Properties

Label 147.8.c.b.146.2
Level $147$
Weight $8$
Character 147.146
Analytic conductor $45.921$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,8,Mod(146,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.146");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.2
Character \(\chi\) \(=\) 147.146
Dual form 147.8.c.b.146.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.6224i q^{2} +(34.6438 + 31.4135i) q^{3} -85.8156 q^{4} -538.208 q^{5} +(-459.342 + 506.577i) q^{6} +616.838i q^{8} +(213.384 + 2176.57i) q^{9} -7869.91i q^{10} -1898.48i q^{11} +(-2972.98 - 2695.77i) q^{12} +431.129i q^{13} +(-18645.5 - 16907.0i) q^{15} -20004.1 q^{16} -20815.9 q^{17} +(-31826.7 + 3120.20i) q^{18} -26676.2i q^{19} +46186.6 q^{20} +27760.4 q^{22} -30805.2i q^{23} +(-19377.0 + 21369.6i) q^{24} +211542. q^{25} -6304.16 q^{26} +(-60981.1 + 82107.6i) q^{27} +40183.4i q^{29} +(247221. - 272643. i) q^{30} +29020.1i q^{31} -213553. i q^{32} +(59638.0 - 65770.6i) q^{33} -304380. i q^{34} +(-18311.7 - 186783. i) q^{36} +286993. q^{37} +390071. q^{38} +(-13543.3 + 14935.9i) q^{39} -331987. i q^{40} +309693. q^{41} -47389.8 q^{43} +162920. i q^{44} +(-114845. - 1.17144e6i) q^{45} +450446. q^{46} -720054. q^{47} +(-693017. - 628398. i) q^{48} +3.09326e6i q^{50} +(-721143. - 653901. i) q^{51} -36997.6i q^{52} +784843. i q^{53} +(-1.20061e6 - 891692. i) q^{54} +1.02178e6i q^{55} +(837993. - 924165. i) q^{57} -587579. q^{58} +989928. q^{59} +(1.60008e6 + 1.45088e6i) q^{60} -1.50426e6i q^{61} -424344. q^{62} +562144. q^{64} -232037. i q^{65} +(961727. + 872053. i) q^{66} +1.99476e6 q^{67} +1.78633e6 q^{68} +(967698. - 1.06721e6i) q^{69} -672836. i q^{71} +(-1.34259e6 + 131624. i) q^{72} -3.69132e6i q^{73} +4.19653e6i q^{74} +(7.32863e6 + 6.64529e6i) q^{75} +2.28924e6i q^{76} +(-218400. - 198036. i) q^{78} -1.25310e6 q^{79} +1.07663e7 q^{80} +(-4.69190e6 + 928890. i) q^{81} +4.52847e6i q^{82} -4.44416e6 q^{83} +1.12033e7 q^{85} -692954. i q^{86} +(-1.26230e6 + 1.39211e6i) q^{87} +1.17106e6 q^{88} +1.47444e6 q^{89} +(1.71294e7 - 1.67931e6i) q^{90} +2.64356e6i q^{92} +(-911622. + 1.00536e6i) q^{93} -1.05289e7i q^{94} +1.43573e7i q^{95} +(6.70845e6 - 7.39829e6i) q^{96} -8.19557e6i q^{97} +(4.13217e6 - 405106. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2300 q^{4} + 7032 q^{9} + 27576 q^{15} + 39188 q^{16} - 66996 q^{18} + 105132 q^{22} + 662504 q^{25} + 81324 q^{30} - 227244 q^{36} + 1237496 q^{37} - 3992208 q^{39} - 1416064 q^{43} + 6985680 q^{46}+ \cdots + 35642232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.6224i 1.29245i 0.763146 + 0.646226i \(0.223654\pi\)
−0.763146 + 0.646226i \(0.776346\pi\)
\(3\) 34.6438 + 31.4135i 0.740800 + 0.671726i
\(4\) −85.8156 −0.670435
\(5\) −538.208 −1.92555 −0.962775 0.270304i \(-0.912876\pi\)
−0.962775 + 0.270304i \(0.912876\pi\)
\(6\) −459.342 + 506.577i −0.868174 + 0.957449i
\(7\) 0 0
\(8\) 616.838i 0.425948i
\(9\) 213.384 + 2176.57i 0.0975694 + 0.995229i
\(10\) 7869.91i 2.48868i
\(11\) 1898.48i 0.430063i −0.976607 0.215032i \(-0.931015\pi\)
0.976607 0.215032i \(-0.0689855\pi\)
\(12\) −2972.98 2695.77i −0.496658 0.450348i
\(13\) 431.129i 0.0544259i 0.999630 + 0.0272129i \(0.00866322\pi\)
−0.999630 + 0.0272129i \(0.991337\pi\)
\(14\) 0 0
\(15\) −18645.5 16907.0i −1.42645 1.29344i
\(16\) −20004.1 −1.22095
\(17\) −20815.9 −1.02760 −0.513801 0.857910i \(-0.671763\pi\)
−0.513801 + 0.857910i \(0.671763\pi\)
\(18\) −31826.7 + 3120.20i −1.28629 + 0.126104i
\(19\) 26676.2i 0.892250i −0.894971 0.446125i \(-0.852804\pi\)
0.894971 0.446125i \(-0.147196\pi\)
\(20\) 46186.6 1.29096
\(21\) 0 0
\(22\) 27760.4 0.555837
\(23\) 30805.2i 0.527930i −0.964532 0.263965i \(-0.914970\pi\)
0.964532 0.263965i \(-0.0850303\pi\)
\(24\) −19377.0 + 21369.6i −0.286120 + 0.315542i
\(25\) 211542. 2.70774
\(26\) −6304.16 −0.0703429
\(27\) −60981.1 + 82107.6i −0.596241 + 0.802805i
\(28\) 0 0
\(29\) 40183.4i 0.305952i 0.988230 + 0.152976i \(0.0488858\pi\)
−0.988230 + 0.152976i \(0.951114\pi\)
\(30\) 247221. 272643.i 1.67171 1.84362i
\(31\) 29020.1i 0.174957i 0.996166 + 0.0874787i \(0.0278810\pi\)
−0.996166 + 0.0874787i \(0.972119\pi\)
\(32\) 213553.i 1.15208i
\(33\) 59638.0 65770.6i 0.288885 0.318591i
\(34\) 304380.i 1.32813i
\(35\) 0 0
\(36\) −18311.7 186783.i −0.0654139 0.667236i
\(37\) 286993. 0.931461 0.465730 0.884927i \(-0.345792\pi\)
0.465730 + 0.884927i \(0.345792\pi\)
\(38\) 390071. 1.15319
\(39\) −13543.3 + 14935.9i −0.0365593 + 0.0403187i
\(40\) 331987.i 0.820184i
\(41\) 309693. 0.701759 0.350879 0.936421i \(-0.385883\pi\)
0.350879 + 0.936421i \(0.385883\pi\)
\(42\) 0 0
\(43\) −47389.8 −0.0908961 −0.0454480 0.998967i \(-0.514472\pi\)
−0.0454480 + 0.998967i \(0.514472\pi\)
\(44\) 162920.i 0.288329i
\(45\) −114845. 1.17144e6i −0.187875 1.91636i
\(46\) 450446. 0.682324
\(47\) −720054. −1.01163 −0.505816 0.862641i \(-0.668809\pi\)
−0.505816 + 0.862641i \(0.668809\pi\)
\(48\) −693017. 628398.i −0.904481 0.820145i
\(49\) 0 0
\(50\) 3.09326e6i 3.49963i
\(51\) −721143. 653901.i −0.761247 0.690266i
\(52\) 36997.6i 0.0364890i
\(53\) 784843.i 0.724131i 0.932153 + 0.362066i \(0.117928\pi\)
−0.932153 + 0.362066i \(0.882072\pi\)
\(54\) −1.20061e6 891692.i −1.03759 0.770614i
\(55\) 1.02178e6i 0.828108i
\(56\) 0 0
\(57\) 837993. 924165.i 0.599347 0.660979i
\(58\) −587579. −0.395429
\(59\) 989928. 0.627511 0.313756 0.949504i \(-0.398413\pi\)
0.313756 + 0.949504i \(0.398413\pi\)
\(60\) 1.60008e6 + 1.45088e6i 0.956340 + 0.867168i
\(61\) 1.50426e6i 0.848534i −0.905537 0.424267i \(-0.860532\pi\)
0.905537 0.424267i \(-0.139468\pi\)
\(62\) −424344. −0.226124
\(63\) 0 0
\(64\) 562144. 0.268051
\(65\) 232037.i 0.104800i
\(66\) 961727. + 872053.i 0.411764 + 0.373370i
\(67\) 1.99476e6 0.810268 0.405134 0.914257i \(-0.367225\pi\)
0.405134 + 0.914257i \(0.367225\pi\)
\(68\) 1.78633e6 0.688939
\(69\) 967698. 1.06721e6i 0.354624 0.391090i
\(70\) 0 0
\(71\) 672836.i 0.223103i −0.993759 0.111551i \(-0.964418\pi\)
0.993759 0.111551i \(-0.0355820\pi\)
\(72\) −1.34259e6 + 131624.i −0.423916 + 0.0415595i
\(73\) 3.69132e6i 1.11059i −0.831655 0.555293i \(-0.812606\pi\)
0.831655 0.555293i \(-0.187394\pi\)
\(74\) 4.19653e6i 1.20387i
\(75\) 7.32863e6 + 6.64529e6i 2.00590 + 1.81886i
\(76\) 2.28924e6i 0.598195i
\(77\) 0 0
\(78\) −218400. 198036.i −0.0521100 0.0472511i
\(79\) −1.25310e6 −0.285951 −0.142976 0.989726i \(-0.545667\pi\)
−0.142976 + 0.989726i \(0.545667\pi\)
\(80\) 1.07663e7 2.35100
\(81\) −4.69190e6 + 928890.i −0.980960 + 0.194208i
\(82\) 4.52847e6i 0.906990i
\(83\) −4.44416e6 −0.853133 −0.426566 0.904456i \(-0.640277\pi\)
−0.426566 + 0.904456i \(0.640277\pi\)
\(84\) 0 0
\(85\) 1.12033e7 1.97870
\(86\) 692954.i 0.117479i
\(87\) −1.26230e6 + 1.39211e6i −0.205516 + 0.226650i
\(88\) 1.17106e6 0.183185
\(89\) 1.47444e6 0.221698 0.110849 0.993837i \(-0.464643\pi\)
0.110849 + 0.993837i \(0.464643\pi\)
\(90\) 1.71294e7 1.67931e6i 2.47681 0.242819i
\(91\) 0 0
\(92\) 2.64356e6i 0.353942i
\(93\) −911622. + 1.00536e6i −0.117523 + 0.129608i
\(94\) 1.05289e7i 1.30749i
\(95\) 1.43573e7i 1.71807i
\(96\) 6.70845e6 7.39829e6i 0.773878 0.853457i
\(97\) 8.19557e6i 0.911755i −0.890043 0.455877i \(-0.849326\pi\)
0.890043 0.455877i \(-0.150674\pi\)
\(98\) 0 0
\(99\) 4.13217e6 405106.i 0.428011 0.0419610i
\(100\) −1.81536e7 −1.81536
\(101\) −1.35241e7 −1.30613 −0.653063 0.757304i \(-0.726516\pi\)
−0.653063 + 0.757304i \(0.726516\pi\)
\(102\) 9.56163e6 1.05449e7i 0.892136 0.983876i
\(103\) 9.46626e6i 0.853587i −0.904349 0.426794i \(-0.859643\pi\)
0.904349 0.426794i \(-0.140357\pi\)
\(104\) −265937. −0.0231826
\(105\) 0 0
\(106\) −1.14763e7 −0.935906
\(107\) 197098.i 0.0155539i 0.999970 + 0.00777696i \(0.00247551\pi\)
−0.999970 + 0.00777696i \(0.997524\pi\)
\(108\) 5.23313e6 7.04612e6i 0.399741 0.538228i
\(109\) −1.84917e6 −0.136768 −0.0683840 0.997659i \(-0.521784\pi\)
−0.0683840 + 0.997659i \(0.521784\pi\)
\(110\) −1.49409e7 −1.07029
\(111\) 9.94251e6 + 9.01544e6i 0.690026 + 0.625686i
\(112\) 0 0
\(113\) 1.54177e7i 1.00518i 0.864525 + 0.502590i \(0.167620\pi\)
−0.864525 + 0.502590i \(0.832380\pi\)
\(114\) 1.35135e7 + 1.22535e7i 0.854284 + 0.774628i
\(115\) 1.65796e7i 1.01655i
\(116\) 3.44837e6i 0.205121i
\(117\) −938380. + 91996.2i −0.0541662 + 0.00531030i
\(118\) 1.44752e7i 0.811029i
\(119\) 0 0
\(120\) 1.04289e7 1.15013e7i 0.550938 0.607592i
\(121\) 1.58829e7 0.815046
\(122\) 2.19960e7 1.09669
\(123\) 1.07289e7 + 9.72854e6i 0.519863 + 0.471389i
\(124\) 2.49037e6i 0.117298i
\(125\) −7.18062e7 −3.28834
\(126\) 0 0
\(127\) −1.74020e7 −0.753853 −0.376926 0.926243i \(-0.623019\pi\)
−0.376926 + 0.926243i \(0.623019\pi\)
\(128\) 1.91149e7i 0.805632i
\(129\) −1.64176e6 1.48868e6i −0.0673358 0.0610572i
\(130\) 3.39294e6 0.135449
\(131\) −4.56458e7 −1.77399 −0.886995 0.461780i \(-0.847211\pi\)
−0.886995 + 0.461780i \(0.847211\pi\)
\(132\) −5.11787e6 + 5.64415e6i −0.193678 + 0.213594i
\(133\) 0 0
\(134\) 2.91682e7i 1.04723i
\(135\) 3.28205e7 4.41909e7i 1.14809 1.54584i
\(136\) 1.28401e7i 0.437704i
\(137\) 2.94610e7i 0.978872i −0.872039 0.489436i \(-0.837203\pi\)
0.872039 0.489436i \(-0.162797\pi\)
\(138\) 1.56052e7 + 1.41501e7i 0.505466 + 0.458335i
\(139\) 6.02035e7i 1.90138i −0.310136 0.950692i \(-0.600375\pi\)
0.310136 0.950692i \(-0.399625\pi\)
\(140\) 0 0
\(141\) −2.49454e7 2.26194e7i −0.749417 0.679539i
\(142\) 9.83850e6 0.288350
\(143\) 818491. 0.0234066
\(144\) −4.26856e6 4.35402e7i −0.119128 1.21513i
\(145\) 2.16270e7i 0.589127i
\(146\) 5.39761e7 1.43538
\(147\) 0 0
\(148\) −2.46284e7 −0.624484
\(149\) 1.04236e7i 0.258147i 0.991635 + 0.129073i \(0.0412003\pi\)
−0.991635 + 0.129073i \(0.958800\pi\)
\(150\) −9.71703e7 + 1.07162e8i −2.35079 + 2.59253i
\(151\) −3.81678e7 −0.902147 −0.451074 0.892487i \(-0.648959\pi\)
−0.451074 + 0.892487i \(0.648959\pi\)
\(152\) 1.64549e7 0.380052
\(153\) −4.44179e6 4.53072e7i −0.100262 1.02270i
\(154\) 0 0
\(155\) 1.56188e7i 0.336889i
\(156\) 1.16222e6 1.28174e6i 0.0245106 0.0270310i
\(157\) 5.47864e7i 1.12986i −0.825139 0.564929i \(-0.808903\pi\)
0.825139 0.564929i \(-0.191097\pi\)
\(158\) 1.83234e7i 0.369579i
\(159\) −2.46547e7 + 2.71899e7i −0.486418 + 0.536436i
\(160\) 1.14936e8i 2.21838i
\(161\) 0 0
\(162\) −1.35826e7 6.86071e7i −0.251004 1.26785i
\(163\) −6.02898e7 −1.09040 −0.545202 0.838305i \(-0.683547\pi\)
−0.545202 + 0.838305i \(0.683547\pi\)
\(164\) −2.65765e7 −0.470483
\(165\) −3.20976e7 + 3.53983e7i −0.556262 + 0.613463i
\(166\) 6.49845e7i 1.10263i
\(167\) 3.16225e7 0.525398 0.262699 0.964878i \(-0.415387\pi\)
0.262699 + 0.964878i \(0.415387\pi\)
\(168\) 0 0
\(169\) 6.25626e7 0.997038
\(170\) 1.63819e8i 2.55737i
\(171\) 5.80625e7 5.69228e6i 0.887993 0.0870563i
\(172\) 4.06678e6 0.0609399
\(173\) −3.55124e6 −0.0521457 −0.0260729 0.999660i \(-0.508300\pi\)
−0.0260729 + 0.999660i \(0.508300\pi\)
\(174\) −2.03560e7 1.84579e7i −0.292934 0.265620i
\(175\) 0 0
\(176\) 3.79774e7i 0.525087i
\(177\) 3.42949e7 + 3.10971e7i 0.464860 + 0.421515i
\(178\) 2.15599e7i 0.286535i
\(179\) 8.80409e7i 1.14736i −0.819080 0.573679i \(-0.805516\pi\)
0.819080 0.573679i \(-0.194484\pi\)
\(180\) 9.85550e6 + 1.00528e8i 0.125958 + 1.28480i
\(181\) 1.12564e8i 1.41099i 0.708714 + 0.705496i \(0.249276\pi\)
−0.708714 + 0.705496i \(0.750724\pi\)
\(182\) 0 0
\(183\) 4.72541e7 5.21133e7i 0.569982 0.628594i
\(184\) 1.90018e7 0.224870
\(185\) −1.54462e8 −1.79357
\(186\) −1.47009e7 1.33301e7i −0.167513 0.151893i
\(187\) 3.95187e7i 0.441933i
\(188\) 6.17919e7 0.678233
\(189\) 0 0
\(190\) −2.09939e8 −2.22053
\(191\) 8.50236e7i 0.882923i −0.897280 0.441461i \(-0.854460\pi\)
0.897280 0.441461i \(-0.145540\pi\)
\(192\) 1.94748e7 + 1.76589e7i 0.198572 + 0.180057i
\(193\) −1.80486e8 −1.80714 −0.903571 0.428438i \(-0.859064\pi\)
−0.903571 + 0.428438i \(0.859064\pi\)
\(194\) 1.19839e8 1.17840
\(195\) 7.28909e6 8.03864e6i 0.0703967 0.0776357i
\(196\) 0 0
\(197\) 2.09911e8i 1.95616i −0.208239 0.978078i \(-0.566773\pi\)
0.208239 0.978078i \(-0.433227\pi\)
\(198\) 5.92364e6 + 6.04224e7i 0.0542326 + 0.553184i
\(199\) 1.46599e8i 1.31870i 0.751836 + 0.659350i \(0.229169\pi\)
−0.751836 + 0.659350i \(0.770831\pi\)
\(200\) 1.30487e8i 1.15336i
\(201\) 6.91060e7 + 6.26623e7i 0.600246 + 0.544277i
\(202\) 1.97756e8i 1.68811i
\(203\) 0 0
\(204\) 6.18853e7 + 5.61149e7i 0.510366 + 0.462778i
\(205\) −1.66679e8 −1.35127
\(206\) 1.38420e8 1.10322
\(207\) 6.70494e7 6.57334e6i 0.525411 0.0515098i
\(208\) 8.62434e6i 0.0664514i
\(209\) −5.06443e7 −0.383724
\(210\) 0 0
\(211\) 1.44961e8 1.06233 0.531167 0.847267i \(-0.321754\pi\)
0.531167 + 0.847267i \(0.321754\pi\)
\(212\) 6.73518e7i 0.485483i
\(213\) 2.11361e7 2.33096e7i 0.149864 0.165275i
\(214\) −2.88206e6 −0.0201027
\(215\) 2.55055e7 0.175025
\(216\) −5.06471e7 3.76155e7i −0.341953 0.253968i
\(217\) 0 0
\(218\) 2.70394e7i 0.176766i
\(219\) 1.15957e8 1.27881e8i 0.746009 0.822722i
\(220\) 8.76845e7i 0.555192i
\(221\) 8.97435e6i 0.0559281i
\(222\) −1.31828e8 + 1.45384e8i −0.808670 + 0.891826i
\(223\) 1.90116e8i 1.14803i 0.818846 + 0.574013i \(0.194614\pi\)
−0.818846 + 0.574013i \(0.805386\pi\)
\(224\) 0 0
\(225\) 4.51398e7 + 4.60436e8i 0.264193 + 2.69482i
\(226\) −2.25444e8 −1.29915
\(227\) 4.49155e7 0.254862 0.127431 0.991847i \(-0.459327\pi\)
0.127431 + 0.991847i \(0.459327\pi\)
\(228\) −7.19129e7 + 7.93078e7i −0.401823 + 0.443143i
\(229\) 8.21767e7i 0.452193i 0.974105 + 0.226097i \(0.0725965\pi\)
−0.974105 + 0.226097i \(0.927403\pi\)
\(230\) −2.42434e8 −1.31385
\(231\) 0 0
\(232\) −2.47867e7 −0.130320
\(233\) 3.64031e7i 0.188535i −0.995547 0.0942676i \(-0.969949\pi\)
0.995547 0.0942676i \(-0.0300509\pi\)
\(234\) −1.34521e6 1.37214e7i −0.00686331 0.0700073i
\(235\) 3.87539e8 1.94795
\(236\) −8.49513e7 −0.420705
\(237\) −4.34123e7 3.93644e7i −0.211833 0.192081i
\(238\) 0 0
\(239\) 1.04151e8i 0.493482i −0.969081 0.246741i \(-0.920640\pi\)
0.969081 0.246741i \(-0.0793597\pi\)
\(240\) 3.72987e8 + 3.38209e8i 1.74162 + 1.57923i
\(241\) 2.81090e8i 1.29356i −0.762679 0.646778i \(-0.776116\pi\)
0.762679 0.646778i \(-0.223884\pi\)
\(242\) 2.32247e8i 1.05341i
\(243\) −1.91725e8 1.15209e8i −0.857150 0.515067i
\(244\) 1.29089e8i 0.568886i
\(245\) 0 0
\(246\) −1.42255e8 + 1.56883e8i −0.609249 + 0.671899i
\(247\) 1.15009e7 0.0485615
\(248\) −1.79007e7 −0.0745227
\(249\) −1.53963e8 1.39607e8i −0.632001 0.573071i
\(250\) 1.04998e9i 4.25003i
\(251\) 3.23864e8 1.29272 0.646360 0.763033i \(-0.276290\pi\)
0.646360 + 0.763033i \(0.276290\pi\)
\(252\) 0 0
\(253\) −5.84831e7 −0.227043
\(254\) 2.54460e8i 0.974319i
\(255\) 3.88124e8 + 3.51935e8i 1.46582 + 1.32914i
\(256\) 3.51461e8 1.30929
\(257\) −2.00680e8 −0.737458 −0.368729 0.929537i \(-0.620207\pi\)
−0.368729 + 0.929537i \(0.620207\pi\)
\(258\) 2.17681e7 2.40066e7i 0.0789136 0.0870284i
\(259\) 0 0
\(260\) 1.99124e7i 0.0702614i
\(261\) −8.74618e7 + 8.57451e6i −0.304493 + 0.0298516i
\(262\) 6.67452e8i 2.29280i
\(263\) 4.30533e8i 1.45936i −0.683790 0.729679i \(-0.739670\pi\)
0.683790 0.729679i \(-0.260330\pi\)
\(264\) 4.05699e7 + 3.67870e7i 0.135703 + 0.123050i
\(265\) 4.22408e8i 1.39435i
\(266\) 0 0
\(267\) 5.10802e7 + 4.63174e7i 0.164234 + 0.148920i
\(268\) −1.71181e8 −0.543231
\(269\) −2.42668e8 −0.760116 −0.380058 0.924963i \(-0.624096\pi\)
−0.380058 + 0.924963i \(0.624096\pi\)
\(270\) 6.46179e8 + 4.79915e8i 1.99793 + 1.48386i
\(271\) 1.47356e8i 0.449756i 0.974387 + 0.224878i \(0.0721983\pi\)
−0.974387 + 0.224878i \(0.927802\pi\)
\(272\) 4.16403e8 1.25465
\(273\) 0 0
\(274\) 4.30792e8 1.26515
\(275\) 4.01610e8i 1.16450i
\(276\) −8.30436e7 + 9.15831e7i −0.237752 + 0.262200i
\(277\) −5.15102e8 −1.45618 −0.728089 0.685483i \(-0.759591\pi\)
−0.728089 + 0.685483i \(0.759591\pi\)
\(278\) 8.80322e8 2.45745
\(279\) −6.31641e7 + 6.19242e6i −0.174123 + 0.0170705i
\(280\) 0 0
\(281\) 3.74214e8i 1.00612i 0.864253 + 0.503058i \(0.167792\pi\)
−0.864253 + 0.503058i \(0.832208\pi\)
\(282\) 3.30751e8 3.64763e8i 0.878273 0.968587i
\(283\) 3.75895e8i 0.985858i −0.870070 0.492929i \(-0.835926\pi\)
0.870070 0.492929i \(-0.164074\pi\)
\(284\) 5.77398e7i 0.149576i
\(285\) −4.51014e8 + 4.97393e8i −1.15407 + 1.27275i
\(286\) 1.19683e7i 0.0302519i
\(287\) 0 0
\(288\) 4.64812e8 4.55689e7i 1.14658 0.112407i
\(289\) 2.29642e7 0.0559640
\(290\) 3.16240e8 0.761418
\(291\) 2.57452e8 2.83926e8i 0.612449 0.675428i
\(292\) 3.16773e8i 0.744575i
\(293\) −1.82974e7 −0.0424964 −0.0212482 0.999774i \(-0.506764\pi\)
−0.0212482 + 0.999774i \(0.506764\pi\)
\(294\) 0 0
\(295\) −5.32787e8 −1.20830
\(296\) 1.77028e8i 0.396754i
\(297\) 1.55880e8 + 1.15772e8i 0.345257 + 0.256421i
\(298\) −1.52419e8 −0.333642
\(299\) 1.32810e7 0.0287330
\(300\) −6.28911e8 5.70269e8i −1.34482 1.21943i
\(301\) 0 0
\(302\) 5.58106e8i 1.16598i
\(303\) −4.68528e8 4.24841e8i −0.967578 0.877358i
\(304\) 5.33633e8i 1.08939i
\(305\) 8.09605e8i 1.63389i
\(306\) 6.62502e8 6.49498e7i 1.32179 0.129584i
\(307\) 6.99449e8i 1.37966i 0.723972 + 0.689830i \(0.242315\pi\)
−0.723972 + 0.689830i \(0.757685\pi\)
\(308\) 0 0
\(309\) 2.97368e8 3.27947e8i 0.573376 0.632338i
\(310\) 2.28385e8 0.435413
\(311\) 4.23553e8 0.798448 0.399224 0.916853i \(-0.369280\pi\)
0.399224 + 0.916853i \(0.369280\pi\)
\(312\) −9.21306e6 8.35401e6i −0.0171737 0.0155723i
\(313\) 3.36360e8i 0.620010i −0.950735 0.310005i \(-0.899669\pi\)
0.950735 0.310005i \(-0.100331\pi\)
\(314\) 8.01111e8 1.46029
\(315\) 0 0
\(316\) 1.07536e8 0.191712
\(317\) 6.91081e8i 1.21849i 0.792983 + 0.609244i \(0.208527\pi\)
−0.792983 + 0.609244i \(0.791473\pi\)
\(318\) −3.97583e8 3.60511e8i −0.693319 0.628672i
\(319\) 7.62875e7 0.131579
\(320\) −3.02550e8 −0.516145
\(321\) −6.19155e6 + 6.82823e6i −0.0104480 + 0.0115223i
\(322\) 0 0
\(323\) 5.55290e8i 0.916877i
\(324\) 4.02639e8 7.97132e7i 0.657670 0.130204i
\(325\) 9.12020e7i 0.147371i
\(326\) 8.81584e8i 1.40929i
\(327\) −6.40623e7 5.80890e7i −0.101318 0.0918706i
\(328\) 1.91031e8i 0.298913i
\(329\) 0 0
\(330\) −5.17609e8 4.69345e8i −0.792872 0.718942i
\(331\) −8.56181e8 −1.29768 −0.648840 0.760925i \(-0.724746\pi\)
−0.648840 + 0.760925i \(0.724746\pi\)
\(332\) 3.81379e8 0.571970
\(333\) 6.12397e7 + 6.24658e8i 0.0908821 + 0.927017i
\(334\) 4.62398e8i 0.679052i
\(335\) −1.07359e9 −1.56021
\(336\) 0 0
\(337\) −8.30714e8 −1.18235 −0.591176 0.806542i \(-0.701336\pi\)
−0.591176 + 0.806542i \(0.701336\pi\)
\(338\) 9.14818e8i 1.28862i
\(339\) −4.84323e8 + 5.34127e8i −0.675206 + 0.744638i
\(340\) −9.61417e8 −1.32659
\(341\) 5.50941e7 0.0752428
\(342\) 8.32351e7 + 8.49015e8i 0.112516 + 1.14769i
\(343\) 0 0
\(344\) 2.92318e7i 0.0387170i
\(345\) −5.20822e8 + 5.74379e8i −0.682846 + 0.753064i
\(346\) 5.19278e7i 0.0673959i
\(347\) 1.14776e8i 0.147468i 0.997278 + 0.0737340i \(0.0234916\pi\)
−0.997278 + 0.0737340i \(0.976508\pi\)
\(348\) 1.08325e8 1.19464e8i 0.137785 0.151954i
\(349\) 2.74148e8i 0.345220i 0.984990 + 0.172610i \(0.0552200\pi\)
−0.984990 + 0.172610i \(0.944780\pi\)
\(350\) 0 0
\(351\) −3.53990e7 2.62907e7i −0.0436934 0.0324510i
\(352\) −4.05427e8 −0.495465
\(353\) −1.24812e9 −1.51023 −0.755117 0.655590i \(-0.772420\pi\)
−0.755117 + 0.655590i \(0.772420\pi\)
\(354\) −4.54715e8 + 5.01474e8i −0.544789 + 0.600810i
\(355\) 3.62125e8i 0.429596i
\(356\) −1.26530e8 −0.148634
\(357\) 0 0
\(358\) 1.28737e9 1.48291
\(359\) 6.14848e8i 0.701354i 0.936496 + 0.350677i \(0.114049\pi\)
−0.936496 + 0.350677i \(0.885951\pi\)
\(360\) 7.22591e8 7.08408e7i 0.816270 0.0800248i
\(361\) 1.82251e8 0.203890
\(362\) −1.64596e9 −1.82364
\(363\) 5.50245e8 + 4.98938e8i 0.603786 + 0.547487i
\(364\) 0 0
\(365\) 1.98670e9i 2.13849i
\(366\) 7.62024e8 + 6.90971e8i 0.812428 + 0.736675i
\(367\) 5.37976e8i 0.568109i 0.958808 + 0.284055i \(0.0916797\pi\)
−0.958808 + 0.284055i \(0.908320\pi\)
\(368\) 6.16229e8i 0.644577i
\(369\) 6.60836e7 + 6.74067e8i 0.0684702 + 0.698411i
\(370\) 2.25860e9i 2.31811i
\(371\) 0 0
\(372\) 7.82314e7 8.62760e7i 0.0787917 0.0868940i
\(373\) −1.07909e9 −1.07665 −0.538327 0.842736i \(-0.680943\pi\)
−0.538327 + 0.842736i \(0.680943\pi\)
\(374\) −5.77859e8 −0.571178
\(375\) −2.48764e9 2.25569e9i −2.43600 2.20886i
\(376\) 4.44157e8i 0.430903i
\(377\) −1.73242e7 −0.0166517
\(378\) 0 0
\(379\) 1.22890e9 1.15952 0.579761 0.814787i \(-0.303146\pi\)
0.579761 + 0.814787i \(0.303146\pi\)
\(380\) 1.23208e9i 1.15185i
\(381\) −6.02872e8 5.46658e8i −0.558454 0.506382i
\(382\) 1.24325e9 1.14114
\(383\) 1.03799e9 0.944053 0.472027 0.881584i \(-0.343523\pi\)
0.472027 + 0.881584i \(0.343523\pi\)
\(384\) 6.00465e8 6.62212e8i 0.541164 0.596812i
\(385\) 0 0
\(386\) 2.63914e9i 2.33565i
\(387\) −1.01122e7 1.03147e8i −0.00886868 0.0904624i
\(388\) 7.03308e8i 0.611272i
\(389\) 5.33269e8i 0.459328i −0.973270 0.229664i \(-0.926237\pi\)
0.973270 0.229664i \(-0.0737627\pi\)
\(390\) 1.17544e8 + 1.06584e8i 0.100340 + 0.0909844i
\(391\) 6.41238e8i 0.542501i
\(392\) 0 0
\(393\) −1.58134e9 1.43389e9i −1.31417 1.19163i
\(394\) 3.06941e9 2.52824
\(395\) 6.74430e8 0.550614
\(396\) −3.54605e8 + 3.47645e7i −0.286954 + 0.0281321i
\(397\) 1.07357e9i 0.861119i 0.902562 + 0.430560i \(0.141684\pi\)
−0.902562 + 0.430560i \(0.858316\pi\)
\(398\) −2.14364e9 −1.70436
\(399\) 0 0
\(400\) −4.23171e9 −3.30602
\(401\) 2.29391e9i 1.77652i −0.459338 0.888262i \(-0.651913\pi\)
0.459338 0.888262i \(-0.348087\pi\)
\(402\) −9.16276e8 + 1.01050e9i −0.703453 + 0.775790i
\(403\) −1.25114e7 −0.00952221
\(404\) 1.16058e9 0.875672
\(405\) 2.52522e9 4.99935e8i 1.88889 0.373957i
\(406\) 0 0
\(407\) 5.44851e8i 0.400587i
\(408\) 4.03351e8 4.44828e8i 0.294017 0.324251i
\(409\) 1.70804e9i 1.23443i 0.786795 + 0.617214i \(0.211739\pi\)
−0.786795 + 0.617214i \(0.788261\pi\)
\(410\) 2.43726e9i 1.74646i
\(411\) 9.25474e8 1.02064e9i 0.657533 0.725149i
\(412\) 8.12353e8i 0.572274i
\(413\) 0 0
\(414\) 9.61182e7 + 9.80426e8i 0.0665740 + 0.679069i
\(415\) 2.39188e9 1.64275
\(416\) 9.20689e7 0.0627027
\(417\) 1.89120e9 2.08568e9i 1.27721 1.40855i
\(418\) 7.40544e8i 0.495945i
\(419\) −1.93716e9 −1.28652 −0.643261 0.765647i \(-0.722419\pi\)
−0.643261 + 0.765647i \(0.722419\pi\)
\(420\) 0 0
\(421\) 2.15401e9 1.40689 0.703447 0.710748i \(-0.251643\pi\)
0.703447 + 0.710748i \(0.251643\pi\)
\(422\) 2.11968e9i 1.37302i
\(423\) −1.53648e8 1.56725e9i −0.0987044 1.00681i
\(424\) −4.84121e8 −0.308442
\(425\) −4.40345e9 −2.78248
\(426\) 3.40843e8 + 3.09062e8i 0.213610 + 0.193692i
\(427\) 0 0
\(428\) 1.69141e7i 0.0104279i
\(429\) 2.83556e7 + 2.57117e7i 0.0173396 + 0.0157228i
\(430\) 3.72953e8i 0.226212i
\(431\) 2.91784e9i 1.75546i 0.479158 + 0.877729i \(0.340942\pi\)
−0.479158 + 0.877729i \(0.659058\pi\)
\(432\) 1.21987e9 1.64249e9i 0.727982 0.980187i
\(433\) 1.75910e9i 1.04132i 0.853765 + 0.520659i \(0.174314\pi\)
−0.853765 + 0.520659i \(0.825686\pi\)
\(434\) 0 0
\(435\) 6.79380e8 7.49242e8i 0.395731 0.436425i
\(436\) 1.58688e8 0.0916940
\(437\) −8.21765e8 −0.471045
\(438\) 1.86994e9 + 1.69558e9i 1.06333 + 0.964181i
\(439\) 1.28094e9i 0.722606i 0.932448 + 0.361303i \(0.117668\pi\)
−0.932448 + 0.361303i \(0.882332\pi\)
\(440\) −6.30272e8 −0.352731
\(441\) 0 0
\(442\) 1.31227e8 0.0722844
\(443\) 1.33104e9i 0.727407i −0.931515 0.363703i \(-0.881512\pi\)
0.931515 0.363703i \(-0.118488\pi\)
\(444\) −8.53223e8 7.73666e8i −0.462617 0.419482i
\(445\) −7.93556e8 −0.426891
\(446\) −2.77996e9 −1.48377
\(447\) −3.27442e8 + 3.61114e8i −0.173404 + 0.191235i
\(448\) 0 0
\(449\) 9.16466e8i 0.477809i −0.971043 0.238905i \(-0.923212\pi\)
0.971043 0.238905i \(-0.0767883\pi\)
\(450\) −6.73269e9 + 6.60054e8i −3.48293 + 0.341457i
\(451\) 5.87947e8i 0.301801i
\(452\) 1.32308e9i 0.673908i
\(453\) −1.32228e9 1.19898e9i −0.668311 0.605996i
\(454\) 6.56773e8i 0.329397i
\(455\) 0 0
\(456\) 5.70060e8 + 5.16906e8i 0.281542 + 0.255291i
\(457\) 6.44098e8 0.315679 0.157839 0.987465i \(-0.449547\pi\)
0.157839 + 0.987465i \(0.449547\pi\)
\(458\) −1.20162e9 −0.584439
\(459\) 1.26938e9 1.70915e9i 0.612698 0.824964i
\(460\) 1.42279e9i 0.681534i
\(461\) 1.81792e9 0.864215 0.432108 0.901822i \(-0.357770\pi\)
0.432108 + 0.901822i \(0.357770\pi\)
\(462\) 0 0
\(463\) −1.41455e9 −0.662348 −0.331174 0.943570i \(-0.607445\pi\)
−0.331174 + 0.943570i \(0.607445\pi\)
\(464\) 8.03832e8i 0.373553i
\(465\) 4.90642e8 5.41095e8i 0.226297 0.249568i
\(466\) 5.32302e8 0.243673
\(467\) 4.08012e9 1.85380 0.926902 0.375303i \(-0.122461\pi\)
0.926902 + 0.375303i \(0.122461\pi\)
\(468\) 8.05277e7 7.89471e6i 0.0363149 0.00356021i
\(469\) 0 0
\(470\) 5.66676e9i 2.51763i
\(471\) 1.72103e9 1.89801e9i 0.758955 0.836999i
\(472\) 6.10625e8i 0.267287i
\(473\) 8.99687e7i 0.0390911i
\(474\) 5.75603e8 6.34793e8i 0.248255 0.273784i
\(475\) 5.64315e9i 2.41598i
\(476\) 0 0
\(477\) −1.70826e9 + 1.67473e8i −0.720676 + 0.0706531i
\(478\) 1.52294e9 0.637802
\(479\) −1.03198e6 −0.000429037 −0.000214519 1.00000i \(-0.500068\pi\)
−0.000214519 1.00000i \(0.500068\pi\)
\(480\) −3.61054e9 + 3.98181e9i −1.49014 + 1.64337i
\(481\) 1.23731e8i 0.0506956i
\(482\) 4.11021e9 1.67186
\(483\) 0 0
\(484\) −1.36300e9 −0.546435
\(485\) 4.41092e9i 1.75563i
\(486\) 1.68463e9 2.80349e9i 0.665700 1.10783i
\(487\) −9.59255e8 −0.376342 −0.188171 0.982136i \(-0.560256\pi\)
−0.188171 + 0.982136i \(0.560256\pi\)
\(488\) 9.27887e8 0.361431
\(489\) −2.08867e9 1.89391e9i −0.807771 0.732452i
\(490\) 0 0
\(491\) 6.85759e8i 0.261449i 0.991419 + 0.130724i \(0.0417303\pi\)
−0.991419 + 0.130724i \(0.958270\pi\)
\(492\) −9.20711e8 8.34861e8i −0.348534 0.316036i
\(493\) 8.36455e8i 0.314397i
\(494\) 1.68171e8i 0.0627634i
\(495\) −2.22397e9 + 2.18031e8i −0.824157 + 0.0807980i
\(496\) 5.80520e8i 0.213615i
\(497\) 0 0
\(498\) 2.04139e9 2.25131e9i 0.740668 0.816831i
\(499\) −2.98010e9 −1.07369 −0.536844 0.843681i \(-0.680384\pi\)
−0.536844 + 0.843681i \(0.680384\pi\)
\(500\) 6.16210e9 2.20462
\(501\) 1.09552e9 + 9.93373e8i 0.389215 + 0.352923i
\(502\) 4.73568e9i 1.67078i
\(503\) −2.90478e9 −1.01771 −0.508856 0.860852i \(-0.669931\pi\)
−0.508856 + 0.860852i \(0.669931\pi\)
\(504\) 0 0
\(505\) 7.27880e9 2.51501
\(506\) 8.55165e8i 0.293443i
\(507\) 2.16741e9 + 1.96531e9i 0.738606 + 0.669736i
\(508\) 1.49336e9 0.505409
\(509\) 5.01080e8 0.168420 0.0842102 0.996448i \(-0.473163\pi\)
0.0842102 + 0.996448i \(0.473163\pi\)
\(510\) −5.14614e9 + 5.67532e9i −1.71785 + 1.89450i
\(511\) 0 0
\(512\) 2.69250e9i 0.886567i
\(513\) 2.19032e9 + 1.62674e9i 0.716303 + 0.531996i
\(514\) 2.93442e9i 0.953130i
\(515\) 5.09481e9i 1.64363i
\(516\) 1.40889e8 + 1.27752e8i 0.0451443 + 0.0409349i
\(517\) 1.36701e9i 0.435066i
\(518\) 0 0
\(519\) −1.23028e8 1.11557e8i −0.0386296 0.0350276i
\(520\) 1.43129e8 0.0446392
\(521\) 4.62618e9 1.43315 0.716573 0.697512i \(-0.245710\pi\)
0.716573 + 0.697512i \(0.245710\pi\)
\(522\) −1.25380e8 1.27890e9i −0.0385818 0.393542i
\(523\) 4.52155e9i 1.38207i 0.722819 + 0.691037i \(0.242846\pi\)
−0.722819 + 0.691037i \(0.757154\pi\)
\(524\) 3.91712e9 1.18934
\(525\) 0 0
\(526\) 6.29545e9 1.88615
\(527\) 6.04079e8i 0.179786i
\(528\) −1.19300e9 + 1.31568e9i −0.352714 + 0.388984i
\(529\) 2.45587e9 0.721290
\(530\) 6.17664e9 1.80213
\(531\) 2.11235e8 + 2.15464e9i 0.0612259 + 0.624517i
\(532\) 0 0
\(533\) 1.33518e8i 0.0381939i
\(534\) −6.77273e8 + 7.46918e8i −0.192473 + 0.212265i
\(535\) 1.06080e8i 0.0299498i
\(536\) 1.23044e9i 0.345132i
\(537\) 2.76567e9 3.05007e9i 0.770710 0.849963i
\(538\) 3.54840e9i 0.982414i
\(539\) 0 0
\(540\) −2.81651e9 + 3.79227e9i −0.769721 + 1.03639i
\(541\) 1.09886e9 0.298367 0.149183 0.988810i \(-0.452336\pi\)
0.149183 + 0.988810i \(0.452336\pi\)
\(542\) −2.15471e9 −0.581288
\(543\) −3.53603e9 + 3.89964e9i −0.947799 + 1.04526i
\(544\) 4.44530e9i 1.18387i
\(545\) 9.95238e8 0.263354
\(546\) 0 0
\(547\) −4.60429e9 −1.20284 −0.601419 0.798934i \(-0.705398\pi\)
−0.601419 + 0.798934i \(0.705398\pi\)
\(548\) 2.52822e9i 0.656270i
\(549\) 3.27412e9 3.20986e8i 0.844485 0.0827909i
\(550\) 5.87251e9 1.50506
\(551\) 1.07194e9 0.272986
\(552\) 6.58295e8 + 5.96913e8i 0.166584 + 0.151051i
\(553\) 0 0
\(554\) 7.53205e9i 1.88204i
\(555\) −5.35113e9 4.85218e9i −1.32868 1.20479i
\(556\) 5.16640e9i 1.27475i
\(557\) 4.14818e9i 1.01710i −0.861032 0.508551i \(-0.830181\pi\)
0.861032 0.508551i \(-0.169819\pi\)
\(558\) −9.05483e7 9.23612e8i −0.0220628 0.225045i
\(559\) 2.04311e7i 0.00494710i
\(560\) 0 0
\(561\) −1.24142e9 + 1.36908e9i −0.296858 + 0.327384i
\(562\) −5.47192e9 −1.30036
\(563\) −6.59764e9 −1.55815 −0.779075 0.626930i \(-0.784311\pi\)
−0.779075 + 0.626930i \(0.784311\pi\)
\(564\) 2.14071e9 + 1.94110e9i 0.502435 + 0.455587i
\(565\) 8.29791e9i 1.93553i
\(566\) 5.49650e9 1.27417
\(567\) 0 0
\(568\) 4.15031e8 0.0950301
\(569\) 1.08631e9i 0.247208i −0.992332 0.123604i \(-0.960555\pi\)
0.992332 0.123604i \(-0.0394453\pi\)
\(570\) −7.27309e9 6.59493e9i −1.64497 1.49158i
\(571\) −1.50879e9 −0.339158 −0.169579 0.985517i \(-0.554241\pi\)
−0.169579 + 0.985517i \(0.554241\pi\)
\(572\) −7.02393e7 −0.0156926
\(573\) 2.67089e9 2.94554e9i 0.593082 0.654069i
\(574\) 0 0
\(575\) 6.51660e9i 1.42950i
\(576\) 1.19953e8 + 1.22354e9i 0.0261536 + 0.266772i
\(577\) 7.97534e8i 0.172836i 0.996259 + 0.0864180i \(0.0275420\pi\)
−0.996259 + 0.0864180i \(0.972458\pi\)
\(578\) 3.35793e8i 0.0723309i
\(579\) −6.25271e9 5.66969e9i −1.33873 1.21390i
\(580\) 1.85594e9i 0.394971i
\(581\) 0 0
\(582\) 4.15168e9 + 3.76457e9i 0.872959 + 0.791562i
\(583\) 1.49001e9 0.311422
\(584\) 2.27695e9 0.473052
\(585\) 5.05043e8 4.95130e7i 0.104300 0.0102252i
\(586\) 2.67552e8i 0.0549246i
\(587\) 3.14642e9 0.642072 0.321036 0.947067i \(-0.395969\pi\)
0.321036 + 0.947067i \(0.395969\pi\)
\(588\) 0 0
\(589\) 7.74145e8 0.156106
\(590\) 7.79064e9i 1.56168i
\(591\) 6.59404e9 7.27211e9i 1.31400 1.44912i
\(592\) −5.74102e9 −1.13727
\(593\) 2.04659e9 0.403031 0.201516 0.979485i \(-0.435413\pi\)
0.201516 + 0.979485i \(0.435413\pi\)
\(594\) −1.69286e9 + 2.27934e9i −0.331413 + 0.446229i
\(595\) 0 0
\(596\) 8.94509e8i 0.173070i
\(597\) −4.60520e9 + 5.07876e9i −0.885805 + 0.976894i
\(598\) 1.94201e8i 0.0371361i
\(599\) 5.45015e8i 0.103613i −0.998657 0.0518066i \(-0.983502\pi\)
0.998657 0.0518066i \(-0.0164979\pi\)
\(600\) −4.09907e9 + 4.52058e9i −0.774739 + 0.854407i
\(601\) 1.21229e9i 0.227796i −0.993492 0.113898i \(-0.963666\pi\)
0.993492 0.113898i \(-0.0363336\pi\)
\(602\) 0 0
\(603\) 4.25650e8 + 4.34172e9i 0.0790573 + 0.806402i
\(604\) 3.27539e9 0.604831
\(605\) −8.54831e9 −1.56941
\(606\) 6.21220e9 6.85101e9i 1.13394 1.25055i
\(607\) 1.59406e9i 0.289296i −0.989483 0.144648i \(-0.953795\pi\)
0.989483 0.144648i \(-0.0462050\pi\)
\(608\) −5.69679e9 −1.02794
\(609\) 0 0
\(610\) −1.18384e10 −2.11173
\(611\) 3.10436e8i 0.0550590i
\(612\) 3.81175e8 + 3.88807e9i 0.0672194 + 0.685652i
\(613\) −1.69702e9 −0.297561 −0.148780 0.988870i \(-0.547535\pi\)
−0.148780 + 0.988870i \(0.547535\pi\)
\(614\) −1.02277e10 −1.78314
\(615\) −5.77440e9 5.23598e9i −1.00102 0.907684i
\(616\) 0 0
\(617\) 1.19915e9i 0.205530i 0.994706 + 0.102765i \(0.0327690\pi\)
−0.994706 + 0.102765i \(0.967231\pi\)
\(618\) 4.79538e9 + 4.34825e9i 0.817267 + 0.741062i
\(619\) 6.05428e9i 1.02599i −0.858390 0.512997i \(-0.828535\pi\)
0.858390 0.512997i \(-0.171465\pi\)
\(620\) 1.34034e9i 0.225862i
\(621\) 2.52934e9 + 1.87853e9i 0.423825 + 0.314773i
\(622\) 6.19338e9i 1.03196i
\(623\) 0 0
\(624\) 2.70921e8 2.98780e8i 0.0446371 0.0492272i
\(625\) 2.21199e10 3.62413
\(626\) 4.91840e9 0.801334
\(627\) −1.75451e9 1.59092e9i −0.284263 0.257757i
\(628\) 4.70153e9i 0.757496i
\(629\) −5.97402e9 −0.957170
\(630\) 0 0
\(631\) −4.25664e8 −0.0674472 −0.0337236 0.999431i \(-0.510737\pi\)
−0.0337236 + 0.999431i \(0.510737\pi\)
\(632\) 7.72962e8i 0.121800i
\(633\) 5.02198e9 + 4.55372e9i 0.786978 + 0.713597i
\(634\) −1.01053e10 −1.57484
\(635\) 9.36590e9 1.45158
\(636\) 2.11576e9 2.33332e9i 0.326111 0.359646i
\(637\) 0 0
\(638\) 1.11551e9i 0.170060i
\(639\) 1.46447e9 1.43573e8i 0.222038 0.0217680i
\(640\) 1.02878e10i 1.55128i
\(641\) 8.60758e9i 1.29086i −0.763821 0.645428i \(-0.776679\pi\)
0.763821 0.645428i \(-0.223321\pi\)
\(642\) −9.98454e7 9.05355e7i −0.0148921 0.0135035i
\(643\) 2.22868e9i 0.330605i −0.986243 0.165303i \(-0.947140\pi\)
0.986243 0.165303i \(-0.0528601\pi\)
\(644\) 0 0
\(645\) 8.83609e8 + 8.01218e8i 0.129659 + 0.117569i
\(646\) −8.11969e9 −1.18502
\(647\) −4.78565e9 −0.694665 −0.347333 0.937742i \(-0.612912\pi\)
−0.347333 + 0.937742i \(0.612912\pi\)
\(648\) −5.72975e8 2.89415e9i −0.0827224 0.417838i
\(649\) 1.87936e9i 0.269870i
\(650\) −1.33360e9 −0.190470
\(651\) 0 0
\(652\) 5.17381e9 0.731044
\(653\) 4.58570e9i 0.644480i −0.946658 0.322240i \(-0.895564\pi\)
0.946658 0.322240i \(-0.104436\pi\)
\(654\) 8.49402e8 9.36747e8i 0.118738 0.130948i
\(655\) 2.45669e10 3.41590
\(656\) −6.19512e9 −0.856814
\(657\) 8.03441e9 7.87670e8i 1.10529 0.108359i
\(658\) 0 0
\(659\) 1.15059e10i 1.56610i −0.621956 0.783052i \(-0.713662\pi\)
0.621956 0.783052i \(-0.286338\pi\)
\(660\) 2.75448e9 3.03772e9i 0.372937 0.411287i
\(661\) 3.97278e9i 0.535044i 0.963552 + 0.267522i \(0.0862047\pi\)
−0.963552 + 0.267522i \(0.913795\pi\)
\(662\) 1.25195e10i 1.67719i
\(663\) 2.81916e8 3.10905e8i 0.0375683 0.0414315i
\(664\) 2.74133e9i 0.363390i
\(665\) 0 0
\(666\) −9.13402e9 + 8.95474e8i −1.19813 + 0.117461i
\(667\) 1.23786e9 0.161521
\(668\) −2.71370e9 −0.352245
\(669\) −5.97221e9 + 6.58634e9i −0.771158 + 0.850457i
\(670\) 1.56986e10i 2.01650i
\(671\) −2.85582e9 −0.364923
\(672\) 0 0
\(673\) 2.68753e9 0.339861 0.169931 0.985456i \(-0.445646\pi\)
0.169931 + 0.985456i \(0.445646\pi\)
\(674\) 1.21471e10i 1.52814i
\(675\) −1.29001e10 + 1.73692e10i −1.61447 + 2.17379i
\(676\) −5.36885e9 −0.668449
\(677\) −7.56073e9 −0.936491 −0.468245 0.883599i \(-0.655114\pi\)
−0.468245 + 0.883599i \(0.655114\pi\)
\(678\) −7.81023e9 7.08198e9i −0.962410 0.872672i
\(679\) 0 0
\(680\) 6.91062e9i 0.842822i
\(681\) 1.55604e9 + 1.41095e9i 0.188802 + 0.171197i
\(682\) 8.05610e8i 0.0972477i
\(683\) 1.41723e10i 1.70204i 0.525137 + 0.851018i \(0.324014\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(684\) −4.98267e9 + 4.88487e8i −0.595341 + 0.0583656i
\(685\) 1.58561e10i 1.88487i
\(686\) 0 0
\(687\) −2.58146e9 + 2.84691e9i −0.303750 + 0.334985i
\(688\) 9.47989e8 0.110980
\(689\) −3.38369e8 −0.0394115
\(690\) −8.39882e9 7.61569e9i −0.973300 0.882546i
\(691\) 8.72892e9i 1.00644i 0.864159 + 0.503219i \(0.167851\pi\)
−0.864159 + 0.503219i \(0.832149\pi\)
\(692\) 3.04752e8 0.0349603
\(693\) 0 0
\(694\) −1.67830e9 −0.190596
\(695\) 3.24020e10i 3.66121i
\(696\) −8.58704e8 7.78636e8i −0.0965409 0.0875391i
\(697\) −6.44655e9 −0.721128
\(698\) −4.00871e9 −0.446181
\(699\) 1.14355e9 1.26114e9i 0.126644 0.139667i
\(700\) 0 0
\(701\) 1.45093e9i 0.159086i 0.996831 + 0.0795432i \(0.0253461\pi\)
−0.996831 + 0.0795432i \(0.974654\pi\)
\(702\) 3.84434e8 5.17619e8i 0.0419413 0.0564716i
\(703\) 7.65587e9i 0.831096i
\(704\) 1.06722e9i 0.115279i
\(705\) 1.34258e10 + 1.21739e10i 1.44304 + 1.30849i
\(706\) 1.82505e10i 1.95191i
\(707\) 0 0
\(708\) −2.94303e9 2.66862e9i −0.311658 0.282598i
\(709\) −1.58354e10 −1.66866 −0.834331 0.551264i \(-0.814146\pi\)
−0.834331 + 0.551264i \(0.814146\pi\)
\(710\) −5.29516e9 −0.555232
\(711\) −2.67393e8 2.72746e9i −0.0279001 0.284587i
\(712\) 9.09492e8i 0.0944320i
\(713\) 8.93968e8 0.0923652
\(714\) 0 0
\(715\) −4.40518e8 −0.0450705
\(716\) 7.55528e9i 0.769228i
\(717\) 3.27175e9 3.60819e9i 0.331484 0.365571i
\(718\) −8.99058e9 −0.906467
\(719\) −1.49545e9 −0.150045 −0.0750225 0.997182i \(-0.523903\pi\)
−0.0750225 + 0.997182i \(0.523903\pi\)
\(720\) 2.29737e9 + 2.34337e10i 0.229386 + 2.33979i
\(721\) 0 0
\(722\) 2.66496e9i 0.263518i
\(723\) 8.83001e9 9.73801e9i 0.868914 0.958266i
\(724\) 9.65975e9i 0.945978i
\(725\) 8.50050e9i 0.828440i
\(726\) −7.29570e9 + 8.04592e9i −0.707601 + 0.780365i
\(727\) 1.76815e10i 1.70667i 0.521364 + 0.853334i \(0.325423\pi\)
−0.521364 + 0.853334i \(0.674577\pi\)
\(728\) 0 0
\(729\) −3.02297e9 1.00140e10i −0.288993 0.957331i
\(730\) −2.90504e10 −2.76390
\(731\) 9.86463e8 0.0934049
\(732\) −4.05514e9 + 4.47214e9i −0.382136 + 0.421431i
\(733\) 2.98987e9i 0.280407i 0.990123 + 0.140203i \(0.0447756\pi\)
−0.990123 + 0.140203i \(0.955224\pi\)
\(734\) −7.86652e9 −0.734254
\(735\) 0 0
\(736\) −6.57854e9 −0.608215
\(737\) 3.78701e9i 0.348466i
\(738\) −9.85650e9 + 9.66304e8i −0.902663 + 0.0884945i
\(739\) −1.06042e10 −0.966544 −0.483272 0.875470i \(-0.660552\pi\)
−0.483272 + 0.875470i \(0.660552\pi\)
\(740\) 1.32552e10 1.20247
\(741\) 3.98434e8 + 3.61283e8i 0.0359744 + 0.0326200i
\(742\) 0 0
\(743\) 6.92790e9i 0.619642i −0.950795 0.309821i \(-0.899731\pi\)
0.950795 0.309821i \(-0.100269\pi\)
\(744\) −6.20148e8 5.62323e8i −0.0552064 0.0500588i
\(745\) 5.61007e9i 0.497074i
\(746\) 1.57789e10i 1.39152i
\(747\) −9.48315e8 9.67301e9i −0.0832397 0.849062i
\(748\) 3.39132e9i 0.296287i
\(749\) 0 0
\(750\) 3.29836e10 3.63754e10i 2.85485 3.14842i
\(751\) −7.24144e9 −0.623857 −0.311929 0.950106i \(-0.600975\pi\)
−0.311929 + 0.950106i \(0.600975\pi\)
\(752\) 1.44040e10 1.23515
\(753\) 1.12199e10 + 1.01737e10i 0.957647 + 0.868353i
\(754\) 2.53323e8i 0.0215216i
\(755\) 2.05422e10 1.73713
\(756\) 0 0
\(757\) −1.94667e10 −1.63101 −0.815507 0.578747i \(-0.803542\pi\)
−0.815507 + 0.578747i \(0.803542\pi\)
\(758\) 1.79695e10i 1.49863i
\(759\) −2.02608e9 1.83716e9i −0.168194 0.152511i
\(760\) −8.85616e9 −0.731809
\(761\) 1.63880e10 1.34797 0.673984 0.738746i \(-0.264582\pi\)
0.673984 + 0.738746i \(0.264582\pi\)
\(762\) 7.99347e9 8.81545e9i 0.654475 0.721776i
\(763\) 0 0
\(764\) 7.29635e9i 0.591942i
\(765\) 2.39061e9 + 2.43847e10i 0.193060 + 1.96926i
\(766\) 1.51779e10i 1.22014i
\(767\) 4.26787e8i 0.0341529i
\(768\) 1.21759e10 + 1.10406e10i 0.969924 + 0.879485i
\(769\) 1.90743e10i 1.51254i −0.654259 0.756270i \(-0.727020\pi\)
0.654259 0.756270i \(-0.272980\pi\)
\(770\) 0 0
\(771\) −6.95230e9 6.30405e9i −0.546309 0.495369i
\(772\) 1.54885e10 1.21157
\(773\) 5.87243e9 0.457288 0.228644 0.973510i \(-0.426571\pi\)
0.228644 + 0.973510i \(0.426571\pi\)
\(774\) 1.50826e9 1.47866e8i 0.116918 0.0114623i
\(775\) 6.13897e9i 0.473740i
\(776\) 5.05534e9 0.388360
\(777\) 0 0
\(778\) 7.79769e9 0.593660
\(779\) 8.26144e9i 0.626144i
\(780\) −6.25518e8 + 6.89841e8i −0.0471964 + 0.0520496i
\(781\) −1.27737e9 −0.0959483
\(782\) −9.37646e9 −0.701157
\(783\) −3.29936e9 2.45043e9i −0.245620 0.182421i
\(784\) 0 0
\(785\) 2.94865e10i 2.17560i
\(786\) 2.09670e10 2.31231e10i 1.54013 1.69850i
\(787\) 1.18200e10i 0.864384i 0.901781 + 0.432192i \(0.142260\pi\)
−0.901781 + 0.432192i \(0.857740\pi\)
\(788\) 1.80136e10i 1.31147i
\(789\) 1.35246e10 1.49153e10i 0.980288 1.08109i
\(790\) 9.86181e9i 0.711642i
\(791\) 0 0
\(792\) 2.49885e8 + 2.54888e9i 0.0178732 + 0.182310i
\(793\) 6.48531e8 0.0461822
\(794\) −1.56982e10 −1.11296
\(795\) 1.32693e10 1.46338e10i 0.936621 1.03294i
\(796\) 1.25805e10i 0.884103i
\(797\) 1.19819e9 0.0838345 0.0419173 0.999121i \(-0.486653\pi\)
0.0419173 + 0.999121i \(0.486653\pi\)
\(798\) 0 0
\(799\) 1.49886e10 1.03955
\(800\) 4.51755e10i 3.11952i
\(801\) 3.14623e8 + 3.20922e9i 0.0216310 + 0.220641i
\(802\) 3.35425e10 2.29607
\(803\) −7.00791e9 −0.477622
\(804\) −5.93037e9 5.37741e9i −0.402426 0.364902i
\(805\) 0 0
\(806\) 1.82947e8i 0.0123070i
\(807\) −8.40694e9 7.62306e9i −0.563094 0.510589i
\(808\) 8.34221e9i 0.556341i
\(809\) 1.60213e10i 1.06384i −0.846793 0.531922i \(-0.821470\pi\)
0.846793 0.531922i \(-0.178530\pi\)
\(810\) 7.31027e9 + 3.69248e10i 0.483321 + 2.44130i
\(811\) 1.85573e10i 1.22164i 0.791770 + 0.610819i \(0.209160\pi\)
−0.791770 + 0.610819i \(0.790840\pi\)
\(812\) 0 0
\(813\) −4.62898e9 + 5.10498e9i −0.302112 + 0.333179i
\(814\) 7.96704e9 0.517740
\(815\) 3.24484e10 2.09963
\(816\) 1.44258e10 + 1.30807e10i 0.929446 + 0.842782i
\(817\) 1.26418e9i 0.0811020i
\(818\) −2.49757e10 −1.59544
\(819\) 0 0
\(820\) 1.43037e10 0.905939
\(821\) 1.41474e10i 0.892226i 0.894977 + 0.446113i \(0.147192\pi\)
−0.894977 + 0.446113i \(0.852808\pi\)
\(822\) 1.49243e10 + 1.35327e10i 0.937220 + 0.849831i
\(823\) −5.04223e9 −0.315299 −0.157650 0.987495i \(-0.550392\pi\)
−0.157650 + 0.987495i \(0.550392\pi\)
\(824\) 5.83915e9 0.363584
\(825\) 1.26160e10 1.39133e10i 0.782225 0.862662i
\(826\) 0 0
\(827\) 2.69970e10i 1.65976i 0.557941 + 0.829881i \(0.311592\pi\)
−0.557941 + 0.829881i \(0.688408\pi\)
\(828\) −5.75389e9 + 5.64095e8i −0.352254 + 0.0345339i
\(829\) 2.65474e10i 1.61838i −0.587545 0.809191i \(-0.699906\pi\)
0.587545 0.809191i \(-0.300094\pi\)
\(830\) 3.49751e10i 2.12318i
\(831\) −1.78451e10 1.61812e10i −1.07874 0.978151i
\(832\) 2.42356e8i 0.0145889i
\(833\) 0 0
\(834\) 3.04977e10 + 2.76540e10i 1.82048 + 1.65073i
\(835\) −1.70195e10 −1.01168
\(836\) 4.34608e9 0.257262
\(837\) −2.38277e9 1.76967e9i −0.140457 0.104317i
\(838\) 2.83261e10i 1.66277i
\(839\) −1.50756e10 −0.881266 −0.440633 0.897687i \(-0.645246\pi\)
−0.440633 + 0.897687i \(0.645246\pi\)
\(840\) 0 0
\(841\) 1.56352e10 0.906393
\(842\) 3.14969e10i 1.81834i
\(843\) −1.17554e10 + 1.29642e10i −0.675834 + 0.745331i
\(844\) −1.24399e10 −0.712226
\(845\) −3.36717e10 −1.91985
\(846\) 2.29169e10 2.24671e9i 1.30125 0.127571i
\(847\) 0 0
\(848\) 1.57001e10i 0.884130i
\(849\) 1.18082e10 1.30224e10i 0.662226 0.730323i
\(850\) 6.43892e10i 3.59622i
\(851\) 8.84085e9i 0.491746i
\(852\) −1.81381e9 + 2.00033e9i −0.100474 + 0.110806i
\(853\) 1.92731e10i 1.06324i −0.846984 0.531618i \(-0.821584\pi\)
0.846984 0.531618i \(-0.178416\pi\)
\(854\) 0 0
\(855\) −3.12497e10 + 3.06363e9i −1.70987 + 0.167631i
\(856\) −1.21578e8 −0.00662516
\(857\) 1.21714e10 0.660554 0.330277 0.943884i \(-0.392858\pi\)
0.330277 + 0.943884i \(0.392858\pi\)
\(858\) −3.75967e8 + 4.14628e8i −0.0203210 + 0.0224106i
\(859\) 2.09276e10i 1.12653i −0.826277 0.563264i \(-0.809545\pi\)
0.826277 0.563264i \(-0.190455\pi\)
\(860\) −2.18877e9 −0.117343
\(861\) 0 0
\(862\) −4.26659e10 −2.26885
\(863\) 1.19006e10i 0.630279i −0.949045 0.315140i \(-0.897949\pi\)
0.949045 0.315140i \(-0.102051\pi\)
\(864\) 1.75343e10 + 1.30227e10i 0.924892 + 0.686915i
\(865\) 1.91130e9 0.100409
\(866\) −2.57224e10 −1.34586
\(867\) 7.95567e8 + 7.21386e8i 0.0414582 + 0.0375925i
\(868\) 0 0
\(869\) 2.37900e9i 0.122977i
\(870\) 1.09557e10 + 9.93420e9i 0.564059 + 0.511464i
\(871\) 8.59998e8i 0.0440995i
\(872\) 1.14064e9i 0.0582560i
\(873\) 1.78382e10 1.74881e9i 0.907405 0.0889594i
\(874\) 1.20162e10i 0.608804i
\(875\) 0 0
\(876\) −9.95095e9 + 1.09742e10i −0.500150 + 0.551581i
\(877\) −2.60925e10 −1.30622 −0.653112 0.757261i \(-0.726537\pi\)
−0.653112 + 0.757261i \(0.726537\pi\)
\(878\) −1.87304e10 −0.933934
\(879\) −6.33891e8 5.74785e8i −0.0314814 0.0285459i
\(880\) 2.04397e10i 1.01108i
\(881\) −2.60616e10 −1.28406 −0.642031 0.766678i \(-0.721908\pi\)
−0.642031 + 0.766678i \(0.721908\pi\)
\(882\) 0 0
\(883\) −7.75021e9 −0.378836 −0.189418 0.981897i \(-0.560660\pi\)
−0.189418 + 0.981897i \(0.560660\pi\)
\(884\) 7.70139e8i 0.0374961i
\(885\) −1.84577e10 1.67367e10i −0.895112 0.811649i
\(886\) 1.94630e10 0.940139
\(887\) 6.90376e9 0.332165 0.166082 0.986112i \(-0.446888\pi\)
0.166082 + 0.986112i \(0.446888\pi\)
\(888\) −5.56107e9 + 6.13292e9i −0.266510 + 0.293915i
\(889\) 0 0
\(890\) 1.16037e10i 0.551737i
\(891\) 1.76348e9 + 8.90750e9i 0.0835216 + 0.421875i
\(892\) 1.63149e10i 0.769676i
\(893\) 1.92083e10i 0.902629i
\(894\) −5.28036e9 4.78800e9i −0.247162 0.224116i
\(895\) 4.73843e10i 2.20929i
\(896\) 0 0
\(897\) 4.60104e8 + 4.17203e8i 0.0212854 + 0.0193007i
\(898\) 1.34010e10 0.617546
\(899\) −1.16613e9 −0.0535286
\(900\) −3.87370e9 3.95126e10i −0.177124 1.80670i
\(901\) 1.63372e10i 0.744118i
\(902\) 8.59722e9 0.390063
\(903\) 0 0
\(904\) −9.51021e9 −0.428155
\(905\) 6.05828e10i 2.71693i
\(906\) 1.75321e10 1.93349e10i 0.783221 0.863760i
\(907\) 3.64835e10 1.62357 0.811784 0.583957i \(-0.198496\pi\)
0.811784 + 0.583957i \(0.198496\pi\)
\(908\) −3.85445e9 −0.170868
\(909\) −2.88584e9 2.94362e10i −0.127438 1.29989i
\(910\) 0 0
\(911\) 2.78042e8i 0.0121842i 0.999981 + 0.00609209i \(0.00193918\pi\)
−0.999981 + 0.00609209i \(0.998061\pi\)
\(912\) −1.67633e10 + 1.84871e10i −0.731774 + 0.807023i
\(913\) 8.43717e9i 0.366901i
\(914\) 9.41828e9i 0.408000i
\(915\) −2.54325e10 + 2.80478e10i −1.09753 + 1.21039i
\(916\) 7.05204e9i 0.303166i
\(917\) 0 0
\(918\) 2.49919e10 + 1.85614e10i 1.06623 + 0.791883i
\(919\) 2.41019e10 1.02435 0.512174 0.858882i \(-0.328840\pi\)
0.512174 + 0.858882i \(0.328840\pi\)
\(920\) −1.02269e10 −0.432999
\(921\) −2.19721e10 + 2.42316e10i −0.926753 + 1.02205i
\(922\) 2.65824e10i 1.11696i
\(923\) 2.90079e8 0.0121426
\(924\) 0 0
\(925\) 6.07111e10 2.52216
\(926\) 2.06842e10i 0.856054i
\(927\) 2.06039e10 2.01995e9i 0.849515 0.0832840i
\(928\) 8.58129e9 0.352480
\(929\) 1.89119e9 0.0773891 0.0386945 0.999251i \(-0.487680\pi\)
0.0386945 + 0.999251i \(0.487680\pi\)
\(930\) 7.91213e9 + 7.17438e9i 0.322554 + 0.292478i
\(931\) 0 0
\(932\) 3.12395e9i 0.126401i
\(933\) 1.46735e10 + 1.33053e10i 0.591490 + 0.536338i
\(934\) 5.96613e10i 2.39595i
\(935\) 2.12693e10i 0.850965i
\(936\) −5.67468e7 5.78829e8i −0.00226191 0.0230720i
\(937\) 3.00074e9i 0.119163i −0.998223 0.0595813i \(-0.981023\pi\)
0.998223 0.0595813i \(-0.0189766\pi\)
\(938\) 0 0
\(939\) 1.05662e10 1.16528e10i 0.416476 0.459303i
\(940\) −3.32569e10 −1.30597
\(941\) 1.71379e8 0.00670491 0.00335246 0.999994i \(-0.498933\pi\)
0.00335246 + 0.999994i \(0.498933\pi\)
\(942\) 2.77535e10 + 2.51657e10i 1.08178 + 0.980913i
\(943\) 9.54015e9i 0.370479i
\(944\) −1.98026e10 −0.766161
\(945\) 0 0
\(946\) −1.31556e9 −0.0505234
\(947\) 2.15658e10i 0.825164i 0.910920 + 0.412582i \(0.135373\pi\)
−0.910920 + 0.412582i \(0.864627\pi\)
\(948\) 3.72545e9 + 3.37808e9i 0.142020 + 0.128778i
\(949\) 1.59144e9 0.0604446
\(950\) 8.25166e10 3.12254
\(951\) −2.17093e10 + 2.39417e10i −0.818490 + 0.902656i
\(952\) 0 0
\(953\) 2.27050e10i 0.849760i −0.905250 0.424880i \(-0.860316\pi\)
0.905250 0.424880i \(-0.139684\pi\)
\(954\) −2.44887e9 2.49790e10i −0.0913157 0.931440i
\(955\) 4.57603e10i 1.70011i
\(956\) 8.93779e9i 0.330847i
\(957\) 2.64289e9 + 2.39646e9i 0.0974737 + 0.0883849i
\(958\) 1.50900e7i 0.000554510i
\(959\) 0 0
\(960\) −1.04815e10 9.50415e9i −0.382361 0.346708i
\(961\) 2.66705e10 0.969390
\(962\) −1.80925e9 −0.0655217
\(963\) −4.28997e8 + 4.20577e7i −0.0154797 + 0.00151759i
\(964\) 2.41219e10i 0.867244i
\(965\) 9.71388e10 3.47974
\(966\) 0 0
\(967\) −3.81459e10 −1.35661 −0.678306 0.734780i \(-0.737285\pi\)
−0.678306 + 0.734780i \(0.737285\pi\)
\(968\) 9.79720e9i 0.347167i
\(969\) −1.74436e10 + 1.92374e10i −0.615890 + 0.679223i
\(970\) −6.44984e10 −2.26907
\(971\) 2.80457e10 0.983102 0.491551 0.870849i \(-0.336430\pi\)
0.491551 + 0.870849i \(0.336430\pi\)
\(972\) 1.64530e10 + 9.88672e9i 0.574663 + 0.345319i
\(973\) 0 0
\(974\) 1.40266e10i 0.486404i
\(975\) −2.86498e9 + 3.15958e9i −0.0989931 + 0.109173i
\(976\) 3.00914e10i 1.03602i
\(977\) 2.41960e10i 0.830065i −0.909807 0.415032i \(-0.863770\pi\)
0.909807 0.415032i \(-0.136230\pi\)
\(978\) 2.76936e10 3.05414e10i 0.946659 1.04401i
\(979\) 2.79920e9i 0.0953443i
\(980\) 0 0
\(981\) −3.94584e8 4.02484e9i −0.0133444 0.136115i
\(982\) −1.00275e10 −0.337910
\(983\) −1.50841e10 −0.506502 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(984\) −6.00094e9 + 6.61802e9i −0.200787 + 0.221435i
\(985\) 1.12976e11i 3.76668i
\(986\) 1.22310e10 0.406343
\(987\) 0 0
\(988\) −9.86956e8 −0.0325573
\(989\) 1.45985e9i 0.0479867i
\(990\) −3.18815e9 3.25198e10i −0.104428 1.06518i
\(991\) −3.68938e10 −1.20419 −0.602096 0.798424i \(-0.705667\pi\)
−0.602096 + 0.798424i \(0.705667\pi\)
\(992\) 6.19732e9 0.201564
\(993\) −2.96614e10 2.68956e10i −0.961321 0.871685i
\(994\) 0 0
\(995\) 7.89009e10i 2.53922i
\(996\) 1.32124e10 + 1.19804e10i 0.423715 + 0.384207i
\(997\) 4.12487e10i 1.31819i −0.752060 0.659094i \(-0.770940\pi\)
0.752060 0.659094i \(-0.229060\pi\)
\(998\) 4.35762e10i 1.38769i
\(999\) −1.75011e10 + 2.35643e10i −0.555375 + 0.747782i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.8.c.b.146.2 32
3.2 odd 2 inner 147.8.c.b.146.31 32
7.4 even 3 21.8.g.b.5.4 32
7.5 odd 6 21.8.g.b.17.13 yes 32
7.6 odd 2 inner 147.8.c.b.146.32 32
21.5 even 6 21.8.g.b.17.4 yes 32
21.11 odd 6 21.8.g.b.5.13 yes 32
21.20 even 2 inner 147.8.c.b.146.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.8.g.b.5.4 32 7.4 even 3
21.8.g.b.5.13 yes 32 21.11 odd 6
21.8.g.b.17.4 yes 32 21.5 even 6
21.8.g.b.17.13 yes 32 7.5 odd 6
147.8.c.b.146.1 32 21.20 even 2 inner
147.8.c.b.146.2 32 1.1 even 1 trivial
147.8.c.b.146.31 32 3.2 odd 2 inner
147.8.c.b.146.32 32 7.6 odd 2 inner