gp: [N,k,chi] = [147,2,Mod(5,147)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(147, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([21, 29]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("147.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 21 \zeta_{21} ζ 2 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 147 Z ) × \left(\mathbb{Z}/147\mathbb{Z}\right)^\times ( Z / 1 4 7 Z ) × .
n n n
50 50 5 0
52 52 5 2
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
ζ 21 2 + ζ 21 9 \zeta_{21}^{2} + \zeta_{21}^{9} ζ 2 1 2 + ζ 2 1 9
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 T_{2} T 2
T2
acting on S 2 n e w ( 147 , [ χ ] ) S_{2}^{\mathrm{new}}(147, [\chi]) S 2 n e w ( 1 4 7 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 − 3 T 11 + ⋯ + 729 T^{12} - 3 T^{11} + \cdots + 729 T 1 2 − 3 T 1 1 + ⋯ + 7 2 9
T^12 - 3*T^11 + 6*T^10 - 9*T^9 + 9*T^8 - 27*T^6 + 81*T^4 - 243*T^3 + 486*T^2 - 729*T + 729
5 5 5
T 12 T^{12} T 1 2
T^12
7 7 7
T 12 + T 11 + ⋯ + 117649 T^{12} + T^{11} + \cdots + 117649 T 1 2 + T 1 1 + ⋯ + 1 1 7 6 4 9
T^12 + T^11 - 6*T^10 - 13*T^9 + 29*T^8 + 120*T^7 - 83*T^6 + 840*T^5 + 1421*T^4 - 4459*T^3 - 14406*T^2 + 16807*T + 117649
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
T 12 − 3 T 10 + ⋯ + 82319329 T^{12} - 3 T^{10} + \cdots + 82319329 T 1 2 − 3 T 1 0 + ⋯ + 8 2 3 1 9 3 2 9
T^12 - 3*T^10 - 637*T^9 + 9*T^8 + 8281*T^7 + 134835*T^6 - 24843*T^5 - 1986176*T^4 - 9721894*T^3 + 21674956*T^2 + 75133513*T + 82319329
17 17 1 7
T 12 T^{12} T 1 2
T^12
19 19 1 9
T 12 + ⋯ + 124791241 T^{12} + \cdots + 124791241 T 1 2 + ⋯ + 1 2 4 7 9 1 2 4 1
T^12 - 9*T^11 - 79*T^10 + 954*T^9 + 6182*T^8 - 81396*T^7 - 10506*T^6 + 2191707*T^5 - 284514*T^4 - 43243776*T^3 + 154218160*T^2 - 220381488*T + 124791241
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
T 12 + 15 T 11 + ⋯ + 3108169 T^{12} + 15 T^{11} + \cdots + 3108169 T 1 2 + 1 5 T 1 1 + ⋯ + 3 1 0 8 1 6 9
T^12 + 15*T^11 - 67*T^10 - 2130*T^9 + 6710*T^8 + 260400*T^7 + 900306*T^6 - 5998965*T^5 - 21749838*T^4 + 117936240*T^3 + 594624652*T^2 + 74151780*T + 3108169
37 37 3 7
T 12 + ⋯ + 112669649569 T^{12} + \cdots + 112669649569 T 1 2 + ⋯ + 1 1 2 6 6 9 6 4 9 5 6 9
T^12 + 76*T^11 + 2723*T^10 + 60880*T^9 + 947666*T^8 + 10849300*T^7 + 94043391*T^6 + 625802254*T^5 + 3217002277*T^4 + 12858157502*T^3 + 39881159388*T^2 + 89829460734*T + 112669649569
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 + ⋯ + 6707446201 T^{12} + \cdots + 6707446201 T 1 2 + ⋯ + 6 7 0 7 4 4 6 2 0 1
T^12 - 10*T^11 + 75*T^10 - 500*T^9 + 21486*T^8 - 72930*T^7 + 185227*T^6 - 848010*T^5 + 171370674*T^4 + 2359170230*T^3 + 11029368664*T^2 - 2569581125*T + 6707446201
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 + ⋯ + 1476788041 T^{12} + \cdots + 1476788041 T 1 2 + ⋯ + 1 4 7 6 7 8 8 0 4 1
T^12 - 79*T^11 + 2980*T^10 - 70649*T^9 + 1169393*T^8 - 14214830*T^7 + 130014669*T^6 - 902913704*T^5 + 4851250195*T^4 - 20708224805*T^3 + 56369725816*T^2 - 10476936699*T + 1476788041
67 67 6 7
T 12 + ⋯ + 163181257849 T^{12} + \cdots + 163181257849 T 1 2 + ⋯ + 1 6 3 1 8 1 2 5 7 8 4 9
T^12 - 11*T^11 + 469*T^10 - 3828*T^9 + 142474*T^8 - 1104026*T^7 + 20169024*T^6 - 83828591*T^5 + 1443877384*T^4 - 7823405876*T^3 + 43660561658*T^2 - 92149862926*T + 163181257849
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 + ⋯ + 175555134049 T^{12} + \cdots + 175555134049 T 1 2 + ⋯ + 1 7 5 5 5 5 1 3 4 0 4 9
T^12 - 27*T^11 + 486*T^10 - 6561*T^9 + 132122*T^8 - 2719031*T^7 + 40669952*T^6 - 426051360*T^5 + 3012102193*T^4 - 12831927785*T^3 + 38214846291*T^2 - 107051454521*T + 175555134049
79 79 7 9
T 12 + ⋯ + 120762505081 T^{12} + \cdots + 120762505081 T 1 2 + ⋯ + 1 2 0 7 6 2 5 0 5 0 8 1
T^12 + 13*T^11 + 553*T^10 + 4992*T^9 + 189874*T^8 + 1624714*T^7 + 30447852*T^6 + 116727793*T^5 + 2097436228*T^4 + 10037916148*T^3 + 77577714494*T^2 + 101546994926*T + 120762505081
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
T 12 T^{12} T 1 2
T^12
97 97 9 7
T 12 + ⋯ + 902334707569 T^{12} + \cdots + 902334707569 T 1 2 + ⋯ + 9 0 2 3 3 4 7 0 7 5 6 9
T^12 + 1166*T^10 + 500621*T^8 + 95542098*T^6 + 7683525798*T^4 + 207881737156*T^2 + 902334707569
show more
show less