Properties

Label 1470.2.a.v.1.2
Level $1470$
Weight $2$
Character 1470.1
Self dual yes
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(1,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1470.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} +3.41421 q^{11} +1.00000 q^{12} +1.00000 q^{15} +1.00000 q^{16} -1.41421 q^{17} +1.00000 q^{18} +2.82843 q^{19} +1.00000 q^{20} +3.41421 q^{22} -0.828427 q^{23} +1.00000 q^{24} +1.00000 q^{25} +1.00000 q^{27} -0.242641 q^{29} +1.00000 q^{30} -9.07107 q^{31} +1.00000 q^{32} +3.41421 q^{33} -1.41421 q^{34} +1.00000 q^{36} +1.41421 q^{37} +2.82843 q^{38} +1.00000 q^{40} -3.17157 q^{41} +7.41421 q^{43} +3.41421 q^{44} +1.00000 q^{45} -0.828427 q^{46} +5.07107 q^{47} +1.00000 q^{48} +1.00000 q^{50} -1.41421 q^{51} +13.3137 q^{53} +1.00000 q^{54} +3.41421 q^{55} +2.82843 q^{57} -0.242641 q^{58} -14.4853 q^{59} +1.00000 q^{60} -0.343146 q^{61} -9.07107 q^{62} +1.00000 q^{64} +3.41421 q^{66} -11.8995 q^{67} -1.41421 q^{68} -0.828427 q^{69} +5.17157 q^{71} +1.00000 q^{72} -3.65685 q^{73} +1.41421 q^{74} +1.00000 q^{75} +2.82843 q^{76} +11.3137 q^{79} +1.00000 q^{80} +1.00000 q^{81} -3.17157 q^{82} -10.8284 q^{83} -1.41421 q^{85} +7.41421 q^{86} -0.242641 q^{87} +3.41421 q^{88} +10.4853 q^{89} +1.00000 q^{90} -0.828427 q^{92} -9.07107 q^{93} +5.07107 q^{94} +2.82843 q^{95} +1.00000 q^{96} +3.17157 q^{97} +3.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9} + 2 q^{10} + 4 q^{11} + 2 q^{12} + 2 q^{15} + 2 q^{16} + 2 q^{18} + 2 q^{20} + 4 q^{22} + 4 q^{23} + 2 q^{24} + 2 q^{25} + 2 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) 3.41421 1.02942 0.514712 0.857363i \(-0.327899\pi\)
0.514712 + 0.857363i \(0.327899\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) 1.00000 0.235702
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 3.41421 0.727913
\(23\) −0.828427 −0.172739 −0.0863695 0.996263i \(-0.527527\pi\)
−0.0863695 + 0.996263i \(0.527527\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.242641 −0.0450572 −0.0225286 0.999746i \(-0.507172\pi\)
−0.0225286 + 0.999746i \(0.507172\pi\)
\(30\) 1.00000 0.182574
\(31\) −9.07107 −1.62921 −0.814606 0.580015i \(-0.803047\pi\)
−0.814606 + 0.580015i \(0.803047\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.41421 0.594338
\(34\) −1.41421 −0.242536
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.41421 0.232495 0.116248 0.993220i \(-0.462913\pi\)
0.116248 + 0.993220i \(0.462913\pi\)
\(38\) 2.82843 0.458831
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −3.17157 −0.495316 −0.247658 0.968847i \(-0.579661\pi\)
−0.247658 + 0.968847i \(0.579661\pi\)
\(42\) 0 0
\(43\) 7.41421 1.13066 0.565328 0.824866i \(-0.308749\pi\)
0.565328 + 0.824866i \(0.308749\pi\)
\(44\) 3.41421 0.514712
\(45\) 1.00000 0.149071
\(46\) −0.828427 −0.122145
\(47\) 5.07107 0.739691 0.369846 0.929093i \(-0.379411\pi\)
0.369846 + 0.929093i \(0.379411\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) −1.41421 −0.198030
\(52\) 0 0
\(53\) 13.3137 1.82878 0.914389 0.404836i \(-0.132671\pi\)
0.914389 + 0.404836i \(0.132671\pi\)
\(54\) 1.00000 0.136083
\(55\) 3.41421 0.460372
\(56\) 0 0
\(57\) 2.82843 0.374634
\(58\) −0.242641 −0.0318603
\(59\) −14.4853 −1.88582 −0.942912 0.333043i \(-0.891924\pi\)
−0.942912 + 0.333043i \(0.891924\pi\)
\(60\) 1.00000 0.129099
\(61\) −0.343146 −0.0439353 −0.0219677 0.999759i \(-0.506993\pi\)
−0.0219677 + 0.999759i \(0.506993\pi\)
\(62\) −9.07107 −1.15203
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.41421 0.420261
\(67\) −11.8995 −1.45375 −0.726877 0.686767i \(-0.759029\pi\)
−0.726877 + 0.686767i \(0.759029\pi\)
\(68\) −1.41421 −0.171499
\(69\) −0.828427 −0.0997309
\(70\) 0 0
\(71\) 5.17157 0.613753 0.306876 0.951749i \(-0.400716\pi\)
0.306876 + 0.951749i \(0.400716\pi\)
\(72\) 1.00000 0.117851
\(73\) −3.65685 −0.428002 −0.214001 0.976833i \(-0.568650\pi\)
−0.214001 + 0.976833i \(0.568650\pi\)
\(74\) 1.41421 0.164399
\(75\) 1.00000 0.115470
\(76\) 2.82843 0.324443
\(77\) 0 0
\(78\) 0 0
\(79\) 11.3137 1.27289 0.636446 0.771321i \(-0.280404\pi\)
0.636446 + 0.771321i \(0.280404\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −3.17157 −0.350242
\(83\) −10.8284 −1.18857 −0.594287 0.804253i \(-0.702566\pi\)
−0.594287 + 0.804253i \(0.702566\pi\)
\(84\) 0 0
\(85\) −1.41421 −0.153393
\(86\) 7.41421 0.799495
\(87\) −0.242641 −0.0260138
\(88\) 3.41421 0.363956
\(89\) 10.4853 1.11144 0.555719 0.831370i \(-0.312443\pi\)
0.555719 + 0.831370i \(0.312443\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −0.828427 −0.0863695
\(93\) −9.07107 −0.940626
\(94\) 5.07107 0.523041
\(95\) 2.82843 0.290191
\(96\) 1.00000 0.102062
\(97\) 3.17157 0.322024 0.161012 0.986952i \(-0.448524\pi\)
0.161012 + 0.986952i \(0.448524\pi\)
\(98\) 0 0
\(99\) 3.41421 0.343141
\(100\) 1.00000 0.100000
\(101\) −17.6569 −1.75692 −0.878461 0.477813i \(-0.841429\pi\)
−0.878461 + 0.477813i \(0.841429\pi\)
\(102\) −1.41421 −0.140028
\(103\) 18.1421 1.78760 0.893799 0.448468i \(-0.148030\pi\)
0.893799 + 0.448468i \(0.148030\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 13.3137 1.29314
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 1.00000 0.0962250
\(109\) −17.3137 −1.65835 −0.829176 0.558987i \(-0.811190\pi\)
−0.829176 + 0.558987i \(0.811190\pi\)
\(110\) 3.41421 0.325532
\(111\) 1.41421 0.134231
\(112\) 0 0
\(113\) −13.3137 −1.25245 −0.626224 0.779643i \(-0.715401\pi\)
−0.626224 + 0.779643i \(0.715401\pi\)
\(114\) 2.82843 0.264906
\(115\) −0.828427 −0.0772512
\(116\) −0.242641 −0.0225286
\(117\) 0 0
\(118\) −14.4853 −1.33348
\(119\) 0 0
\(120\) 1.00000 0.0912871
\(121\) 0.656854 0.0597140
\(122\) −0.343146 −0.0310670
\(123\) −3.17157 −0.285971
\(124\) −9.07107 −0.814606
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 14.1421 1.25491 0.627456 0.778652i \(-0.284096\pi\)
0.627456 + 0.778652i \(0.284096\pi\)
\(128\) 1.00000 0.0883883
\(129\) 7.41421 0.652785
\(130\) 0 0
\(131\) −11.1716 −0.976065 −0.488032 0.872825i \(-0.662285\pi\)
−0.488032 + 0.872825i \(0.662285\pi\)
\(132\) 3.41421 0.297169
\(133\) 0 0
\(134\) −11.8995 −1.02796
\(135\) 1.00000 0.0860663
\(136\) −1.41421 −0.121268
\(137\) −16.0000 −1.36697 −0.683486 0.729964i \(-0.739537\pi\)
−0.683486 + 0.729964i \(0.739537\pi\)
\(138\) −0.828427 −0.0705204
\(139\) 6.34315 0.538019 0.269009 0.963138i \(-0.413304\pi\)
0.269009 + 0.963138i \(0.413304\pi\)
\(140\) 0 0
\(141\) 5.07107 0.427061
\(142\) 5.17157 0.433989
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −0.242641 −0.0201502
\(146\) −3.65685 −0.302643
\(147\) 0 0
\(148\) 1.41421 0.116248
\(149\) 5.89949 0.483305 0.241653 0.970363i \(-0.422311\pi\)
0.241653 + 0.970363i \(0.422311\pi\)
\(150\) 1.00000 0.0816497
\(151\) −21.7990 −1.77398 −0.886988 0.461792i \(-0.847207\pi\)
−0.886988 + 0.461792i \(0.847207\pi\)
\(152\) 2.82843 0.229416
\(153\) −1.41421 −0.114332
\(154\) 0 0
\(155\) −9.07107 −0.728606
\(156\) 0 0
\(157\) 11.6569 0.930318 0.465159 0.885227i \(-0.345997\pi\)
0.465159 + 0.885227i \(0.345997\pi\)
\(158\) 11.3137 0.900070
\(159\) 13.3137 1.05585
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −10.7279 −0.840276 −0.420138 0.907460i \(-0.638018\pi\)
−0.420138 + 0.907460i \(0.638018\pi\)
\(164\) −3.17157 −0.247658
\(165\) 3.41421 0.265796
\(166\) −10.8284 −0.840449
\(167\) −13.0711 −1.01147 −0.505735 0.862689i \(-0.668779\pi\)
−0.505735 + 0.862689i \(0.668779\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −1.41421 −0.108465
\(171\) 2.82843 0.216295
\(172\) 7.41421 0.565328
\(173\) 1.51472 0.115162 0.0575810 0.998341i \(-0.481661\pi\)
0.0575810 + 0.998341i \(0.481661\pi\)
\(174\) −0.242641 −0.0183945
\(175\) 0 0
\(176\) 3.41421 0.257356
\(177\) −14.4853 −1.08878
\(178\) 10.4853 0.785905
\(179\) 3.41421 0.255190 0.127595 0.991826i \(-0.459274\pi\)
0.127595 + 0.991826i \(0.459274\pi\)
\(180\) 1.00000 0.0745356
\(181\) −3.17157 −0.235741 −0.117871 0.993029i \(-0.537607\pi\)
−0.117871 + 0.993029i \(0.537607\pi\)
\(182\) 0 0
\(183\) −0.343146 −0.0253661
\(184\) −0.828427 −0.0610725
\(185\) 1.41421 0.103975
\(186\) −9.07107 −0.665123
\(187\) −4.82843 −0.353090
\(188\) 5.07107 0.369846
\(189\) 0 0
\(190\) 2.82843 0.205196
\(191\) 11.3137 0.818631 0.409316 0.912393i \(-0.365768\pi\)
0.409316 + 0.912393i \(0.365768\pi\)
\(192\) 1.00000 0.0721688
\(193\) 17.7990 1.28120 0.640600 0.767875i \(-0.278686\pi\)
0.640600 + 0.767875i \(0.278686\pi\)
\(194\) 3.17157 0.227706
\(195\) 0 0
\(196\) 0 0
\(197\) −15.1716 −1.08093 −0.540465 0.841367i \(-0.681752\pi\)
−0.540465 + 0.841367i \(0.681752\pi\)
\(198\) 3.41421 0.242638
\(199\) 17.0711 1.21014 0.605068 0.796174i \(-0.293146\pi\)
0.605068 + 0.796174i \(0.293146\pi\)
\(200\) 1.00000 0.0707107
\(201\) −11.8995 −0.839326
\(202\) −17.6569 −1.24233
\(203\) 0 0
\(204\) −1.41421 −0.0990148
\(205\) −3.17157 −0.221512
\(206\) 18.1421 1.26402
\(207\) −0.828427 −0.0575797
\(208\) 0 0
\(209\) 9.65685 0.667979
\(210\) 0 0
\(211\) 9.65685 0.664805 0.332403 0.943138i \(-0.392141\pi\)
0.332403 + 0.943138i \(0.392141\pi\)
\(212\) 13.3137 0.914389
\(213\) 5.17157 0.354350
\(214\) −4.00000 −0.273434
\(215\) 7.41421 0.505645
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −17.3137 −1.17263
\(219\) −3.65685 −0.247107
\(220\) 3.41421 0.230186
\(221\) 0 0
\(222\) 1.41421 0.0949158
\(223\) 6.34315 0.424768 0.212384 0.977186i \(-0.431877\pi\)
0.212384 + 0.977186i \(0.431877\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −13.3137 −0.885615
\(227\) −2.34315 −0.155520 −0.0777600 0.996972i \(-0.524777\pi\)
−0.0777600 + 0.996972i \(0.524777\pi\)
\(228\) 2.82843 0.187317
\(229\) −13.7990 −0.911863 −0.455931 0.890015i \(-0.650694\pi\)
−0.455931 + 0.890015i \(0.650694\pi\)
\(230\) −0.828427 −0.0546249
\(231\) 0 0
\(232\) −0.242641 −0.0159301
\(233\) −26.9706 −1.76690 −0.883450 0.468525i \(-0.844786\pi\)
−0.883450 + 0.468525i \(0.844786\pi\)
\(234\) 0 0
\(235\) 5.07107 0.330800
\(236\) −14.4853 −0.942912
\(237\) 11.3137 0.734904
\(238\) 0 0
\(239\) 0.686292 0.0443925 0.0221963 0.999754i \(-0.492934\pi\)
0.0221963 + 0.999754i \(0.492934\pi\)
\(240\) 1.00000 0.0645497
\(241\) −7.75736 −0.499695 −0.249848 0.968285i \(-0.580381\pi\)
−0.249848 + 0.968285i \(0.580381\pi\)
\(242\) 0.656854 0.0422242
\(243\) 1.00000 0.0641500
\(244\) −0.343146 −0.0219677
\(245\) 0 0
\(246\) −3.17157 −0.202212
\(247\) 0 0
\(248\) −9.07107 −0.576013
\(249\) −10.8284 −0.686224
\(250\) 1.00000 0.0632456
\(251\) −6.34315 −0.400376 −0.200188 0.979758i \(-0.564155\pi\)
−0.200188 + 0.979758i \(0.564155\pi\)
\(252\) 0 0
\(253\) −2.82843 −0.177822
\(254\) 14.1421 0.887357
\(255\) −1.41421 −0.0885615
\(256\) 1.00000 0.0625000
\(257\) −17.8995 −1.11654 −0.558270 0.829659i \(-0.688535\pi\)
−0.558270 + 0.829659i \(0.688535\pi\)
\(258\) 7.41421 0.461589
\(259\) 0 0
\(260\) 0 0
\(261\) −0.242641 −0.0150191
\(262\) −11.1716 −0.690182
\(263\) 17.7990 1.09753 0.548766 0.835976i \(-0.315098\pi\)
0.548766 + 0.835976i \(0.315098\pi\)
\(264\) 3.41421 0.210130
\(265\) 13.3137 0.817855
\(266\) 0 0
\(267\) 10.4853 0.641689
\(268\) −11.8995 −0.726877
\(269\) −3.65685 −0.222962 −0.111481 0.993767i \(-0.535559\pi\)
−0.111481 + 0.993767i \(0.535559\pi\)
\(270\) 1.00000 0.0608581
\(271\) −5.75736 −0.349735 −0.174867 0.984592i \(-0.555950\pi\)
−0.174867 + 0.984592i \(0.555950\pi\)
\(272\) −1.41421 −0.0857493
\(273\) 0 0
\(274\) −16.0000 −0.966595
\(275\) 3.41421 0.205885
\(276\) −0.828427 −0.0498655
\(277\) 2.10051 0.126207 0.0631036 0.998007i \(-0.479900\pi\)
0.0631036 + 0.998007i \(0.479900\pi\)
\(278\) 6.34315 0.380437
\(279\) −9.07107 −0.543071
\(280\) 0 0
\(281\) −30.4853 −1.81860 −0.909300 0.416142i \(-0.863382\pi\)
−0.909300 + 0.416142i \(0.863382\pi\)
\(282\) 5.07107 0.301978
\(283\) 13.5147 0.803367 0.401683 0.915779i \(-0.368425\pi\)
0.401683 + 0.915779i \(0.368425\pi\)
\(284\) 5.17157 0.306876
\(285\) 2.82843 0.167542
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −15.0000 −0.882353
\(290\) −0.242641 −0.0142484
\(291\) 3.17157 0.185921
\(292\) −3.65685 −0.214001
\(293\) 16.6274 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(294\) 0 0
\(295\) −14.4853 −0.843366
\(296\) 1.41421 0.0821995
\(297\) 3.41421 0.198113
\(298\) 5.89949 0.341749
\(299\) 0 0
\(300\) 1.00000 0.0577350
\(301\) 0 0
\(302\) −21.7990 −1.25439
\(303\) −17.6569 −1.01436
\(304\) 2.82843 0.162221
\(305\) −0.343146 −0.0196485
\(306\) −1.41421 −0.0808452
\(307\) 15.3137 0.874000 0.437000 0.899462i \(-0.356041\pi\)
0.437000 + 0.899462i \(0.356041\pi\)
\(308\) 0 0
\(309\) 18.1421 1.03207
\(310\) −9.07107 −0.515202
\(311\) −34.8284 −1.97494 −0.987469 0.157810i \(-0.949557\pi\)
−0.987469 + 0.157810i \(0.949557\pi\)
\(312\) 0 0
\(313\) 23.1716 1.30973 0.654867 0.755744i \(-0.272724\pi\)
0.654867 + 0.755744i \(0.272724\pi\)
\(314\) 11.6569 0.657834
\(315\) 0 0
\(316\) 11.3137 0.636446
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 13.3137 0.746596
\(319\) −0.828427 −0.0463830
\(320\) 1.00000 0.0559017
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −10.7279 −0.594165
\(327\) −17.3137 −0.957450
\(328\) −3.17157 −0.175121
\(329\) 0 0
\(330\) 3.41421 0.187946
\(331\) 26.6274 1.46358 0.731788 0.681533i \(-0.238686\pi\)
0.731788 + 0.681533i \(0.238686\pi\)
\(332\) −10.8284 −0.594287
\(333\) 1.41421 0.0774984
\(334\) −13.0711 −0.715217
\(335\) −11.8995 −0.650139
\(336\) 0 0
\(337\) −8.82843 −0.480915 −0.240458 0.970660i \(-0.577297\pi\)
−0.240458 + 0.970660i \(0.577297\pi\)
\(338\) −13.0000 −0.707107
\(339\) −13.3137 −0.723101
\(340\) −1.41421 −0.0766965
\(341\) −30.9706 −1.67715
\(342\) 2.82843 0.152944
\(343\) 0 0
\(344\) 7.41421 0.399748
\(345\) −0.828427 −0.0446010
\(346\) 1.51472 0.0814318
\(347\) −9.65685 −0.518407 −0.259204 0.965823i \(-0.583460\pi\)
−0.259204 + 0.965823i \(0.583460\pi\)
\(348\) −0.242641 −0.0130069
\(349\) 33.7990 1.80922 0.904609 0.426242i \(-0.140163\pi\)
0.904609 + 0.426242i \(0.140163\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.41421 0.181978
\(353\) 24.7279 1.31613 0.658067 0.752959i \(-0.271374\pi\)
0.658067 + 0.752959i \(0.271374\pi\)
\(354\) −14.4853 −0.769884
\(355\) 5.17157 0.274479
\(356\) 10.4853 0.555719
\(357\) 0 0
\(358\) 3.41421 0.180447
\(359\) 13.1716 0.695169 0.347585 0.937649i \(-0.387002\pi\)
0.347585 + 0.937649i \(0.387002\pi\)
\(360\) 1.00000 0.0527046
\(361\) −11.0000 −0.578947
\(362\) −3.17157 −0.166694
\(363\) 0.656854 0.0344759
\(364\) 0 0
\(365\) −3.65685 −0.191408
\(366\) −0.343146 −0.0179365
\(367\) −0.485281 −0.0253315 −0.0126657 0.999920i \(-0.504032\pi\)
−0.0126657 + 0.999920i \(0.504032\pi\)
\(368\) −0.828427 −0.0431847
\(369\) −3.17157 −0.165105
\(370\) 1.41421 0.0735215
\(371\) 0 0
\(372\) −9.07107 −0.470313
\(373\) −3.07107 −0.159014 −0.0795069 0.996834i \(-0.525335\pi\)
−0.0795069 + 0.996834i \(0.525335\pi\)
\(374\) −4.82843 −0.249672
\(375\) 1.00000 0.0516398
\(376\) 5.07107 0.261520
\(377\) 0 0
\(378\) 0 0
\(379\) −7.51472 −0.386005 −0.193003 0.981198i \(-0.561823\pi\)
−0.193003 + 0.981198i \(0.561823\pi\)
\(380\) 2.82843 0.145095
\(381\) 14.1421 0.724524
\(382\) 11.3137 0.578860
\(383\) −3.89949 −0.199255 −0.0996274 0.995025i \(-0.531765\pi\)
−0.0996274 + 0.995025i \(0.531765\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 17.7990 0.905945
\(387\) 7.41421 0.376886
\(388\) 3.17157 0.161012
\(389\) 12.9289 0.655523 0.327761 0.944761i \(-0.393706\pi\)
0.327761 + 0.944761i \(0.393706\pi\)
\(390\) 0 0
\(391\) 1.17157 0.0592490
\(392\) 0 0
\(393\) −11.1716 −0.563531
\(394\) −15.1716 −0.764333
\(395\) 11.3137 0.569254
\(396\) 3.41421 0.171571
\(397\) −24.6274 −1.23601 −0.618007 0.786172i \(-0.712060\pi\)
−0.618007 + 0.786172i \(0.712060\pi\)
\(398\) 17.0711 0.855695
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −2.68629 −0.134147 −0.0670735 0.997748i \(-0.521366\pi\)
−0.0670735 + 0.997748i \(0.521366\pi\)
\(402\) −11.8995 −0.593493
\(403\) 0 0
\(404\) −17.6569 −0.878461
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 4.82843 0.239336
\(408\) −1.41421 −0.0700140
\(409\) 18.3848 0.909069 0.454534 0.890729i \(-0.349806\pi\)
0.454534 + 0.890729i \(0.349806\pi\)
\(410\) −3.17157 −0.156633
\(411\) −16.0000 −0.789222
\(412\) 18.1421 0.893799
\(413\) 0 0
\(414\) −0.828427 −0.0407150
\(415\) −10.8284 −0.531547
\(416\) 0 0
\(417\) 6.34315 0.310625
\(418\) 9.65685 0.472332
\(419\) −6.34315 −0.309883 −0.154941 0.987924i \(-0.549519\pi\)
−0.154941 + 0.987924i \(0.549519\pi\)
\(420\) 0 0
\(421\) −28.6274 −1.39521 −0.697607 0.716480i \(-0.745752\pi\)
−0.697607 + 0.716480i \(0.745752\pi\)
\(422\) 9.65685 0.470088
\(423\) 5.07107 0.246564
\(424\) 13.3137 0.646571
\(425\) −1.41421 −0.0685994
\(426\) 5.17157 0.250564
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 7.41421 0.357545
\(431\) −14.1421 −0.681203 −0.340601 0.940208i \(-0.610631\pi\)
−0.340601 + 0.940208i \(0.610631\pi\)
\(432\) 1.00000 0.0481125
\(433\) 3.17157 0.152416 0.0762080 0.997092i \(-0.475719\pi\)
0.0762080 + 0.997092i \(0.475719\pi\)
\(434\) 0 0
\(435\) −0.242641 −0.0116337
\(436\) −17.3137 −0.829176
\(437\) −2.34315 −0.112088
\(438\) −3.65685 −0.174731
\(439\) 2.44365 0.116629 0.0583145 0.998298i \(-0.481427\pi\)
0.0583145 + 0.998298i \(0.481427\pi\)
\(440\) 3.41421 0.162766
\(441\) 0 0
\(442\) 0 0
\(443\) 2.34315 0.111326 0.0556631 0.998450i \(-0.482273\pi\)
0.0556631 + 0.998450i \(0.482273\pi\)
\(444\) 1.41421 0.0671156
\(445\) 10.4853 0.497050
\(446\) 6.34315 0.300357
\(447\) 5.89949 0.279037
\(448\) 0 0
\(449\) 37.1127 1.75146 0.875728 0.482804i \(-0.160382\pi\)
0.875728 + 0.482804i \(0.160382\pi\)
\(450\) 1.00000 0.0471405
\(451\) −10.8284 −0.509891
\(452\) −13.3137 −0.626224
\(453\) −21.7990 −1.02421
\(454\) −2.34315 −0.109969
\(455\) 0 0
\(456\) 2.82843 0.132453
\(457\) 29.7990 1.39394 0.696969 0.717101i \(-0.254532\pi\)
0.696969 + 0.717101i \(0.254532\pi\)
\(458\) −13.7990 −0.644784
\(459\) −1.41421 −0.0660098
\(460\) −0.828427 −0.0386256
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 22.3431 1.03837 0.519187 0.854661i \(-0.326235\pi\)
0.519187 + 0.854661i \(0.326235\pi\)
\(464\) −0.242641 −0.0112643
\(465\) −9.07107 −0.420661
\(466\) −26.9706 −1.24939
\(467\) −3.51472 −0.162642 −0.0813209 0.996688i \(-0.525914\pi\)
−0.0813209 + 0.996688i \(0.525914\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 5.07107 0.233911
\(471\) 11.6569 0.537119
\(472\) −14.4853 −0.666739
\(473\) 25.3137 1.16393
\(474\) 11.3137 0.519656
\(475\) 2.82843 0.129777
\(476\) 0 0
\(477\) 13.3137 0.609593
\(478\) 0.686292 0.0313902
\(479\) −0.485281 −0.0221731 −0.0110865 0.999939i \(-0.503529\pi\)
−0.0110865 + 0.999939i \(0.503529\pi\)
\(480\) 1.00000 0.0456435
\(481\) 0 0
\(482\) −7.75736 −0.353338
\(483\) 0 0
\(484\) 0.656854 0.0298570
\(485\) 3.17157 0.144014
\(486\) 1.00000 0.0453609
\(487\) 7.51472 0.340524 0.170262 0.985399i \(-0.445539\pi\)
0.170262 + 0.985399i \(0.445539\pi\)
\(488\) −0.343146 −0.0155335
\(489\) −10.7279 −0.485133
\(490\) 0 0
\(491\) −7.89949 −0.356499 −0.178250 0.983985i \(-0.557043\pi\)
−0.178250 + 0.983985i \(0.557043\pi\)
\(492\) −3.17157 −0.142986
\(493\) 0.343146 0.0154545
\(494\) 0 0
\(495\) 3.41421 0.153457
\(496\) −9.07107 −0.407303
\(497\) 0 0
\(498\) −10.8284 −0.485233
\(499\) −23.7990 −1.06539 −0.532695 0.846308i \(-0.678821\pi\)
−0.532695 + 0.846308i \(0.678821\pi\)
\(500\) 1.00000 0.0447214
\(501\) −13.0711 −0.583972
\(502\) −6.34315 −0.283108
\(503\) 4.10051 0.182832 0.0914162 0.995813i \(-0.470861\pi\)
0.0914162 + 0.995813i \(0.470861\pi\)
\(504\) 0 0
\(505\) −17.6569 −0.785720
\(506\) −2.82843 −0.125739
\(507\) −13.0000 −0.577350
\(508\) 14.1421 0.627456
\(509\) −29.6569 −1.31452 −0.657258 0.753665i \(-0.728284\pi\)
−0.657258 + 0.753665i \(0.728284\pi\)
\(510\) −1.41421 −0.0626224
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 2.82843 0.124878
\(514\) −17.8995 −0.789513
\(515\) 18.1421 0.799438
\(516\) 7.41421 0.326393
\(517\) 17.3137 0.761456
\(518\) 0 0
\(519\) 1.51472 0.0664888
\(520\) 0 0
\(521\) 16.1421 0.707200 0.353600 0.935397i \(-0.384957\pi\)
0.353600 + 0.935397i \(0.384957\pi\)
\(522\) −0.242641 −0.0106201
\(523\) 41.1127 1.79773 0.898866 0.438223i \(-0.144392\pi\)
0.898866 + 0.438223i \(0.144392\pi\)
\(524\) −11.1716 −0.488032
\(525\) 0 0
\(526\) 17.7990 0.776073
\(527\) 12.8284 0.558815
\(528\) 3.41421 0.148585
\(529\) −22.3137 −0.970161
\(530\) 13.3137 0.578311
\(531\) −14.4853 −0.628608
\(532\) 0 0
\(533\) 0 0
\(534\) 10.4853 0.453743
\(535\) −4.00000 −0.172935
\(536\) −11.8995 −0.513980
\(537\) 3.41421 0.147334
\(538\) −3.65685 −0.157658
\(539\) 0 0
\(540\) 1.00000 0.0430331
\(541\) 14.4853 0.622771 0.311385 0.950284i \(-0.399207\pi\)
0.311385 + 0.950284i \(0.399207\pi\)
\(542\) −5.75736 −0.247300
\(543\) −3.17157 −0.136105
\(544\) −1.41421 −0.0606339
\(545\) −17.3137 −0.741638
\(546\) 0 0
\(547\) 24.5858 1.05121 0.525606 0.850728i \(-0.323839\pi\)
0.525606 + 0.850728i \(0.323839\pi\)
\(548\) −16.0000 −0.683486
\(549\) −0.343146 −0.0146451
\(550\) 3.41421 0.145583
\(551\) −0.686292 −0.0292370
\(552\) −0.828427 −0.0352602
\(553\) 0 0
\(554\) 2.10051 0.0892419
\(555\) 1.41421 0.0600300
\(556\) 6.34315 0.269009
\(557\) −32.6274 −1.38247 −0.691234 0.722631i \(-0.742933\pi\)
−0.691234 + 0.722631i \(0.742933\pi\)
\(558\) −9.07107 −0.384009
\(559\) 0 0
\(560\) 0 0
\(561\) −4.82843 −0.203856
\(562\) −30.4853 −1.28594
\(563\) 2.14214 0.0902803 0.0451401 0.998981i \(-0.485627\pi\)
0.0451401 + 0.998981i \(0.485627\pi\)
\(564\) 5.07107 0.213530
\(565\) −13.3137 −0.560112
\(566\) 13.5147 0.568066
\(567\) 0 0
\(568\) 5.17157 0.216994
\(569\) 1.02944 0.0431563 0.0215781 0.999767i \(-0.493131\pi\)
0.0215781 + 0.999767i \(0.493131\pi\)
\(570\) 2.82843 0.118470
\(571\) 27.3137 1.14304 0.571522 0.820587i \(-0.306353\pi\)
0.571522 + 0.820587i \(0.306353\pi\)
\(572\) 0 0
\(573\) 11.3137 0.472637
\(574\) 0 0
\(575\) −0.828427 −0.0345478
\(576\) 1.00000 0.0416667
\(577\) 16.1421 0.672006 0.336003 0.941861i \(-0.390925\pi\)
0.336003 + 0.941861i \(0.390925\pi\)
\(578\) −15.0000 −0.623918
\(579\) 17.7990 0.739701
\(580\) −0.242641 −0.0100751
\(581\) 0 0
\(582\) 3.17157 0.131466
\(583\) 45.4558 1.88259
\(584\) −3.65685 −0.151322
\(585\) 0 0
\(586\) 16.6274 0.686872
\(587\) −19.7990 −0.817192 −0.408596 0.912715i \(-0.633981\pi\)
−0.408596 + 0.912715i \(0.633981\pi\)
\(588\) 0 0
\(589\) −25.6569 −1.05717
\(590\) −14.4853 −0.596350
\(591\) −15.1716 −0.624075
\(592\) 1.41421 0.0581238
\(593\) −5.21320 −0.214081 −0.107040 0.994255i \(-0.534137\pi\)
−0.107040 + 0.994255i \(0.534137\pi\)
\(594\) 3.41421 0.140087
\(595\) 0 0
\(596\) 5.89949 0.241653
\(597\) 17.0711 0.698672
\(598\) 0 0
\(599\) 27.3137 1.11601 0.558004 0.829838i \(-0.311567\pi\)
0.558004 + 0.829838i \(0.311567\pi\)
\(600\) 1.00000 0.0408248
\(601\) −34.1838 −1.39438 −0.697192 0.716884i \(-0.745568\pi\)
−0.697192 + 0.716884i \(0.745568\pi\)
\(602\) 0 0
\(603\) −11.8995 −0.484585
\(604\) −21.7990 −0.886988
\(605\) 0.656854 0.0267049
\(606\) −17.6569 −0.717261
\(607\) 28.9706 1.17588 0.587939 0.808905i \(-0.299939\pi\)
0.587939 + 0.808905i \(0.299939\pi\)
\(608\) 2.82843 0.114708
\(609\) 0 0
\(610\) −0.343146 −0.0138936
\(611\) 0 0
\(612\) −1.41421 −0.0571662
\(613\) 37.2132 1.50303 0.751514 0.659718i \(-0.229324\pi\)
0.751514 + 0.659718i \(0.229324\pi\)
\(614\) 15.3137 0.618011
\(615\) −3.17157 −0.127890
\(616\) 0 0
\(617\) 12.2843 0.494546 0.247273 0.968946i \(-0.420466\pi\)
0.247273 + 0.968946i \(0.420466\pi\)
\(618\) 18.1421 0.729784
\(619\) 30.1421 1.21151 0.605757 0.795649i \(-0.292870\pi\)
0.605757 + 0.795649i \(0.292870\pi\)
\(620\) −9.07107 −0.364303
\(621\) −0.828427 −0.0332436
\(622\) −34.8284 −1.39649
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 23.1716 0.926122
\(627\) 9.65685 0.385658
\(628\) 11.6569 0.465159
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) 19.1716 0.763208 0.381604 0.924326i \(-0.375372\pi\)
0.381604 + 0.924326i \(0.375372\pi\)
\(632\) 11.3137 0.450035
\(633\) 9.65685 0.383825
\(634\) −18.0000 −0.714871
\(635\) 14.1421 0.561214
\(636\) 13.3137 0.527923
\(637\) 0 0
\(638\) −0.828427 −0.0327977
\(639\) 5.17157 0.204584
\(640\) 1.00000 0.0395285
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −4.00000 −0.157867
\(643\) −36.4264 −1.43652 −0.718259 0.695776i \(-0.755061\pi\)
−0.718259 + 0.695776i \(0.755061\pi\)
\(644\) 0 0
\(645\) 7.41421 0.291934
\(646\) −4.00000 −0.157378
\(647\) 18.9289 0.744173 0.372087 0.928198i \(-0.378642\pi\)
0.372087 + 0.928198i \(0.378642\pi\)
\(648\) 1.00000 0.0392837
\(649\) −49.4558 −1.94131
\(650\) 0 0
\(651\) 0 0
\(652\) −10.7279 −0.420138
\(653\) 27.1716 1.06331 0.531653 0.846962i \(-0.321571\pi\)
0.531653 + 0.846962i \(0.321571\pi\)
\(654\) −17.3137 −0.677020
\(655\) −11.1716 −0.436509
\(656\) −3.17157 −0.123829
\(657\) −3.65685 −0.142667
\(658\) 0 0
\(659\) 39.8995 1.55426 0.777132 0.629338i \(-0.216674\pi\)
0.777132 + 0.629338i \(0.216674\pi\)
\(660\) 3.41421 0.132898
\(661\) −16.3431 −0.635675 −0.317837 0.948145i \(-0.602957\pi\)
−0.317837 + 0.948145i \(0.602957\pi\)
\(662\) 26.6274 1.03490
\(663\) 0 0
\(664\) −10.8284 −0.420224
\(665\) 0 0
\(666\) 1.41421 0.0547997
\(667\) 0.201010 0.00778314
\(668\) −13.0711 −0.505735
\(669\) 6.34315 0.245240
\(670\) −11.8995 −0.459718
\(671\) −1.17157 −0.0452281
\(672\) 0 0
\(673\) −37.5980 −1.44930 −0.724648 0.689119i \(-0.757998\pi\)
−0.724648 + 0.689119i \(0.757998\pi\)
\(674\) −8.82843 −0.340058
\(675\) 1.00000 0.0384900
\(676\) −13.0000 −0.500000
\(677\) 16.8284 0.646769 0.323384 0.946268i \(-0.395179\pi\)
0.323384 + 0.946268i \(0.395179\pi\)
\(678\) −13.3137 −0.511310
\(679\) 0 0
\(680\) −1.41421 −0.0542326
\(681\) −2.34315 −0.0897895
\(682\) −30.9706 −1.18592
\(683\) −7.79899 −0.298420 −0.149210 0.988806i \(-0.547673\pi\)
−0.149210 + 0.988806i \(0.547673\pi\)
\(684\) 2.82843 0.108148
\(685\) −16.0000 −0.611329
\(686\) 0 0
\(687\) −13.7990 −0.526464
\(688\) 7.41421 0.282664
\(689\) 0 0
\(690\) −0.828427 −0.0315377
\(691\) 44.2843 1.68465 0.842327 0.538968i \(-0.181185\pi\)
0.842327 + 0.538968i \(0.181185\pi\)
\(692\) 1.51472 0.0575810
\(693\) 0 0
\(694\) −9.65685 −0.366569
\(695\) 6.34315 0.240609
\(696\) −0.242641 −0.00919727
\(697\) 4.48528 0.169892
\(698\) 33.7990 1.27931
\(699\) −26.9706 −1.02012
\(700\) 0 0
\(701\) 19.5563 0.738633 0.369317 0.929304i \(-0.379592\pi\)
0.369317 + 0.929304i \(0.379592\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 3.41421 0.128678
\(705\) 5.07107 0.190987
\(706\) 24.7279 0.930648
\(707\) 0 0
\(708\) −14.4853 −0.544390
\(709\) 17.1127 0.642681 0.321340 0.946964i \(-0.395867\pi\)
0.321340 + 0.946964i \(0.395867\pi\)
\(710\) 5.17157 0.194086
\(711\) 11.3137 0.424297
\(712\) 10.4853 0.392953
\(713\) 7.51472 0.281428
\(714\) 0 0
\(715\) 0 0
\(716\) 3.41421 0.127595
\(717\) 0.686292 0.0256300
\(718\) 13.1716 0.491559
\(719\) 44.2843 1.65152 0.825762 0.564018i \(-0.190745\pi\)
0.825762 + 0.564018i \(0.190745\pi\)
\(720\) 1.00000 0.0372678
\(721\) 0 0
\(722\) −11.0000 −0.409378
\(723\) −7.75736 −0.288499
\(724\) −3.17157 −0.117871
\(725\) −0.242641 −0.00901145
\(726\) 0.656854 0.0243781
\(727\) 34.3431 1.27372 0.636858 0.770981i \(-0.280234\pi\)
0.636858 + 0.770981i \(0.280234\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −3.65685 −0.135346
\(731\) −10.4853 −0.387812
\(732\) −0.343146 −0.0126830
\(733\) 51.9411 1.91849 0.959245 0.282577i \(-0.0911893\pi\)
0.959245 + 0.282577i \(0.0911893\pi\)
\(734\) −0.485281 −0.0179121
\(735\) 0 0
\(736\) −0.828427 −0.0305362
\(737\) −40.6274 −1.49653
\(738\) −3.17157 −0.116747
\(739\) 19.1127 0.703072 0.351536 0.936174i \(-0.385659\pi\)
0.351536 + 0.936174i \(0.385659\pi\)
\(740\) 1.41421 0.0519875
\(741\) 0 0
\(742\) 0 0
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) −9.07107 −0.332561
\(745\) 5.89949 0.216141
\(746\) −3.07107 −0.112440
\(747\) −10.8284 −0.396191
\(748\) −4.82843 −0.176545
\(749\) 0 0
\(750\) 1.00000 0.0365148
\(751\) 42.4853 1.55031 0.775155 0.631771i \(-0.217672\pi\)
0.775155 + 0.631771i \(0.217672\pi\)
\(752\) 5.07107 0.184923
\(753\) −6.34315 −0.231157
\(754\) 0 0
\(755\) −21.7990 −0.793346
\(756\) 0 0
\(757\) 32.2426 1.17188 0.585939 0.810355i \(-0.300726\pi\)
0.585939 + 0.810355i \(0.300726\pi\)
\(758\) −7.51472 −0.272947
\(759\) −2.82843 −0.102665
\(760\) 2.82843 0.102598
\(761\) 14.9706 0.542682 0.271341 0.962483i \(-0.412533\pi\)
0.271341 + 0.962483i \(0.412533\pi\)
\(762\) 14.1421 0.512316
\(763\) 0 0
\(764\) 11.3137 0.409316
\(765\) −1.41421 −0.0511310
\(766\) −3.89949 −0.140894
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) −33.4142 −1.20495 −0.602474 0.798139i \(-0.705818\pi\)
−0.602474 + 0.798139i \(0.705818\pi\)
\(770\) 0 0
\(771\) −17.8995 −0.644635
\(772\) 17.7990 0.640600
\(773\) 39.6569 1.42636 0.713179 0.700982i \(-0.247255\pi\)
0.713179 + 0.700982i \(0.247255\pi\)
\(774\) 7.41421 0.266498
\(775\) −9.07107 −0.325842
\(776\) 3.17157 0.113853
\(777\) 0 0
\(778\) 12.9289 0.463525
\(779\) −8.97056 −0.321404
\(780\) 0 0
\(781\) 17.6569 0.631812
\(782\) 1.17157 0.0418954
\(783\) −0.242641 −0.00867127
\(784\) 0 0
\(785\) 11.6569 0.416051
\(786\) −11.1716 −0.398477
\(787\) −4.97056 −0.177181 −0.0885907 0.996068i \(-0.528236\pi\)
−0.0885907 + 0.996068i \(0.528236\pi\)
\(788\) −15.1716 −0.540465
\(789\) 17.7990 0.633661
\(790\) 11.3137 0.402524
\(791\) 0 0
\(792\) 3.41421 0.121319
\(793\) 0 0
\(794\) −24.6274 −0.873994
\(795\) 13.3137 0.472189
\(796\) 17.0711 0.605068
\(797\) 9.51472 0.337029 0.168514 0.985699i \(-0.446103\pi\)
0.168514 + 0.985699i \(0.446103\pi\)
\(798\) 0 0
\(799\) −7.17157 −0.253712
\(800\) 1.00000 0.0353553
\(801\) 10.4853 0.370479
\(802\) −2.68629 −0.0948563
\(803\) −12.4853 −0.440596
\(804\) −11.8995 −0.419663
\(805\) 0 0
\(806\) 0 0
\(807\) −3.65685 −0.128727
\(808\) −17.6569 −0.621166
\(809\) −37.1127 −1.30481 −0.652406 0.757869i \(-0.726240\pi\)
−0.652406 + 0.757869i \(0.726240\pi\)
\(810\) 1.00000 0.0351364
\(811\) −36.9706 −1.29821 −0.649106 0.760698i \(-0.724857\pi\)
−0.649106 + 0.760698i \(0.724857\pi\)
\(812\) 0 0
\(813\) −5.75736 −0.201919
\(814\) 4.82843 0.169236
\(815\) −10.7279 −0.375783
\(816\) −1.41421 −0.0495074
\(817\) 20.9706 0.733667
\(818\) 18.3848 0.642809
\(819\) 0 0
\(820\) −3.17157 −0.110756
\(821\) −35.5563 −1.24093 −0.620463 0.784236i \(-0.713055\pi\)
−0.620463 + 0.784236i \(0.713055\pi\)
\(822\) −16.0000 −0.558064
\(823\) −40.2843 −1.40422 −0.702111 0.712068i \(-0.747759\pi\)
−0.702111 + 0.712068i \(0.747759\pi\)
\(824\) 18.1421 0.632011
\(825\) 3.41421 0.118868
\(826\) 0 0
\(827\) 51.1127 1.77736 0.888681 0.458525i \(-0.151622\pi\)
0.888681 + 0.458525i \(0.151622\pi\)
\(828\) −0.828427 −0.0287898
\(829\) −22.6863 −0.787927 −0.393964 0.919126i \(-0.628896\pi\)
−0.393964 + 0.919126i \(0.628896\pi\)
\(830\) −10.8284 −0.375860
\(831\) 2.10051 0.0728657
\(832\) 0 0
\(833\) 0 0
\(834\) 6.34315 0.219645
\(835\) −13.0711 −0.452343
\(836\) 9.65685 0.333989
\(837\) −9.07107 −0.313542
\(838\) −6.34315 −0.219120
\(839\) 10.8284 0.373839 0.186919 0.982375i \(-0.440150\pi\)
0.186919 + 0.982375i \(0.440150\pi\)
\(840\) 0 0
\(841\) −28.9411 −0.997970
\(842\) −28.6274 −0.986566
\(843\) −30.4853 −1.04997
\(844\) 9.65685 0.332403
\(845\) −13.0000 −0.447214
\(846\) 5.07107 0.174347
\(847\) 0 0
\(848\) 13.3137 0.457195
\(849\) 13.5147 0.463824
\(850\) −1.41421 −0.0485071
\(851\) −1.17157 −0.0401610
\(852\) 5.17157 0.177175
\(853\) 29.3137 1.00368 0.501841 0.864960i \(-0.332656\pi\)
0.501841 + 0.864960i \(0.332656\pi\)
\(854\) 0 0
\(855\) 2.82843 0.0967302
\(856\) −4.00000 −0.136717
\(857\) 52.7279 1.80115 0.900576 0.434699i \(-0.143145\pi\)
0.900576 + 0.434699i \(0.143145\pi\)
\(858\) 0 0
\(859\) −16.9706 −0.579028 −0.289514 0.957174i \(-0.593494\pi\)
−0.289514 + 0.957174i \(0.593494\pi\)
\(860\) 7.41421 0.252823
\(861\) 0 0
\(862\) −14.1421 −0.481683
\(863\) 32.9706 1.12233 0.561166 0.827704i \(-0.310353\pi\)
0.561166 + 0.827704i \(0.310353\pi\)
\(864\) 1.00000 0.0340207
\(865\) 1.51472 0.0515020
\(866\) 3.17157 0.107774
\(867\) −15.0000 −0.509427
\(868\) 0 0
\(869\) 38.6274 1.31035
\(870\) −0.242641 −0.00822629
\(871\) 0 0
\(872\) −17.3137 −0.586316
\(873\) 3.17157 0.107341
\(874\) −2.34315 −0.0792581
\(875\) 0 0
\(876\) −3.65685 −0.123554
\(877\) 18.5858 0.627597 0.313799 0.949490i \(-0.398398\pi\)
0.313799 + 0.949490i \(0.398398\pi\)
\(878\) 2.44365 0.0824692
\(879\) 16.6274 0.560829
\(880\) 3.41421 0.115093
\(881\) 20.3431 0.685378 0.342689 0.939449i \(-0.388662\pi\)
0.342689 + 0.939449i \(0.388662\pi\)
\(882\) 0 0
\(883\) 38.0416 1.28020 0.640101 0.768290i \(-0.278892\pi\)
0.640101 + 0.768290i \(0.278892\pi\)
\(884\) 0 0
\(885\) −14.4853 −0.486917
\(886\) 2.34315 0.0787195
\(887\) 35.6985 1.19864 0.599319 0.800510i \(-0.295438\pi\)
0.599319 + 0.800510i \(0.295438\pi\)
\(888\) 1.41421 0.0474579
\(889\) 0 0
\(890\) 10.4853 0.351467
\(891\) 3.41421 0.114380
\(892\) 6.34315 0.212384
\(893\) 14.3431 0.479975
\(894\) 5.89949 0.197309
\(895\) 3.41421 0.114125
\(896\) 0 0
\(897\) 0 0
\(898\) 37.1127 1.23847
\(899\) 2.20101 0.0734078
\(900\) 1.00000 0.0333333
\(901\) −18.8284 −0.627266
\(902\) −10.8284 −0.360547
\(903\) 0 0
\(904\) −13.3137 −0.442807
\(905\) −3.17157 −0.105427
\(906\) −21.7990 −0.724223
\(907\) 0.786797 0.0261252 0.0130626 0.999915i \(-0.495842\pi\)
0.0130626 + 0.999915i \(0.495842\pi\)
\(908\) −2.34315 −0.0777600
\(909\) −17.6569 −0.585641
\(910\) 0 0
\(911\) −5.65685 −0.187420 −0.0937100 0.995600i \(-0.529873\pi\)
−0.0937100 + 0.995600i \(0.529873\pi\)
\(912\) 2.82843 0.0936586
\(913\) −36.9706 −1.22355
\(914\) 29.7990 0.985663
\(915\) −0.343146 −0.0113440
\(916\) −13.7990 −0.455931
\(917\) 0 0
\(918\) −1.41421 −0.0466760
\(919\) −46.7696 −1.54279 −0.771393 0.636360i \(-0.780439\pi\)
−0.771393 + 0.636360i \(0.780439\pi\)
\(920\) −0.828427 −0.0273124
\(921\) 15.3137 0.504604
\(922\) −14.0000 −0.461065
\(923\) 0 0
\(924\) 0 0
\(925\) 1.41421 0.0464991
\(926\) 22.3431 0.734241
\(927\) 18.1421 0.595866
\(928\) −0.242641 −0.00796507
\(929\) −0.343146 −0.0112582 −0.00562912 0.999984i \(-0.501792\pi\)
−0.00562912 + 0.999984i \(0.501792\pi\)
\(930\) −9.07107 −0.297452
\(931\) 0 0
\(932\) −26.9706 −0.883450
\(933\) −34.8284 −1.14023
\(934\) −3.51472 −0.115005
\(935\) −4.82843 −0.157906
\(936\) 0 0
\(937\) −50.9706 −1.66514 −0.832568 0.553923i \(-0.813130\pi\)
−0.832568 + 0.553923i \(0.813130\pi\)
\(938\) 0 0
\(939\) 23.1716 0.756176
\(940\) 5.07107 0.165400
\(941\) −20.2843 −0.661248 −0.330624 0.943763i \(-0.607259\pi\)
−0.330624 + 0.943763i \(0.607259\pi\)
\(942\) 11.6569 0.379801
\(943\) 2.62742 0.0855605
\(944\) −14.4853 −0.471456
\(945\) 0 0
\(946\) 25.3137 0.823020
\(947\) 19.5147 0.634143 0.317072 0.948402i \(-0.397300\pi\)
0.317072 + 0.948402i \(0.397300\pi\)
\(948\) 11.3137 0.367452
\(949\) 0 0
\(950\) 2.82843 0.0917663
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 55.5980 1.80100 0.900498 0.434861i \(-0.143202\pi\)
0.900498 + 0.434861i \(0.143202\pi\)
\(954\) 13.3137 0.431047
\(955\) 11.3137 0.366103
\(956\) 0.686292 0.0221963
\(957\) −0.828427 −0.0267792
\(958\) −0.485281 −0.0156787
\(959\) 0 0
\(960\) 1.00000 0.0322749
\(961\) 51.2843 1.65433
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) −7.75736 −0.249848
\(965\) 17.7990 0.572970
\(966\) 0 0
\(967\) 12.2843 0.395036 0.197518 0.980299i \(-0.436712\pi\)
0.197518 + 0.980299i \(0.436712\pi\)
\(968\) 0.656854 0.0211121
\(969\) −4.00000 −0.128499
\(970\) 3.17157 0.101833
\(971\) 11.0294 0.353951 0.176976 0.984215i \(-0.443369\pi\)
0.176976 + 0.984215i \(0.443369\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 7.51472 0.240787
\(975\) 0 0
\(976\) −0.343146 −0.0109838
\(977\) −17.3137 −0.553915 −0.276957 0.960882i \(-0.589326\pi\)
−0.276957 + 0.960882i \(0.589326\pi\)
\(978\) −10.7279 −0.343041
\(979\) 35.7990 1.14414
\(980\) 0 0
\(981\) −17.3137 −0.552784
\(982\) −7.89949 −0.252083
\(983\) 36.8701 1.17597 0.587986 0.808871i \(-0.299921\pi\)
0.587986 + 0.808871i \(0.299921\pi\)
\(984\) −3.17157 −0.101106
\(985\) −15.1716 −0.483407
\(986\) 0.343146 0.0109280
\(987\) 0 0
\(988\) 0 0
\(989\) −6.14214 −0.195309
\(990\) 3.41421 0.108511
\(991\) 15.1716 0.481941 0.240970 0.970532i \(-0.422534\pi\)
0.240970 + 0.970532i \(0.422534\pi\)
\(992\) −9.07107 −0.288007
\(993\) 26.6274 0.844996
\(994\) 0 0
\(995\) 17.0711 0.541189
\(996\) −10.8284 −0.343112
\(997\) −25.3137 −0.801693 −0.400847 0.916145i \(-0.631284\pi\)
−0.400847 + 0.916145i \(0.631284\pi\)
\(998\) −23.7990 −0.753344
\(999\) 1.41421 0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.a.v.1.2 yes 2
3.2 odd 2 4410.2.a.bn.1.1 2
5.4 even 2 7350.2.a.dd.1.2 2
7.2 even 3 1470.2.i.u.361.1 4
7.3 odd 6 1470.2.i.v.961.1 4
7.4 even 3 1470.2.i.u.961.1 4
7.5 odd 6 1470.2.i.v.361.1 4
7.6 odd 2 1470.2.a.u.1.2 2
21.20 even 2 4410.2.a.br.1.1 2
35.34 odd 2 7350.2.a.df.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.a.u.1.2 2 7.6 odd 2
1470.2.a.v.1.2 yes 2 1.1 even 1 trivial
1470.2.i.u.361.1 4 7.2 even 3
1470.2.i.u.961.1 4 7.4 even 3
1470.2.i.v.361.1 4 7.5 odd 6
1470.2.i.v.961.1 4 7.3 odd 6
4410.2.a.bn.1.1 2 3.2 odd 2
4410.2.a.br.1.1 2 21.20 even 2
7350.2.a.dd.1.2 2 5.4 even 2
7350.2.a.df.1.2 2 35.34 odd 2