Properties

Label 147.2.c.a
Level $147$
Weight $2$
Character orbit 147.c
Analytic conductor $1.174$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,2,Mod(146,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.17380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + 2 q^{4} - 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} + 2 q^{4} - 3 q^{9} - 2 \beta q^{12} - \beta q^{13} + 4 q^{16} + 3 \beta q^{19} - 5 q^{25} + 3 \beta q^{27} + 5 \beta q^{31} - 6 q^{36} + q^{37} - 3 q^{39} - 5 q^{43} - 4 \beta q^{48} - 2 \beta q^{52} + 9 q^{57} - 4 \beta q^{61} + 8 q^{64} + 11 q^{67} - 9 \beta q^{73} + 5 \beta q^{75} + 6 \beta q^{76} - 13 q^{79} + 9 q^{81} + 15 q^{93} - 8 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{4} - 6 q^{9} + 8 q^{16} - 10 q^{25} - 12 q^{36} + 2 q^{37} - 6 q^{39} - 10 q^{43} + 18 q^{57} + 16 q^{64} + 22 q^{67} - 26 q^{79} + 18 q^{81} + 30 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
146.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 2.00000 0 0 0 0 −3.00000 0
146.2 0 1.73205i 2.00000 0 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.2.c.a 2
3.b odd 2 1 CM 147.2.c.a 2
4.b odd 2 1 2352.2.k.c 2
7.b odd 2 1 inner 147.2.c.a 2
7.c even 3 1 21.2.g.a 2
7.c even 3 1 147.2.g.a 2
7.d odd 6 1 21.2.g.a 2
7.d odd 6 1 147.2.g.a 2
12.b even 2 1 2352.2.k.c 2
21.c even 2 1 inner 147.2.c.a 2
21.g even 6 1 21.2.g.a 2
21.g even 6 1 147.2.g.a 2
21.h odd 6 1 21.2.g.a 2
21.h odd 6 1 147.2.g.a 2
28.d even 2 1 2352.2.k.c 2
28.f even 6 1 336.2.bc.c 2
28.g odd 6 1 336.2.bc.c 2
35.i odd 6 1 525.2.t.c 2
35.j even 6 1 525.2.t.c 2
35.k even 12 2 525.2.q.d 4
35.l odd 12 2 525.2.q.d 4
63.g even 3 1 567.2.s.a 2
63.h even 3 1 567.2.i.b 2
63.i even 6 1 567.2.i.b 2
63.j odd 6 1 567.2.i.b 2
63.k odd 6 1 567.2.s.a 2
63.n odd 6 1 567.2.s.a 2
63.s even 6 1 567.2.s.a 2
63.t odd 6 1 567.2.i.b 2
84.h odd 2 1 2352.2.k.c 2
84.j odd 6 1 336.2.bc.c 2
84.n even 6 1 336.2.bc.c 2
105.o odd 6 1 525.2.t.c 2
105.p even 6 1 525.2.t.c 2
105.w odd 12 2 525.2.q.d 4
105.x even 12 2 525.2.q.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.g.a 2 7.c even 3 1
21.2.g.a 2 7.d odd 6 1
21.2.g.a 2 21.g even 6 1
21.2.g.a 2 21.h odd 6 1
147.2.c.a 2 1.a even 1 1 trivial
147.2.c.a 2 3.b odd 2 1 CM
147.2.c.a 2 7.b odd 2 1 inner
147.2.c.a 2 21.c even 2 1 inner
147.2.g.a 2 7.c even 3 1
147.2.g.a 2 7.d odd 6 1
147.2.g.a 2 21.g even 6 1
147.2.g.a 2 21.h odd 6 1
336.2.bc.c 2 28.f even 6 1
336.2.bc.c 2 28.g odd 6 1
336.2.bc.c 2 84.j odd 6 1
336.2.bc.c 2 84.n even 6 1
525.2.q.d 4 35.k even 12 2
525.2.q.d 4 35.l odd 12 2
525.2.q.d 4 105.w odd 12 2
525.2.q.d 4 105.x even 12 2
525.2.t.c 2 35.i odd 6 1
525.2.t.c 2 35.j even 6 1
525.2.t.c 2 105.o odd 6 1
525.2.t.c 2 105.p even 6 1
567.2.i.b 2 63.h even 3 1
567.2.i.b 2 63.i even 6 1
567.2.i.b 2 63.j odd 6 1
567.2.i.b 2 63.t odd 6 1
567.2.s.a 2 63.g even 3 1
567.2.s.a 2 63.k odd 6 1
567.2.s.a 2 63.n odd 6 1
567.2.s.a 2 63.s even 6 1
2352.2.k.c 2 4.b odd 2 1
2352.2.k.c 2 12.b even 2 1
2352.2.k.c 2 28.d even 2 1
2352.2.k.c 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(147, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 27 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 75 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 48 \) Copy content Toggle raw display
$67$ \( (T - 11)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 243 \) Copy content Toggle raw display
$79$ \( (T + 13)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 192 \) Copy content Toggle raw display
show more
show less