Properties

Label 1470.2.g.b
Level $1470$
Weight $2$
Character orbit 1470.g
Analytic conductor $11.738$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(589,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - i q^{3} - q^{4} + ( - 2 i - 1) q^{5} - q^{6} + i q^{8} - q^{9} + (i - 2) q^{10} + 2 q^{11} + i q^{12} - 6 i q^{13} + (i - 2) q^{15} + q^{16} + 4 i q^{17} + i q^{18} - 6 q^{19} + (2 i + 1) q^{20} + \cdots - 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{5} - 2 q^{6} - 2 q^{9} - 4 q^{10} + 4 q^{11} - 4 q^{15} + 2 q^{16} - 12 q^{19} + 2 q^{20} + 2 q^{24} - 6 q^{25} - 12 q^{26} - 12 q^{29} + 2 q^{30} + 4 q^{31} + 8 q^{34} + 2 q^{36} - 12 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 −1.00000 2.00000i −1.00000 0 1.00000i −1.00000 −2.00000 + 1.00000i
589.2 1.00000i 1.00000i −1.00000 −1.00000 + 2.00000i −1.00000 0 1.00000i −1.00000 −2.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.g.b 2
5.b even 2 1 inner 1470.2.g.b 2
5.c odd 4 1 7350.2.a.bk 1
5.c odd 4 1 7350.2.a.bz 1
7.b odd 2 1 210.2.g.b 2
7.c even 3 2 1470.2.n.f 4
7.d odd 6 2 1470.2.n.b 4
21.c even 2 1 630.2.g.c 2
28.d even 2 1 1680.2.t.e 2
35.c odd 2 1 210.2.g.b 2
35.f even 4 1 1050.2.a.d 1
35.f even 4 1 1050.2.a.p 1
35.i odd 6 2 1470.2.n.b 4
35.j even 6 2 1470.2.n.f 4
84.h odd 2 1 5040.2.t.h 2
105.g even 2 1 630.2.g.c 2
105.k odd 4 1 3150.2.a.d 1
105.k odd 4 1 3150.2.a.bk 1
140.c even 2 1 1680.2.t.e 2
140.j odd 4 1 8400.2.a.w 1
140.j odd 4 1 8400.2.a.bp 1
420.o odd 2 1 5040.2.t.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.g.b 2 7.b odd 2 1
210.2.g.b 2 35.c odd 2 1
630.2.g.c 2 21.c even 2 1
630.2.g.c 2 105.g even 2 1
1050.2.a.d 1 35.f even 4 1
1050.2.a.p 1 35.f even 4 1
1470.2.g.b 2 1.a even 1 1 trivial
1470.2.g.b 2 5.b even 2 1 inner
1470.2.n.b 4 7.d odd 6 2
1470.2.n.b 4 35.i odd 6 2
1470.2.n.f 4 7.c even 3 2
1470.2.n.f 4 35.j even 6 2
1680.2.t.e 2 28.d even 2 1
1680.2.t.e 2 140.c even 2 1
3150.2.a.d 1 105.k odd 4 1
3150.2.a.bk 1 105.k odd 4 1
5040.2.t.h 2 84.h odd 2 1
5040.2.t.h 2 420.o odd 2 1
7350.2.a.bk 1 5.c odd 4 1
7350.2.a.bz 1 5.c odd 4 1
8400.2.a.w 1 140.j odd 4 1
8400.2.a.bp 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1470, [\chi])\):

\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} + 16 \) Copy content Toggle raw display
\( T_{19} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T + 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T - 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 64 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100 \) Copy content Toggle raw display
show more
show less