Properties

Label 147.8.e.c
Level $147$
Weight $8$
Character orbit 147.e
Analytic conductor $45.921$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,8,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \zeta_{6} q^{2} + (27 \zeta_{6} - 27) q^{3} + ( - 124 \zeta_{6} + 124) q^{4} + 278 \zeta_{6} q^{5} + 54 q^{6} - 504 q^{8} - 729 \zeta_{6} q^{9} + ( - 556 \zeta_{6} + 556) q^{10} + ( - 4496 \zeta_{6} + 4496) q^{11} + \cdots - 3277584 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 27 q^{3} + 124 q^{4} + 278 q^{5} + 108 q^{6} - 1008 q^{8} - 729 q^{9} + 556 q^{10} + 4496 q^{11} + 3348 q^{12} - 14548 q^{13} - 15012 q^{15} - 14864 q^{16} - 11382 q^{17} - 1458 q^{18} + 15884 q^{19}+ \cdots - 6555168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i −13.5000 + 23.3827i 62.0000 107.387i 139.000 + 240.755i 54.0000 0 −504.000 −364.500 631.333i 278.000 481.510i
79.1 −1.00000 + 1.73205i −13.5000 23.3827i 62.0000 + 107.387i 139.000 240.755i 54.0000 0 −504.000 −364.500 + 631.333i 278.000 + 481.510i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.8.e.c 2
7.b odd 2 1 147.8.e.d 2
7.c even 3 1 21.8.a.a 1
7.c even 3 1 inner 147.8.e.c 2
7.d odd 6 1 147.8.a.a 1
7.d odd 6 1 147.8.e.d 2
21.g even 6 1 441.8.a.b 1
21.h odd 6 1 63.8.a.a 1
28.g odd 6 1 336.8.a.b 1
35.j even 6 1 525.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.a.a 1 7.c even 3 1
63.8.a.a 1 21.h odd 6 1
147.8.a.a 1 7.d odd 6 1
147.8.e.c 2 1.a even 1 1 trivial
147.8.e.c 2 7.c even 3 1 inner
147.8.e.d 2 7.b odd 2 1
147.8.e.d 2 7.d odd 6 1
336.8.a.b 1 28.g odd 6 1
441.8.a.b 1 21.g even 6 1
525.8.a.b 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} + 2T_{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 278T_{5} + 77284 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 27T + 729 \) Copy content Toggle raw display
$5$ \( T^{2} - 278T + 77284 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4496 T + 20214016 \) Copy content Toggle raw display
$13$ \( (T + 7274)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 11382 T + 129549924 \) Copy content Toggle raw display
$19$ \( T^{2} - 15884 T + 252301456 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 7413210000 \) Copy content Toggle raw display
$29$ \( (T - 40702)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 2003457600 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 337516845444 \) Copy content Toggle raw display
$41$ \( (T + 171658)^{2} \) Copy content Toggle raw display
$43$ \( (T + 741148)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 1148583758400 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 2964519481284 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 2424286368144 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 6749593608004 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 928424748304 \) Copy content Toggle raw display
$71$ \( (T + 4063380)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 28839284329284 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 16768500844096 \) Copy content Toggle raw display
$83$ \( (T + 1343124)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 82474986317476 \) Copy content Toggle raw display
$97$ \( (T - 6487914)^{2} \) Copy content Toggle raw display
show more
show less