Properties

Label 1470.2.g.b
Level 14701470
Weight 22
Character orbit 1470.g
Analytic conductor 11.73811.738
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(589,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1470=23572 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1470.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.738009097111.7380090971
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qiq2iq3q4+(2i1)q5q6+iq8q9+(i2)q10+2q11+iq126iq13+(i2)q15+q16+4iq17+iq186q19+(2i+1)q20+2q99+O(q100) q - i q^{2} - i q^{3} - q^{4} + ( - 2 i - 1) q^{5} - q^{6} + i q^{8} - q^{9} + (i - 2) q^{10} + 2 q^{11} + i q^{12} - 6 i q^{13} + (i - 2) q^{15} + q^{16} + 4 i q^{17} + i q^{18} - 6 q^{19} + (2 i + 1) q^{20} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q42q52q62q94q10+4q114q15+2q1612q19+2q20+2q246q2512q2612q29+2q30+4q31+8q34+2q3612q39+4q99+O(q100) 2 q - 2 q^{4} - 2 q^{5} - 2 q^{6} - 2 q^{9} - 4 q^{10} + 4 q^{11} - 4 q^{15} + 2 q^{16} - 12 q^{19} + 2 q^{20} + 2 q^{24} - 6 q^{25} - 12 q^{26} - 12 q^{29} + 2 q^{30} + 4 q^{31} + 8 q^{34} + 2 q^{36} - 12 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1470Z)×\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times.

nn 491491 10811081 11771177
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
589.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 −1.00000 2.00000i −1.00000 0 1.00000i −1.00000 −2.00000 + 1.00000i
589.2 1.00000i 1.00000i −1.00000 −1.00000 + 2.00000i −1.00000 0 1.00000i −1.00000 −2.00000 1.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.g.b 2
5.b even 2 1 inner 1470.2.g.b 2
5.c odd 4 1 7350.2.a.bk 1
5.c odd 4 1 7350.2.a.bz 1
7.b odd 2 1 210.2.g.b 2
7.c even 3 2 1470.2.n.f 4
7.d odd 6 2 1470.2.n.b 4
21.c even 2 1 630.2.g.c 2
28.d even 2 1 1680.2.t.e 2
35.c odd 2 1 210.2.g.b 2
35.f even 4 1 1050.2.a.d 1
35.f even 4 1 1050.2.a.p 1
35.i odd 6 2 1470.2.n.b 4
35.j even 6 2 1470.2.n.f 4
84.h odd 2 1 5040.2.t.h 2
105.g even 2 1 630.2.g.c 2
105.k odd 4 1 3150.2.a.d 1
105.k odd 4 1 3150.2.a.bk 1
140.c even 2 1 1680.2.t.e 2
140.j odd 4 1 8400.2.a.w 1
140.j odd 4 1 8400.2.a.bp 1
420.o odd 2 1 5040.2.t.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.g.b 2 7.b odd 2 1
210.2.g.b 2 35.c odd 2 1
630.2.g.c 2 21.c even 2 1
630.2.g.c 2 105.g even 2 1
1050.2.a.d 1 35.f even 4 1
1050.2.a.p 1 35.f even 4 1
1470.2.g.b 2 1.a even 1 1 trivial
1470.2.g.b 2 5.b even 2 1 inner
1470.2.n.b 4 7.d odd 6 2
1470.2.n.b 4 35.i odd 6 2
1470.2.n.f 4 7.c even 3 2
1470.2.n.f 4 35.j even 6 2
1680.2.t.e 2 28.d even 2 1
1680.2.t.e 2 140.c even 2 1
3150.2.a.d 1 105.k odd 4 1
3150.2.a.bk 1 105.k odd 4 1
5040.2.t.h 2 84.h odd 2 1
5040.2.t.h 2 420.o odd 2 1
7350.2.a.bk 1 5.c odd 4 1
7350.2.a.bz 1 5.c odd 4 1
8400.2.a.w 1 140.j odd 4 1
8400.2.a.bp 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1470,[χ])S_{2}^{\mathrm{new}}(1470, [\chi]):

T112 T_{11} - 2 Copy content Toggle raw display
T172+16 T_{17}^{2} + 16 Copy content Toggle raw display
T19+6 T_{19} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2+2T+5 T^{2} + 2T + 5 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+16 T^{2} + 16 Copy content Toggle raw display
1919 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
2323 T2+64 T^{2} + 64 Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3737 T2+16 T^{2} + 16 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
6161 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7373 T2+196 T^{2} + 196 Copy content Toggle raw display
7979 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8383 T2+64 T^{2} + 64 Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+100 T^{2} + 100 Copy content Toggle raw display
show more
show less