Properties

Label 1470.2.a.j.1.1
Level $1470$
Weight $2$
Character 1470.1
Self dual yes
Analytic conductor $11.738$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(1,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.7380090971\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1470.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -4.00000 q^{11} -1.00000 q^{12} +2.00000 q^{13} +1.00000 q^{15} +1.00000 q^{16} -2.00000 q^{17} +1.00000 q^{18} -4.00000 q^{19} -1.00000 q^{20} -4.00000 q^{22} -8.00000 q^{23} -1.00000 q^{24} +1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{27} -2.00000 q^{29} +1.00000 q^{30} +1.00000 q^{32} +4.00000 q^{33} -2.00000 q^{34} +1.00000 q^{36} +6.00000 q^{37} -4.00000 q^{38} -2.00000 q^{39} -1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} -4.00000 q^{44} -1.00000 q^{45} -8.00000 q^{46} -1.00000 q^{48} +1.00000 q^{50} +2.00000 q^{51} +2.00000 q^{52} -10.0000 q^{53} -1.00000 q^{54} +4.00000 q^{55} +4.00000 q^{57} -2.00000 q^{58} -12.0000 q^{59} +1.00000 q^{60} -14.0000 q^{61} +1.00000 q^{64} -2.00000 q^{65} +4.00000 q^{66} -12.0000 q^{67} -2.00000 q^{68} +8.00000 q^{69} -8.00000 q^{71} +1.00000 q^{72} -10.0000 q^{73} +6.00000 q^{74} -1.00000 q^{75} -4.00000 q^{76} -2.00000 q^{78} +16.0000 q^{79} -1.00000 q^{80} +1.00000 q^{81} +6.00000 q^{82} +12.0000 q^{83} +2.00000 q^{85} -4.00000 q^{86} +2.00000 q^{87} -4.00000 q^{88} -10.0000 q^{89} -1.00000 q^{90} -8.00000 q^{92} +4.00000 q^{95} -1.00000 q^{96} -2.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) −1.00000 −0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 1.00000 0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 1.00000 0.182574
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.00000 0.696311
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) −2.00000 −0.320256
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −4.00000 −0.603023
\(45\) −1.00000 −0.149071
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 2.00000 0.280056
\(52\) 2.00000 0.277350
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −1.00000 −0.136083
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) −2.00000 −0.262613
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 1.00000 0.129099
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) 4.00000 0.492366
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −2.00000 −0.242536
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 6.00000 0.697486
\(75\) −1.00000 −0.115470
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) −4.00000 −0.431331
\(87\) 2.00000 0.214423
\(88\) −4.00000 −0.426401
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) −1.00000 −0.102062
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 2.00000 0.198030
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 4.00000 0.381385
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 4.00000 0.374634
\(115\) 8.00000 0.746004
\(116\) −2.00000 −0.185695
\(117\) 2.00000 0.184900
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 1.00000 0.0912871
\(121\) 5.00000 0.454545
\(122\) −14.0000 −1.26750
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.00000 0.352180
\(130\) −2.00000 −0.175412
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 4.00000 0.348155
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 1.00000 0.0860663
\(136\) −2.00000 −0.171499
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 8.00000 0.681005
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) −8.00000 −0.668994
\(144\) 1.00000 0.0833333
\(145\) 2.00000 0.166091
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) −1.00000 −0.0816497
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −4.00000 −0.324443
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 16.0000 1.27289
\(159\) 10.0000 0.793052
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 6.00000 0.468521
\(165\) −4.00000 −0.311400
\(166\) 12.0000 0.931381
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 2.00000 0.153393
\(171\) −4.00000 −0.305888
\(172\) −4.00000 −0.304997
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 12.0000 0.901975
\(178\) −10.0000 −0.749532
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) −8.00000 −0.589768
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) −4.00000 −0.284268
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 1.00000 0.0707107
\(201\) 12.0000 0.846415
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 2.00000 0.140028
\(205\) −6.00000 −0.419058
\(206\) 8.00000 0.557386
\(207\) −8.00000 −0.556038
\(208\) 2.00000 0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −10.0000 −0.686803
\(213\) 8.00000 0.548151
\(214\) 12.0000 0.820303
\(215\) 4.00000 0.272798
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 10.0000 0.675737
\(220\) 4.00000 0.269680
\(221\) −4.00000 −0.269069
\(222\) −6.00000 −0.402694
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 18.0000 1.19734
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 4.00000 0.264906
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 1.00000 0.0645497
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 5.00000 0.321412
\(243\) −1.00000 −0.0641500
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) −1.00000 −0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) −16.0000 −1.00393
\(255\) −2.00000 −0.125245
\(256\) 1.00000 0.0625000
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 4.00000 0.249029
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) −2.00000 −0.123797
\(262\) −20.0000 −1.23560
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 4.00000 0.246183
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) −12.0000 −0.733017
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 1.00000 0.0608581
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −4.00000 −0.241209
\(276\) 8.00000 0.481543
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) −8.00000 −0.474713
\(285\) −4.00000 −0.236940
\(286\) −8.00000 −0.473050
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) 2.00000 0.117444
\(291\) 2.00000 0.117242
\(292\) −10.0000 −0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 6.00000 0.348743
\(297\) 4.00000 0.232104
\(298\) −10.0000 −0.579284
\(299\) −16.0000 −0.925304
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) −8.00000 −0.460348
\(303\) 6.00000 0.344691
\(304\) −4.00000 −0.229416
\(305\) 14.0000 0.801638
\(306\) −2.00000 −0.114332
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) −2.00000 −0.113228
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 16.0000 0.900070
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 10.0000 0.560772
\(319\) 8.00000 0.447914
\(320\) −1.00000 −0.0559017
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 1.00000 0.0555556
\(325\) 2.00000 0.110940
\(326\) 20.0000 1.10770
\(327\) −14.0000 −0.774202
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 12.0000 0.658586
\(333\) 6.00000 0.328798
\(334\) 8.00000 0.437741
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −9.00000 −0.489535
\(339\) −18.0000 −0.977626
\(340\) 2.00000 0.108465
\(341\) 0 0
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) −8.00000 −0.430706
\(346\) 18.0000 0.967686
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 2.00000 0.107211
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) −4.00000 −0.213201
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 12.0000 0.637793
\(355\) 8.00000 0.424596
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 −0.157895
\(362\) −6.00000 −0.315353
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 14.0000 0.731792
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) −8.00000 −0.417029
\(369\) 6.00000 0.312348
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 8.00000 0.413670
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 4.00000 0.205196
\(381\) 16.0000 0.819705
\(382\) −16.0000 −0.818631
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) −4.00000 −0.203331
\(388\) −2.00000 −0.101535
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 2.00000 0.101274
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 20.0000 1.00887
\(394\) 6.00000 0.302276
\(395\) −16.0000 −0.805047
\(396\) −4.00000 −0.201008
\(397\) −30.0000 −1.50566 −0.752828 0.658217i \(-0.771311\pi\)
−0.752828 + 0.658217i \(0.771311\pi\)
\(398\) 24.0000 1.20301
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 12.0000 0.598506
\(403\) 0 0
\(404\) −6.00000 −0.298511
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 2.00000 0.0990148
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) −6.00000 −0.296319
\(411\) −10.0000 −0.493264
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) −8.00000 −0.393179
\(415\) −12.0000 −0.589057
\(416\) 2.00000 0.0980581
\(417\) −4.00000 −0.195881
\(418\) 16.0000 0.782586
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) −2.00000 −0.0970143
\(426\) 8.00000 0.387601
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 8.00000 0.386244
\(430\) 4.00000 0.192897
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) −2.00000 −0.0958927
\(436\) 14.0000 0.670478
\(437\) 32.0000 1.53077
\(438\) 10.0000 0.477818
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) −6.00000 −0.284747
\(445\) 10.0000 0.474045
\(446\) 16.0000 0.757622
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 1.00000 0.0471405
\(451\) −24.0000 −1.13012
\(452\) 18.0000 0.846649
\(453\) 8.00000 0.375873
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 10.0000 0.467269
\(459\) 2.00000 0.0933520
\(460\) 8.00000 0.373002
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 2.00000 0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) −12.0000 −0.552345
\(473\) 16.0000 0.735681
\(474\) −16.0000 −0.734904
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 1.00000 0.0456435
\(481\) 12.0000 0.547153
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 2.00000 0.0908153
\(486\) −1.00000 −0.0453609
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −14.0000 −0.633750
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) −6.00000 −0.270501
\(493\) 4.00000 0.180151
\(494\) −8.00000 −0.359937
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −8.00000 −0.357414
\(502\) −12.0000 −0.535586
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 32.0000 1.42257
\(507\) 9.00000 0.399704
\(508\) −16.0000 −0.709885
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) −2.00000 −0.0885615
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 4.00000 0.176604
\(514\) 14.0000 0.617514
\(515\) −8.00000 −0.352522
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) −2.00000 −0.0877058
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −2.00000 −0.0875376
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) 0 0
\(528\) 4.00000 0.174078
\(529\) 41.0000 1.78261
\(530\) 10.0000 0.434372
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 10.0000 0.432742
\(535\) −12.0000 −0.518805
\(536\) −12.0000 −0.518321
\(537\) −4.00000 −0.172613
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) 1.00000 0.0430331
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) −16.0000 −0.687259
\(543\) 6.00000 0.257485
\(544\) −2.00000 −0.0857493
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 10.0000 0.427179
\(549\) −14.0000 −0.597505
\(550\) −4.00000 −0.170561
\(551\) 8.00000 0.340811
\(552\) 8.00000 0.340503
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 6.00000 0.254686
\(556\) 4.00000 0.169638
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) −6.00000 −0.253095
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) −28.0000 −1.17693
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) −4.00000 −0.167542
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) −8.00000 −0.334497
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 1.00000 0.0416667
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −13.0000 −0.540729
\(579\) −2.00000 −0.0831172
\(580\) 2.00000 0.0830455
\(581\) 0 0
\(582\) 2.00000 0.0829027
\(583\) 40.0000 1.65663
\(584\) −10.0000 −0.413803
\(585\) −2.00000 −0.0826898
\(586\) −6.00000 −0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 12.0000 0.494032
\(591\) −6.00000 −0.246807
\(592\) 6.00000 0.246598
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 4.00000 0.164122
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) −24.0000 −0.982255
\(598\) −16.0000 −0.654289
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) −8.00000 −0.325515
\(605\) −5.00000 −0.203279
\(606\) 6.00000 0.243733
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 0 0
\(612\) −2.00000 −0.0808452
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −20.0000 −0.807134
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) −8.00000 −0.321807
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 8.00000 0.320771
\(623\) 0 0
\(624\) −2.00000 −0.0800641
\(625\) 1.00000 0.0400000
\(626\) 6.00000 0.239808
\(627\) −16.0000 −0.638978
\(628\) 18.0000 0.718278
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 16.0000 0.636446
\(633\) 12.0000 0.476957
\(634\) −2.00000 −0.0794301
\(635\) 16.0000 0.634941
\(636\) 10.0000 0.396526
\(637\) 0 0
\(638\) 8.00000 0.316723
\(639\) −8.00000 −0.316475
\(640\) −1.00000 −0.0395285
\(641\) 34.0000 1.34292 0.671460 0.741041i \(-0.265668\pi\)
0.671460 + 0.741041i \(0.265668\pi\)
\(642\) −12.0000 −0.473602
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 8.00000 0.314756
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 1.00000 0.0392837
\(649\) 48.0000 1.88416
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) 20.0000 0.783260
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) −14.0000 −0.547443
\(655\) 20.0000 0.781465
\(656\) 6.00000 0.234261
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) −4.00000 −0.155700
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 12.0000 0.466393
\(663\) 4.00000 0.155347
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 16.0000 0.619522
\(668\) 8.00000 0.309529
\(669\) −16.0000 −0.618596
\(670\) 12.0000 0.463600
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 18.0000 0.693334
\(675\) −1.00000 −0.0384900
\(676\) −9.00000 −0.346154
\(677\) 26.0000 0.999261 0.499631 0.866239i \(-0.333469\pi\)
0.499631 + 0.866239i \(0.333469\pi\)
\(678\) −18.0000 −0.691286
\(679\) 0 0
\(680\) 2.00000 0.0766965
\(681\) 4.00000 0.153280
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −4.00000 −0.152944
\(685\) −10.0000 −0.382080
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) −4.00000 −0.152499
\(689\) −20.0000 −0.761939
\(690\) −8.00000 −0.304555
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) −4.00000 −0.151729
\(696\) 2.00000 0.0758098
\(697\) −12.0000 −0.454532
\(698\) −14.0000 −0.529908
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −24.0000 −0.905177
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) 0 0
\(708\) 12.0000 0.450988
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 8.00000 0.300235
\(711\) 16.0000 0.600047
\(712\) −10.0000 −0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 8.00000 0.299183
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) −14.0000 −0.520666
\(724\) −6.00000 −0.222988
\(725\) −2.00000 −0.0742781
\(726\) −5.00000 −0.185567
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 10.0000 0.370117
\(731\) 8.00000 0.295891
\(732\) 14.0000 0.517455
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 48.0000 1.76810
\(738\) 6.00000 0.220863
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) −6.00000 −0.220564
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) −10.0000 −0.366126
\(747\) 12.0000 0.439057
\(748\) 8.00000 0.292509
\(749\) 0 0
\(750\) 1.00000 0.0365148
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) −4.00000 −0.145671
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 28.0000 1.01701
\(759\) −32.0000 −1.16153
\(760\) 4.00000 0.145095
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 16.0000 0.579619
\(763\) 0 0
\(764\) −16.0000 −0.578860
\(765\) 2.00000 0.0723102
\(766\) −16.0000 −0.578103
\(767\) −24.0000 −0.866590
\(768\) −1.00000 −0.0360844
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 2.00000 0.0719816
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) −26.0000 −0.932145
\(779\) −24.0000 −0.859889
\(780\) 2.00000 0.0716115
\(781\) 32.0000 1.14505
\(782\) 16.0000 0.572159
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −18.0000 −0.642448
\(786\) 20.0000 0.713376
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) 6.00000 0.213741
\(789\) −8.00000 −0.284808
\(790\) −16.0000 −0.569254
\(791\) 0 0
\(792\) −4.00000 −0.142134
\(793\) −28.0000 −0.994309
\(794\) −30.0000 −1.06466
\(795\) −10.0000 −0.354663
\(796\) 24.0000 0.850657
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −10.0000 −0.353333
\(802\) −14.0000 −0.494357
\(803\) 40.0000 1.41157
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) −6.00000 −0.211079
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) −24.0000 −0.841200
\(815\) −20.0000 −0.700569
\(816\) 2.00000 0.0700140
\(817\) 16.0000 0.559769
\(818\) 38.0000 1.32864
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) −10.0000 −0.348790
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 8.00000 0.278693
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) −8.00000 −0.278019
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) −12.0000 −0.416526
\(831\) −22.0000 −0.763172
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) −4.00000 −0.138509
\(835\) −8.00000 −0.276851
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) −20.0000 −0.690889
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −26.0000 −0.896019
\(843\) 6.00000 0.206651
\(844\) −12.0000 −0.413057
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) −10.0000 −0.343401
\(849\) 28.0000 0.960958
\(850\) −2.00000 −0.0685994
\(851\) −48.0000 −1.64542
\(852\) 8.00000 0.274075
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 12.0000 0.410152
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 8.00000 0.273115
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 4.00000 0.136399
\(861\) 0 0
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −18.0000 −0.612018
\(866\) 14.0000 0.475739
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −64.0000 −2.17105
\(870\) −2.00000 −0.0678064
\(871\) −24.0000 −0.813209
\(872\) 14.0000 0.474100
\(873\) −2.00000 −0.0676897
\(874\) 32.0000 1.08242
\(875\) 0 0
\(876\) 10.0000 0.337869
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 8.00000 0.269987
\(879\) 6.00000 0.202375
\(880\) 4.00000 0.134840
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) −4.00000 −0.134535
\(885\) −12.0000 −0.403376
\(886\) −36.0000 −1.20944
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) −6.00000 −0.201347
\(889\) 0 0
\(890\) 10.0000 0.335201
\(891\) −4.00000 −0.134005
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) 10.0000 0.334450
\(895\) −4.00000 −0.133705
\(896\) 0 0
\(897\) 16.0000 0.534224
\(898\) 2.00000 0.0667409
\(899\) 0 0
\(900\) 1.00000 0.0333333
\(901\) 20.0000 0.666297
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) 6.00000 0.199447
\(906\) 8.00000 0.265782
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −4.00000 −0.132745
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 4.00000 0.132453
\(913\) −48.0000 −1.58857
\(914\) 10.0000 0.330771
\(915\) −14.0000 −0.462826
\(916\) 10.0000 0.330409
\(917\) 0 0
\(918\) 2.00000 0.0660098
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 8.00000 0.263752
\(921\) 20.0000 0.659022
\(922\) −14.0000 −0.461065
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) −2.00000 −0.0656532
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −22.0000 −0.720634
\(933\) −8.00000 −0.261908
\(934\) 12.0000 0.392652
\(935\) −8.00000 −0.261628
\(936\) 2.00000 0.0653720
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) −18.0000 −0.586472
\(943\) −48.0000 −1.56310
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) −16.0000 −0.519656
\(949\) −20.0000 −0.649227
\(950\) −4.00000 −0.129777
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) −10.0000 −0.323762
\(955\) 16.0000 0.517748
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) −32.0000 −1.03387
\(959\) 0 0
\(960\) 1.00000 0.0322749
\(961\) −31.0000 −1.00000
\(962\) 12.0000 0.386896
\(963\) 12.0000 0.386695
\(964\) 14.0000 0.450910
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 5.00000 0.160706
\(969\) −8.00000 −0.256997
\(970\) 2.00000 0.0642161
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −8.00000 −0.256337
\(975\) −2.00000 −0.0640513
\(976\) −14.0000 −0.448129
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) −20.0000 −0.639529
\(979\) 40.0000 1.27841
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) −36.0000 −1.14881
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) −6.00000 −0.191273
\(985\) −6.00000 −0.191176
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 32.0000 1.01754
\(990\) 4.00000 0.127128
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −12.0000 −0.380808
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) −12.0000 −0.380235
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) −12.0000 −0.379853
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.a.j.1.1 1
3.2 odd 2 4410.2.a.t.1.1 1
5.4 even 2 7350.2.a.w.1.1 1
7.2 even 3 1470.2.i.j.361.1 2
7.3 odd 6 1470.2.i.a.961.1 2
7.4 even 3 1470.2.i.j.961.1 2
7.5 odd 6 1470.2.i.a.361.1 2
7.6 odd 2 210.2.a.e.1.1 1
21.20 even 2 630.2.a.a.1.1 1
28.27 even 2 1680.2.a.j.1.1 1
35.13 even 4 1050.2.g.g.799.1 2
35.27 even 4 1050.2.g.g.799.2 2
35.34 odd 2 1050.2.a.c.1.1 1
56.13 odd 2 6720.2.a.j.1.1 1
56.27 even 2 6720.2.a.bq.1.1 1
84.83 odd 2 5040.2.a.k.1.1 1
105.62 odd 4 3150.2.g.q.2899.1 2
105.83 odd 4 3150.2.g.q.2899.2 2
105.104 even 2 3150.2.a.bp.1.1 1
140.139 even 2 8400.2.a.ce.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.e.1.1 1 7.6 odd 2
630.2.a.a.1.1 1 21.20 even 2
1050.2.a.c.1.1 1 35.34 odd 2
1050.2.g.g.799.1 2 35.13 even 4
1050.2.g.g.799.2 2 35.27 even 4
1470.2.a.j.1.1 1 1.1 even 1 trivial
1470.2.i.a.361.1 2 7.5 odd 6
1470.2.i.a.961.1 2 7.3 odd 6
1470.2.i.j.361.1 2 7.2 even 3
1470.2.i.j.961.1 2 7.4 even 3
1680.2.a.j.1.1 1 28.27 even 2
3150.2.a.bp.1.1 1 105.104 even 2
3150.2.g.q.2899.1 2 105.62 odd 4
3150.2.g.q.2899.2 2 105.83 odd 4
4410.2.a.t.1.1 1 3.2 odd 2
5040.2.a.k.1.1 1 84.83 odd 2
6720.2.a.j.1.1 1 56.13 odd 2
6720.2.a.bq.1.1 1 56.27 even 2
7350.2.a.w.1.1 1 5.4 even 2
8400.2.a.ce.1.1 1 140.139 even 2