
\(985\) −417.312 −0.423667
\(986\) 88.5784i 0.0898361i
\(987\) 0 0
\(988\) −191.296 −0.193620
\(989\) 2745.53i 2.77607i
\(990\) 0 0
\(991\) 769.340 0.776327 0.388163 0.921591i \(-0.373110\pi\)
0.388163 + 0.921591i \(0.373110\pi\)
\(992\) − 256.591i − 0.258660i
\(993\) 0 0
\(994\) −267.234 −0.268847
\(995\) − 770.382i − 0.774253i
\(996\) 0 0
\(997\) −88.9580 −0.0892257 −0.0446129 0.999004i \(-0.514205\pi\)
−0.0446129 + 0.999004i \(0.514205\pi\)
\(998\) − 260.814i − 0.261337i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.6 36
3.2 odd 2 inner 1458.3.b.c.1457.31 36
27.5 odd 18 54.3.f.a.29.4 36
27.11 odd 18 162.3.f.a.71.1 36
27.16 even 9 54.3.f.a.41.4 yes 36
27.22 even 9 162.3.f.a.89.1 36
108.43 odd 18 432.3.bc.c.257.4 36
108.59 even 18 432.3.bc.c.353.4 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.29.4 36 27.5 odd 18
54.3.f.a.41.4 yes 36 27.16 even 9
162.3.f.a.71.1 36 27.11 odd 18
162.3.f.a.89.1 36 27.22 even 9
432.3.bc.c.257.4 36 108.43 odd 18
432.3.bc.c.353.4 36 108.59 even 18
1458.3.b.c.1457.6 36 1.1 even 1 trivial
1458.3.b.c.1457.31 36 3.2 odd 2 inner