Properties

Label 147.2.o.a
Level 147147
Weight 22
Character orbit 147.o
Analytic conductor 1.1741.174
Analytic rank 00
Dimension 1212
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,2,Mod(5,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 29])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 147=372 147 = 3 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 147.o (of order 4242, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.173800909711.17380090971
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ21)\Q(\zeta_{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+x9x8+x6x4+x3x+1 x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D42]\mathrm{U}(1)[D_{42}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ21\zeta_{21}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ218+2ζ21)q3+(2ζ21102ζ213)q4+(ζ2111+ζ219++1)q7+(3ζ219+3ζ212)q9+(4ζ21112ζ214)q12++(3ζ2111+14ζ219++3)q97+O(q100) q + (\zeta_{21}^{8} + 2 \zeta_{21}) q^{3} + ( - 2 \zeta_{21}^{10} - 2 \zeta_{21}^{3}) q^{4} + ( - \zeta_{21}^{11} + \zeta_{21}^{9} + \cdots + 1) q^{7} + (3 \zeta_{21}^{9} + 3 \zeta_{21}^{2}) q^{9} + ( - 4 \zeta_{21}^{11} - 2 \zeta_{21}^{4}) q^{12}+ \cdots + ( - 3 \zeta_{21}^{11} + 14 \zeta_{21}^{9} + \cdots + 3) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+3q3+2q4q73q96q12+4q16+9q19+6q215q258q2815q31+12q3676q3766q39+10q43+13q49+34q5218q57++15q93+O(q100) 12 q + 3 q^{3} + 2 q^{4} - q^{7} - 3 q^{9} - 6 q^{12} + 4 q^{16} + 9 q^{19} + 6 q^{21} - 5 q^{25} - 8 q^{28} - 15 q^{31} + 12 q^{36} - 76 q^{37} - 66 q^{39} + 10 q^{43} + 13 q^{49} + 34 q^{52} - 18 q^{57}+ \cdots + 15 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/147Z)×\left(\mathbb{Z}/147\mathbb{Z}\right)^\times.

nn 5050 5252
χ(n)\chi(n) 1-1 ζ212+ζ219\zeta_{21}^{2} + \zeta_{21}^{9}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
5.1
0.0747301 0.997204i
−0.733052 + 0.680173i
−0.733052 0.680173i
0.365341 0.930874i
−0.988831 + 0.149042i
0.0747301 + 0.997204i
0.365341 + 0.930874i
0.826239 + 0.563320i
0.955573 + 0.294755i
−0.988831 0.149042i
0.826239 0.563320i
0.955573 0.294755i
0 0.975699 1.43109i 1.91115 0.589510i 0 0 −1.71951 + 2.01079i 0 −1.09602 2.79262i 0
17.1 0 −0.510531 + 1.65510i −1.97766 + 0.298085i 0 0 −1.57775 + 2.12384i 0 −2.47872 1.68996i 0
26.1 0 −0.510531 1.65510i −1.97766 0.298085i 0 0 −1.57775 2.12384i 0 −2.47872 + 1.68996i 0
38.1 0 −0.258149 1.71271i 0.149460 1.99441i 0 0 −2.64420 + 0.0906624i 0 −2.86672 + 0.884266i 0
47.1 0 −1.61232 0.632789i 1.65248 + 1.12664i 0 0 2.42168 1.06559i 0 2.19916 + 2.04052i 0
59.1 0 0.975699 + 1.43109i 1.91115 + 0.589510i 0 0 −1.71951 2.01079i 0 −1.09602 + 2.79262i 0
89.1 0 −0.258149 + 1.71271i 0.149460 + 1.99441i 0 0 −2.64420 0.0906624i 0 −2.86672 0.884266i 0
101.1 0 1.72721 + 0.129436i −1.46610 1.36035i 0 0 2.34300 1.22896i 0 2.96649 + 0.447127i 0
110.1 0 1.17809 + 1.26968i 0.730682 1.86175i 0 0 0.676779 2.55773i 0 −0.224190 + 2.99161i 0
122.1 0 −1.61232 + 0.632789i 1.65248 1.12664i 0 0 2.42168 + 1.06559i 0 2.19916 2.04052i 0
131.1 0 1.72721 0.129436i −1.46610 + 1.36035i 0 0 2.34300 + 1.22896i 0 2.96649 0.447127i 0
143.1 0 1.17809 1.26968i 0.730682 + 1.86175i 0 0 0.676779 + 2.55773i 0 −0.224190 2.99161i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
49.h odd 42 1 inner
147.o even 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.2.o.a 12
3.b odd 2 1 CM 147.2.o.a 12
49.h odd 42 1 inner 147.2.o.a 12
147.o even 42 1 inner 147.2.o.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.2.o.a 12 1.a even 1 1 trivial
147.2.o.a 12 3.b odd 2 1 CM
147.2.o.a 12 49.h odd 42 1 inner
147.2.o.a 12 147.o even 42 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S2new(147,[χ])S_{2}^{\mathrm{new}}(147, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T123T11++729 T^{12} - 3 T^{11} + \cdots + 729 Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12+T11++117649 T^{12} + T^{11} + \cdots + 117649 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T123T10++82319329 T^{12} - 3 T^{10} + \cdots + 82319329 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12++124791241 T^{12} + \cdots + 124791241 Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T12+15T11++3108169 T^{12} + 15 T^{11} + \cdots + 3108169 Copy content Toggle raw display
3737 T12++112669649569 T^{12} + \cdots + 112669649569 Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12++6707446201 T^{12} + \cdots + 6707446201 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12++1476788041 T^{12} + \cdots + 1476788041 Copy content Toggle raw display
6767 T12++163181257849 T^{12} + \cdots + 163181257849 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12++175555134049 T^{12} + \cdots + 175555134049 Copy content Toggle raw display
7979 T12++120762505081 T^{12} + \cdots + 120762505081 Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12++902334707569 T^{12} + \cdots + 902334707569 Copy content Toggle raw display
show more
show less