Properties

Label 1472.2.i.b.367.12
Level $1472$
Weight $2$
Character 1472.367
Analytic conductor $11.754$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(367,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.367");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.i (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 368)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 367.12
Character \(\chi\) \(=\) 1472.367
Dual form 1472.2.i.b.1103.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.860099 + 0.860099i) q^{3} +(-0.0592628 - 0.0592628i) q^{5} -2.65917i q^{7} +1.52046i q^{9} +(3.23118 - 3.23118i) q^{11} +(1.32495 + 1.32495i) q^{13} +0.101944 q^{15} +1.27002i q^{17} +(-4.69664 - 4.69664i) q^{19} +(2.28715 + 2.28715i) q^{21} +(-2.50175 + 4.09161i) q^{23} -4.99298i q^{25} +(-3.88804 - 3.88804i) q^{27} +(-1.21823 - 1.21823i) q^{29} +2.31556i q^{31} +5.55826i q^{33} +(-0.157590 + 0.157590i) q^{35} +(1.54778 + 1.54778i) q^{37} -2.27918 q^{39} -2.46013i q^{41} +(8.21821 - 8.21821i) q^{43} +(0.0901066 - 0.0901066i) q^{45} -1.72980i q^{47} -0.0711808 q^{49} +(-1.09234 - 1.09234i) q^{51} +(-5.85076 - 5.85076i) q^{53} -0.382977 q^{55} +8.07915 q^{57} +(-10.2226 - 10.2226i) q^{59} +(9.18423 - 9.18423i) q^{61} +4.04316 q^{63} -0.157040i q^{65} +(0.241049 + 0.241049i) q^{67} +(-1.36744 - 5.67094i) q^{69} +15.0134 q^{71} +2.20672i q^{73} +(4.29446 + 4.29446i) q^{75} +(-8.59224 - 8.59224i) q^{77} -6.90459 q^{79} +2.12683 q^{81} +(6.96262 + 6.96262i) q^{83} +(0.0752648 - 0.0752648i) q^{85} +2.09559 q^{87} +14.2609 q^{89} +(3.52326 - 3.52326i) q^{91} +(-1.99162 - 1.99162i) q^{93} +0.556672i q^{95} -7.99512i q^{97} +(4.91287 + 4.91287i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{3} - 4 q^{13} - 4 q^{23} - 44 q^{27} - 20 q^{29} - 16 q^{35} + 128 q^{39} - 160 q^{49} + 8 q^{55} - 80 q^{59} - 24 q^{69} + 8 q^{71} + 12 q^{75} + 40 q^{77} + 40 q^{81} - 16 q^{85} + 8 q^{87}+ \cdots - 28 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.860099 + 0.860099i −0.496579 + 0.496579i −0.910371 0.413793i \(-0.864204\pi\)
0.413793 + 0.910371i \(0.364204\pi\)
\(4\) 0 0
\(5\) −0.0592628 0.0592628i −0.0265031 0.0265031i 0.693731 0.720234i \(-0.255966\pi\)
−0.720234 + 0.693731i \(0.755966\pi\)
\(6\) 0 0
\(7\) 2.65917i 1.00507i −0.864556 0.502536i \(-0.832401\pi\)
0.864556 0.502536i \(-0.167599\pi\)
\(8\) 0 0
\(9\) 1.52046i 0.506819i
\(10\) 0 0
\(11\) 3.23118 3.23118i 0.974236 0.974236i −0.0254403 0.999676i \(-0.508099\pi\)
0.999676 + 0.0254403i \(0.00809877\pi\)
\(12\) 0 0
\(13\) 1.32495 + 1.32495i 0.367475 + 0.367475i 0.866555 0.499081i \(-0.166329\pi\)
−0.499081 + 0.866555i \(0.666329\pi\)
\(14\) 0 0
\(15\) 0.101944 0.0263218
\(16\) 0 0
\(17\) 1.27002i 0.308025i 0.988069 + 0.154012i \(0.0492196\pi\)
−0.988069 + 0.154012i \(0.950780\pi\)
\(18\) 0 0
\(19\) −4.69664 4.69664i −1.07748 1.07748i −0.996735 0.0807484i \(-0.974269\pi\)
−0.0807484 0.996735i \(-0.525731\pi\)
\(20\) 0 0
\(21\) 2.28715 + 2.28715i 0.499097 + 0.499097i
\(22\) 0 0
\(23\) −2.50175 + 4.09161i −0.521651 + 0.853159i
\(24\) 0 0
\(25\) 4.99298i 0.998595i
\(26\) 0 0
\(27\) −3.88804 3.88804i −0.748254 0.748254i
\(28\) 0 0
\(29\) −1.21823 1.21823i −0.226219 0.226219i 0.584892 0.811111i \(-0.301137\pi\)
−0.811111 + 0.584892i \(0.801137\pi\)
\(30\) 0 0
\(31\) 2.31556i 0.415888i 0.978141 + 0.207944i \(0.0666771\pi\)
−0.978141 + 0.207944i \(0.933323\pi\)
\(32\) 0 0
\(33\) 5.55826i 0.967570i
\(34\) 0 0
\(35\) −0.157590 + 0.157590i −0.0266375 + 0.0266375i
\(36\) 0 0
\(37\) 1.54778 + 1.54778i 0.254454 + 0.254454i 0.822794 0.568340i \(-0.192414\pi\)
−0.568340 + 0.822794i \(0.692414\pi\)
\(38\) 0 0
\(39\) −2.27918 −0.364960
\(40\) 0 0
\(41\) 2.46013i 0.384208i −0.981375 0.192104i \(-0.938469\pi\)
0.981375 0.192104i \(-0.0615310\pi\)
\(42\) 0 0
\(43\) 8.21821 8.21821i 1.25326 1.25326i 0.299017 0.954248i \(-0.403341\pi\)
0.954248 0.299017i \(-0.0966588\pi\)
\(44\) 0 0
\(45\) 0.0901066 0.0901066i 0.0134323 0.0134323i
\(46\) 0 0
\(47\) 1.72980i 0.252317i −0.992010 0.126159i \(-0.959735\pi\)
0.992010 0.126159i \(-0.0402648\pi\)
\(48\) 0 0
\(49\) −0.0711808 −0.0101687
\(50\) 0 0
\(51\) −1.09234 1.09234i −0.152959 0.152959i
\(52\) 0 0
\(53\) −5.85076 5.85076i −0.803663 0.803663i 0.180003 0.983666i \(-0.442389\pi\)
−0.983666 + 0.180003i \(0.942389\pi\)
\(54\) 0 0
\(55\) −0.382977 −0.0516406
\(56\) 0 0
\(57\) 8.07915 1.07011
\(58\) 0 0
\(59\) −10.2226 10.2226i −1.33088 1.33088i −0.904588 0.426287i \(-0.859821\pi\)
−0.426287 0.904588i \(-0.640179\pi\)
\(60\) 0 0
\(61\) 9.18423 9.18423i 1.17592 1.17592i 0.195146 0.980774i \(-0.437482\pi\)
0.980774 0.195146i \(-0.0625180\pi\)
\(62\) 0 0
\(63\) 4.04316 0.509390
\(64\) 0 0
\(65\) 0.157040i 0.0194785i
\(66\) 0 0
\(67\) 0.241049 + 0.241049i 0.0294489 + 0.0294489i 0.721678 0.692229i \(-0.243371\pi\)
−0.692229 + 0.721678i \(0.743371\pi\)
\(68\) 0 0
\(69\) −1.36744 5.67094i −0.164620 0.682701i
\(70\) 0 0
\(71\) 15.0134 1.78176 0.890879 0.454241i \(-0.150089\pi\)
0.890879 + 0.454241i \(0.150089\pi\)
\(72\) 0 0
\(73\) 2.20672i 0.258277i 0.991627 + 0.129139i \(0.0412212\pi\)
−0.991627 + 0.129139i \(0.958779\pi\)
\(74\) 0 0
\(75\) 4.29446 + 4.29446i 0.495881 + 0.495881i
\(76\) 0 0
\(77\) −8.59224 8.59224i −0.979177 0.979177i
\(78\) 0 0
\(79\) −6.90459 −0.776827 −0.388414 0.921485i \(-0.626977\pi\)
−0.388414 + 0.921485i \(0.626977\pi\)
\(80\) 0 0
\(81\) 2.12683 0.236315
\(82\) 0 0
\(83\) 6.96262 + 6.96262i 0.764247 + 0.764247i 0.977087 0.212840i \(-0.0682714\pi\)
−0.212840 + 0.977087i \(0.568271\pi\)
\(84\) 0 0
\(85\) 0.0752648 0.0752648i 0.00816362 0.00816362i
\(86\) 0 0
\(87\) 2.09559 0.224671
\(88\) 0 0
\(89\) 14.2609 1.51166 0.755828 0.654771i \(-0.227235\pi\)
0.755828 + 0.654771i \(0.227235\pi\)
\(90\) 0 0
\(91\) 3.52326 3.52326i 0.369338 0.369338i
\(92\) 0 0
\(93\) −1.99162 1.99162i −0.206521 0.206521i
\(94\) 0 0
\(95\) 0.556672i 0.0571133i
\(96\) 0 0
\(97\) 7.99512i 0.811781i −0.913922 0.405891i \(-0.866961\pi\)
0.913922 0.405891i \(-0.133039\pi\)
\(98\) 0 0
\(99\) 4.91287 + 4.91287i 0.493762 + 0.493762i
\(100\) 0 0
\(101\) −3.64570 + 3.64570i −0.362760 + 0.362760i −0.864828 0.502068i \(-0.832573\pi\)
0.502068 + 0.864828i \(0.332573\pi\)
\(102\) 0 0
\(103\) 13.3253i 1.31298i 0.754333 + 0.656492i \(0.227961\pi\)
−0.754333 + 0.656492i \(0.772039\pi\)
\(104\) 0 0
\(105\) 0.271086i 0.0264553i
\(106\) 0 0
\(107\) 7.02903 7.02903i 0.679522 0.679522i −0.280370 0.959892i \(-0.590457\pi\)
0.959892 + 0.280370i \(0.0904570\pi\)
\(108\) 0 0
\(109\) 3.12657 3.12657i 0.299471 0.299471i −0.541335 0.840807i \(-0.682081\pi\)
0.840807 + 0.541335i \(0.182081\pi\)
\(110\) 0 0
\(111\) −2.66250 −0.252713
\(112\) 0 0
\(113\) 8.66950i 0.815558i −0.913081 0.407779i \(-0.866303\pi\)
0.913081 0.407779i \(-0.133697\pi\)
\(114\) 0 0
\(115\) 0.390741 0.0942195i 0.0364367 0.00878601i
\(116\) 0 0
\(117\) −2.01453 + 2.01453i −0.186243 + 0.186243i
\(118\) 0 0
\(119\) 3.37719 0.309587
\(120\) 0 0
\(121\) 9.88099i 0.898272i
\(122\) 0 0
\(123\) 2.11596 + 2.11596i 0.190789 + 0.190789i
\(124\) 0 0
\(125\) −0.592211 + 0.592211i −0.0529690 + 0.0529690i
\(126\) 0 0
\(127\) 5.22135i 0.463320i −0.972797 0.231660i \(-0.925584\pi\)
0.972797 0.231660i \(-0.0744157\pi\)
\(128\) 0 0
\(129\) 14.1370i 1.24469i
\(130\) 0 0
\(131\) −3.33453 + 3.33453i −0.291339 + 0.291339i −0.837609 0.546270i \(-0.816047\pi\)
0.546270 + 0.837609i \(0.316047\pi\)
\(132\) 0 0
\(133\) −12.4892 + 12.4892i −1.08295 + 1.08295i
\(134\) 0 0
\(135\) 0.460832i 0.0396621i
\(136\) 0 0
\(137\) 7.42500 0.634361 0.317180 0.948365i \(-0.397264\pi\)
0.317180 + 0.948365i \(0.397264\pi\)
\(138\) 0 0
\(139\) −6.66197 6.66197i −0.565061 0.565061i 0.365680 0.930741i \(-0.380836\pi\)
−0.930741 + 0.365680i \(0.880836\pi\)
\(140\) 0 0
\(141\) 1.48780 + 1.48780i 0.125295 + 0.125295i
\(142\) 0 0
\(143\) 8.56229 0.716014
\(144\) 0 0
\(145\) 0.144391i 0.0119910i
\(146\) 0 0
\(147\) 0.0612226 0.0612226i 0.00504955 0.00504955i
\(148\) 0 0
\(149\) −6.57835 6.57835i −0.538920 0.538920i 0.384292 0.923212i \(-0.374446\pi\)
−0.923212 + 0.384292i \(0.874446\pi\)
\(150\) 0 0
\(151\) −15.6057 −1.26997 −0.634986 0.772524i \(-0.718994\pi\)
−0.634986 + 0.772524i \(0.718994\pi\)
\(152\) 0 0
\(153\) −1.93101 −0.156113
\(154\) 0 0
\(155\) 0.137227 0.137227i 0.0110223 0.0110223i
\(156\) 0 0
\(157\) −6.05567 + 6.05567i −0.483295 + 0.483295i −0.906182 0.422887i \(-0.861017\pi\)
0.422887 + 0.906182i \(0.361017\pi\)
\(158\) 0 0
\(159\) 10.0645 0.798164
\(160\) 0 0
\(161\) 10.8803 + 6.65257i 0.857486 + 0.524296i
\(162\) 0 0
\(163\) 10.7888 10.7888i 0.845040 0.845040i −0.144469 0.989509i \(-0.546147\pi\)
0.989509 + 0.144469i \(0.0461474\pi\)
\(164\) 0 0
\(165\) 0.329398 0.329398i 0.0256436 0.0256436i
\(166\) 0 0
\(167\) 6.67959 0.516882 0.258441 0.966027i \(-0.416791\pi\)
0.258441 + 0.966027i \(0.416791\pi\)
\(168\) 0 0
\(169\) 9.48902i 0.729925i
\(170\) 0 0
\(171\) 7.14104 7.14104i 0.546089 0.546089i
\(172\) 0 0
\(173\) 9.10911 + 9.10911i 0.692553 + 0.692553i 0.962793 0.270240i \(-0.0871030\pi\)
−0.270240 + 0.962793i \(0.587103\pi\)
\(174\) 0 0
\(175\) −13.2772 −1.00366
\(176\) 0 0
\(177\) 17.5850 1.32177
\(178\) 0 0
\(179\) −0.0909711 + 0.0909711i −0.00679950 + 0.00679950i −0.710498 0.703699i \(-0.751530\pi\)
0.703699 + 0.710498i \(0.251530\pi\)
\(180\) 0 0
\(181\) −11.3170 11.3170i −0.841187 0.841187i 0.147826 0.989013i \(-0.452772\pi\)
−0.989013 + 0.147826i \(0.952772\pi\)
\(182\) 0 0
\(183\) 15.7987i 1.16787i
\(184\) 0 0
\(185\) 0.183452i 0.0134877i
\(186\) 0 0
\(187\) 4.10365 + 4.10365i 0.300089 + 0.300089i
\(188\) 0 0
\(189\) −10.3390 + 10.3390i −0.752049 + 0.752049i
\(190\) 0 0
\(191\) −15.7543 −1.13994 −0.569972 0.821664i \(-0.693046\pi\)
−0.569972 + 0.821664i \(0.693046\pi\)
\(192\) 0 0
\(193\) −9.94979 −0.716202 −0.358101 0.933683i \(-0.616576\pi\)
−0.358101 + 0.933683i \(0.616576\pi\)
\(194\) 0 0
\(195\) 0.135070 + 0.135070i 0.00967258 + 0.00967258i
\(196\) 0 0
\(197\) 12.0238 12.0238i 0.856661 0.856661i −0.134282 0.990943i \(-0.542873\pi\)
0.990943 + 0.134282i \(0.0428729\pi\)
\(198\) 0 0
\(199\) 12.1254i 0.859544i −0.902937 0.429772i \(-0.858594\pi\)
0.902937 0.429772i \(-0.141406\pi\)
\(200\) 0 0
\(201\) −0.414653 −0.0292473
\(202\) 0 0
\(203\) −3.23947 + 3.23947i −0.227366 + 0.227366i
\(204\) 0 0
\(205\) −0.145794 + 0.145794i −0.0101827 + 0.0101827i
\(206\) 0 0
\(207\) −6.22112 3.80380i −0.432398 0.264383i
\(208\) 0 0
\(209\) −30.3513 −2.09945
\(210\) 0 0
\(211\) −8.84817 + 8.84817i −0.609133 + 0.609133i −0.942720 0.333586i \(-0.891741\pi\)
0.333586 + 0.942720i \(0.391741\pi\)
\(212\) 0 0
\(213\) −12.9130 + 12.9130i −0.884783 + 0.884783i
\(214\) 0 0
\(215\) −0.974067 −0.0664308
\(216\) 0 0
\(217\) 6.15748 0.417997
\(218\) 0 0
\(219\) −1.89800 1.89800i −0.128255 0.128255i
\(220\) 0 0
\(221\) −1.68271 + 1.68271i −0.113191 + 0.113191i
\(222\) 0 0
\(223\) 8.33600i 0.558220i 0.960259 + 0.279110i \(0.0900394\pi\)
−0.960259 + 0.279110i \(0.909961\pi\)
\(224\) 0 0
\(225\) 7.59161 0.506107
\(226\) 0 0
\(227\) −4.72544 4.72544i −0.313638 0.313638i 0.532679 0.846317i \(-0.321185\pi\)
−0.846317 + 0.532679i \(0.821185\pi\)
\(228\) 0 0
\(229\) −15.7355 15.7355i −1.03983 1.03983i −0.999173 0.0406573i \(-0.987055\pi\)
−0.0406573 0.999173i \(-0.512945\pi\)
\(230\) 0 0
\(231\) 14.7804 0.972477
\(232\) 0 0
\(233\) 5.06132i 0.331578i 0.986161 + 0.165789i \(0.0530171\pi\)
−0.986161 + 0.165789i \(0.946983\pi\)
\(234\) 0 0
\(235\) −0.102513 + 0.102513i −0.00668720 + 0.00668720i
\(236\) 0 0
\(237\) 5.93863 5.93863i 0.385756 0.385756i
\(238\) 0 0
\(239\) 25.4452i 1.64591i 0.568105 + 0.822956i \(0.307677\pi\)
−0.568105 + 0.822956i \(0.692323\pi\)
\(240\) 0 0
\(241\) 7.67284i 0.494251i 0.968983 + 0.247126i \(0.0794860\pi\)
−0.968983 + 0.247126i \(0.920514\pi\)
\(242\) 0 0
\(243\) 9.83484 9.83484i 0.630905 0.630905i
\(244\) 0 0
\(245\) 0.00421837 + 0.00421837i 0.000269502 + 0.000269502i
\(246\) 0 0
\(247\) 12.4456i 0.791896i
\(248\) 0 0
\(249\) −11.9771 −0.759017
\(250\) 0 0
\(251\) −18.0092 + 18.0092i −1.13673 + 1.13673i −0.147695 + 0.989033i \(0.547186\pi\)
−0.989033 + 0.147695i \(0.952814\pi\)
\(252\) 0 0
\(253\) 5.13712 + 21.3043i 0.322968 + 1.33939i
\(254\) 0 0
\(255\) 0.129470i 0.00810776i
\(256\) 0 0
\(257\) −11.5321 −0.719351 −0.359675 0.933077i \(-0.617113\pi\)
−0.359675 + 0.933077i \(0.617113\pi\)
\(258\) 0 0
\(259\) 4.11582 4.11582i 0.255745 0.255745i
\(260\) 0 0
\(261\) 1.85226 1.85226i 0.114652 0.114652i
\(262\) 0 0
\(263\) 25.8401i 1.59337i 0.604396 + 0.796684i \(0.293414\pi\)
−0.604396 + 0.796684i \(0.706586\pi\)
\(264\) 0 0
\(265\) 0.693464i 0.0425992i
\(266\) 0 0
\(267\) −12.2658 + 12.2658i −0.750656 + 0.750656i
\(268\) 0 0
\(269\) 12.0864 + 12.0864i 0.736922 + 0.736922i 0.971981 0.235059i \(-0.0755284\pi\)
−0.235059 + 0.971981i \(0.575528\pi\)
\(270\) 0 0
\(271\) 19.6896i 1.19606i 0.801474 + 0.598030i \(0.204050\pi\)
−0.801474 + 0.598030i \(0.795950\pi\)
\(272\) 0 0
\(273\) 6.06071i 0.366811i
\(274\) 0 0
\(275\) −16.1332 16.1332i −0.972867 0.972867i
\(276\) 0 0
\(277\) −8.60109 + 8.60109i −0.516789 + 0.516789i −0.916598 0.399809i \(-0.869076\pi\)
0.399809 + 0.916598i \(0.369076\pi\)
\(278\) 0 0
\(279\) −3.52072 −0.210780
\(280\) 0 0
\(281\) 28.6536 1.70933 0.854665 0.519181i \(-0.173763\pi\)
0.854665 + 0.519181i \(0.173763\pi\)
\(282\) 0 0
\(283\) 4.00191 4.00191i 0.237889 0.237889i −0.578086 0.815976i \(-0.696200\pi\)
0.815976 + 0.578086i \(0.196200\pi\)
\(284\) 0 0
\(285\) −0.478793 0.478793i −0.0283612 0.0283612i
\(286\) 0 0
\(287\) −6.54190 −0.386156
\(288\) 0 0
\(289\) 15.3871 0.905121
\(290\) 0 0
\(291\) 6.87660 + 6.87660i 0.403113 + 0.403113i
\(292\) 0 0
\(293\) 9.94696 + 9.94696i 0.581107 + 0.581107i 0.935208 0.354100i \(-0.115213\pi\)
−0.354100 + 0.935208i \(0.615213\pi\)
\(294\) 0 0
\(295\) 1.21164i 0.0705447i
\(296\) 0 0
\(297\) −25.1259 −1.45795
\(298\) 0 0
\(299\) −8.73586 + 2.10648i −0.505208 + 0.121821i
\(300\) 0 0
\(301\) −21.8536 21.8536i −1.25962 1.25962i
\(302\) 0 0
\(303\) 6.27132i 0.360278i
\(304\) 0 0
\(305\) −1.08857 −0.0623311
\(306\) 0 0
\(307\) −10.7455 + 10.7455i −0.613280 + 0.613280i −0.943799 0.330519i \(-0.892776\pi\)
0.330519 + 0.943799i \(0.392776\pi\)
\(308\) 0 0
\(309\) −11.4611 11.4611i −0.652000 0.652000i
\(310\) 0 0
\(311\) −14.1242 −0.800908 −0.400454 0.916317i \(-0.631148\pi\)
−0.400454 + 0.916317i \(0.631148\pi\)
\(312\) 0 0
\(313\) −24.3707 −1.37751 −0.688757 0.724992i \(-0.741843\pi\)
−0.688757 + 0.724992i \(0.741843\pi\)
\(314\) 0 0
\(315\) −0.239609 0.239609i −0.0135004 0.0135004i
\(316\) 0 0
\(317\) 10.5047 + 10.5047i 0.590001 + 0.590001i 0.937632 0.347630i \(-0.113014\pi\)
−0.347630 + 0.937632i \(0.613014\pi\)
\(318\) 0 0
\(319\) −7.87261 −0.440781
\(320\) 0 0
\(321\) 12.0913i 0.674873i
\(322\) 0 0
\(323\) 5.96482 5.96482i 0.331891 0.331891i
\(324\) 0 0
\(325\) 6.61544 6.61544i 0.366959 0.366959i
\(326\) 0 0
\(327\) 5.37833i 0.297422i
\(328\) 0 0
\(329\) −4.59983 −0.253597
\(330\) 0 0
\(331\) 8.83567 + 8.83567i 0.485652 + 0.485652i 0.906931 0.421279i \(-0.138419\pi\)
−0.421279 + 0.906931i \(0.638419\pi\)
\(332\) 0 0
\(333\) −2.35334 + 2.35334i −0.128962 + 0.128962i
\(334\) 0 0
\(335\) 0.0285705i 0.00156097i
\(336\) 0 0
\(337\) 10.6494i 0.580110i −0.957010 0.290055i \(-0.906326\pi\)
0.957010 0.290055i \(-0.0936735\pi\)
\(338\) 0 0
\(339\) 7.45663 + 7.45663i 0.404989 + 0.404989i
\(340\) 0 0
\(341\) 7.48199 + 7.48199i 0.405173 + 0.405173i
\(342\) 0 0
\(343\) 18.4249i 0.994851i
\(344\) 0 0
\(345\) −0.255038 + 0.417114i −0.0137308 + 0.0224567i
\(346\) 0 0
\(347\) 16.4276 + 16.4276i 0.881879 + 0.881879i 0.993725 0.111847i \(-0.0356765\pi\)
−0.111847 + 0.993725i \(0.535677\pi\)
\(348\) 0 0
\(349\) −5.53040 5.53040i −0.296036 0.296036i 0.543423 0.839459i \(-0.317128\pi\)
−0.839459 + 0.543423i \(0.817128\pi\)
\(350\) 0 0
\(351\) 10.3029i 0.549929i
\(352\) 0 0
\(353\) 32.2050 1.71410 0.857050 0.515233i \(-0.172295\pi\)
0.857050 + 0.515233i \(0.172295\pi\)
\(354\) 0 0
\(355\) −0.889733 0.889733i −0.0472221 0.0472221i
\(356\) 0 0
\(357\) −2.90472 + 2.90472i −0.153734 + 0.153734i
\(358\) 0 0
\(359\) 13.6769i 0.721838i −0.932597 0.360919i \(-0.882463\pi\)
0.932597 0.360919i \(-0.117537\pi\)
\(360\) 0 0
\(361\) 25.1168i 1.32194i
\(362\) 0 0
\(363\) 8.49863 + 8.49863i 0.446063 + 0.446063i
\(364\) 0 0
\(365\) 0.130776 0.130776i 0.00684515 0.00684515i
\(366\) 0 0
\(367\) −18.4813 −0.964716 −0.482358 0.875974i \(-0.660220\pi\)
−0.482358 + 0.875974i \(0.660220\pi\)
\(368\) 0 0
\(369\) 3.74052 0.194724
\(370\) 0 0
\(371\) −15.5582 + 15.5582i −0.807739 + 0.807739i
\(372\) 0 0
\(373\) 2.68817 + 2.68817i 0.139188 + 0.139188i 0.773268 0.634080i \(-0.218621\pi\)
−0.634080 + 0.773268i \(0.718621\pi\)
\(374\) 0 0
\(375\) 1.01872i 0.0526065i
\(376\) 0 0
\(377\) 3.22818i 0.166260i
\(378\) 0 0
\(379\) 17.1581 17.1581i 0.881353 0.881353i −0.112319 0.993672i \(-0.535828\pi\)
0.993672 + 0.112319i \(0.0358279\pi\)
\(380\) 0 0
\(381\) 4.49088 + 4.49088i 0.230075 + 0.230075i
\(382\) 0 0
\(383\) 9.20129 0.470164 0.235082 0.971976i \(-0.424464\pi\)
0.235082 + 0.971976i \(0.424464\pi\)
\(384\) 0 0
\(385\) 1.01840i 0.0519025i
\(386\) 0 0
\(387\) 12.4954 + 12.4954i 0.635179 + 0.635179i
\(388\) 0 0
\(389\) 19.1433 + 19.1433i 0.970606 + 0.970606i 0.999580 0.0289741i \(-0.00922403\pi\)
−0.0289741 + 0.999580i \(0.509224\pi\)
\(390\) 0 0
\(391\) −5.19642 3.17727i −0.262794 0.160681i
\(392\) 0 0
\(393\) 5.73606i 0.289346i
\(394\) 0 0
\(395\) 0.409185 + 0.409185i 0.0205883 + 0.0205883i
\(396\) 0 0
\(397\) 4.43182 + 4.43182i 0.222426 + 0.222426i 0.809519 0.587093i \(-0.199728\pi\)
−0.587093 + 0.809519i \(0.699728\pi\)
\(398\) 0 0
\(399\) 21.4838i 1.07554i
\(400\) 0 0
\(401\) 9.14611i 0.456735i 0.973575 + 0.228367i \(0.0733388\pi\)
−0.973575 + 0.228367i \(0.926661\pi\)
\(402\) 0 0
\(403\) −3.06801 + 3.06801i −0.152828 + 0.152828i
\(404\) 0 0
\(405\) −0.126042 0.126042i −0.00626308 0.00626308i
\(406\) 0 0
\(407\) 10.0023 0.495797
\(408\) 0 0
\(409\) 38.6304i 1.91015i 0.296365 + 0.955075i \(0.404225\pi\)
−0.296365 + 0.955075i \(0.595775\pi\)
\(410\) 0 0
\(411\) −6.38624 + 6.38624i −0.315010 + 0.315010i
\(412\) 0 0
\(413\) −27.1837 + 27.1837i −1.33762 + 1.33762i
\(414\) 0 0
\(415\) 0.825248i 0.0405098i
\(416\) 0 0
\(417\) 11.4599 0.561194
\(418\) 0 0
\(419\) −12.1063 12.1063i −0.591429 0.591429i 0.346588 0.938017i \(-0.387340\pi\)
−0.938017 + 0.346588i \(0.887340\pi\)
\(420\) 0 0
\(421\) 13.6001 + 13.6001i 0.662827 + 0.662827i 0.956045 0.293219i \(-0.0947264\pi\)
−0.293219 + 0.956045i \(0.594726\pi\)
\(422\) 0 0
\(423\) 2.63009 0.127879
\(424\) 0 0
\(425\) 6.34117 0.307592
\(426\) 0 0
\(427\) −24.4224 24.4224i −1.18188 1.18188i
\(428\) 0 0
\(429\) −7.36442 + 7.36442i −0.355557 + 0.355557i
\(430\) 0 0
\(431\) −6.75253 −0.325258 −0.162629 0.986687i \(-0.551997\pi\)
−0.162629 + 0.986687i \(0.551997\pi\)
\(432\) 0 0
\(433\) 8.63103i 0.414781i −0.978258 0.207390i \(-0.933503\pi\)
0.978258 0.207390i \(-0.0664970\pi\)
\(434\) 0 0
\(435\) −0.124191 0.124191i −0.00595448 0.00595448i
\(436\) 0 0
\(437\) 30.9666 7.46700i 1.48133 0.357195i
\(438\) 0 0
\(439\) 23.6988 1.13108 0.565540 0.824721i \(-0.308668\pi\)
0.565540 + 0.824721i \(0.308668\pi\)
\(440\) 0 0
\(441\) 0.108227i 0.00515369i
\(442\) 0 0
\(443\) 16.5520 + 16.5520i 0.786407 + 0.786407i 0.980903 0.194496i \(-0.0623071\pi\)
−0.194496 + 0.980903i \(0.562307\pi\)
\(444\) 0 0
\(445\) −0.845142 0.845142i −0.0400636 0.0400636i
\(446\) 0 0
\(447\) 11.3161 0.535232
\(448\) 0 0
\(449\) −22.5417 −1.06381 −0.531904 0.846804i \(-0.678523\pi\)
−0.531904 + 0.846804i \(0.678523\pi\)
\(450\) 0 0
\(451\) −7.94911 7.94911i −0.374309 0.374309i
\(452\) 0 0
\(453\) 13.4224 13.4224i 0.630641 0.630641i
\(454\) 0 0
\(455\) −0.417597 −0.0195772
\(456\) 0 0
\(457\) −19.8676 −0.929365 −0.464683 0.885477i \(-0.653832\pi\)
−0.464683 + 0.885477i \(0.653832\pi\)
\(458\) 0 0
\(459\) 4.93789 4.93789i 0.230481 0.230481i
\(460\) 0 0
\(461\) −28.8571 28.8571i −1.34401 1.34401i −0.892027 0.451982i \(-0.850717\pi\)
−0.451982 0.892027i \(-0.649283\pi\)
\(462\) 0 0
\(463\) 23.6252i 1.09796i −0.835837 0.548978i \(-0.815017\pi\)
0.835837 0.548978i \(-0.184983\pi\)
\(464\) 0 0
\(465\) 0.236057i 0.0109469i
\(466\) 0 0
\(467\) −2.66814 2.66814i −0.123467 0.123467i 0.642674 0.766140i \(-0.277825\pi\)
−0.766140 + 0.642674i \(0.777825\pi\)
\(468\) 0 0
\(469\) 0.640991 0.640991i 0.0295982 0.0295982i
\(470\) 0 0
\(471\) 10.4170i 0.479988i
\(472\) 0 0
\(473\) 53.1089i 2.44195i
\(474\) 0 0
\(475\) −23.4502 + 23.4502i −1.07597 + 1.07597i
\(476\) 0 0
\(477\) 8.89583 8.89583i 0.407312 0.407312i
\(478\) 0 0
\(479\) 13.6769 0.624914 0.312457 0.949932i \(-0.398848\pi\)
0.312457 + 0.949932i \(0.398848\pi\)
\(480\) 0 0
\(481\) 4.10147i 0.187011i
\(482\) 0 0
\(483\) −15.0800 + 3.63625i −0.686163 + 0.165455i
\(484\) 0 0
\(485\) −0.473813 + 0.473813i −0.0215147 + 0.0215147i
\(486\) 0 0
\(487\) −15.9805 −0.724144 −0.362072 0.932150i \(-0.617931\pi\)
−0.362072 + 0.932150i \(0.617931\pi\)
\(488\) 0 0
\(489\) 18.5588i 0.839258i
\(490\) 0 0
\(491\) −23.4883 23.4883i −1.06001 1.06001i −0.998081 0.0619296i \(-0.980275\pi\)
−0.0619296 0.998081i \(-0.519725\pi\)
\(492\) 0 0
\(493\) 1.54717 1.54717i 0.0696811 0.0696811i
\(494\) 0 0
\(495\) 0.582300i 0.0261724i
\(496\) 0 0
\(497\) 39.9231i 1.79079i
\(498\) 0 0
\(499\) −25.4995 + 25.4995i −1.14152 + 1.14152i −0.153343 + 0.988173i \(0.549004\pi\)
−0.988173 + 0.153343i \(0.950996\pi\)
\(500\) 0 0
\(501\) −5.74511 + 5.74511i −0.256673 + 0.256673i
\(502\) 0 0
\(503\) 19.6250i 0.875035i 0.899210 + 0.437517i \(0.144142\pi\)
−0.899210 + 0.437517i \(0.855858\pi\)
\(504\) 0 0
\(505\) 0.432108 0.0192286
\(506\) 0 0
\(507\) 8.16150 + 8.16150i 0.362465 + 0.362465i
\(508\) 0 0
\(509\) 12.6219 + 12.6219i 0.559456 + 0.559456i 0.929153 0.369697i \(-0.120538\pi\)
−0.369697 + 0.929153i \(0.620538\pi\)
\(510\) 0 0
\(511\) 5.86805 0.259587
\(512\) 0 0
\(513\) 36.5215i 1.61246i
\(514\) 0 0
\(515\) 0.789696 0.789696i 0.0347982 0.0347982i
\(516\) 0 0
\(517\) −5.58929 5.58929i −0.245817 0.245817i
\(518\) 0 0
\(519\) −15.6695 −0.687814
\(520\) 0 0
\(521\) −12.0617 −0.528434 −0.264217 0.964463i \(-0.585114\pi\)
−0.264217 + 0.964463i \(0.585114\pi\)
\(522\) 0 0
\(523\) −1.82928 + 1.82928i −0.0799888 + 0.0799888i −0.745969 0.665980i \(-0.768013\pi\)
0.665980 + 0.745969i \(0.268013\pi\)
\(524\) 0 0
\(525\) 11.4197 11.4197i 0.498396 0.498396i
\(526\) 0 0
\(527\) −2.94081 −0.128104
\(528\) 0 0
\(529\) −10.4825 20.4723i −0.455761 0.890102i
\(530\) 0 0
\(531\) 15.5431 15.5431i 0.674513 0.674513i
\(532\) 0 0
\(533\) 3.25955 3.25955i 0.141187 0.141187i
\(534\) 0 0
\(535\) −0.833120 −0.0360189
\(536\) 0 0
\(537\) 0.156488i 0.00675297i
\(538\) 0 0
\(539\) −0.229998 + 0.229998i −0.00990670 + 0.00990670i
\(540\) 0 0
\(541\) −1.64738 1.64738i −0.0708265 0.0708265i 0.670806 0.741633i \(-0.265948\pi\)
−0.741633 + 0.670806i \(0.765948\pi\)
\(542\) 0 0
\(543\) 19.4675 0.835431
\(544\) 0 0
\(545\) −0.370579 −0.0158738
\(546\) 0 0
\(547\) 18.0346 18.0346i 0.771105 0.771105i −0.207195 0.978300i \(-0.566433\pi\)
0.978300 + 0.207195i \(0.0664333\pi\)
\(548\) 0 0
\(549\) 13.9642 + 13.9642i 0.595979 + 0.595979i
\(550\) 0 0
\(551\) 11.4431i 0.487494i
\(552\) 0 0
\(553\) 18.3605i 0.780767i
\(554\) 0 0
\(555\) 0.157787 + 0.157787i 0.00669768 + 0.00669768i
\(556\) 0 0
\(557\) 14.7445 14.7445i 0.624743 0.624743i −0.321997 0.946741i \(-0.604354\pi\)
0.946741 + 0.321997i \(0.104354\pi\)
\(558\) 0 0
\(559\) 21.7774 0.921086
\(560\) 0 0
\(561\) −7.05910 −0.298035
\(562\) 0 0
\(563\) −7.74891 7.74891i −0.326578 0.326578i 0.524706 0.851284i \(-0.324175\pi\)
−0.851284 + 0.524706i \(0.824175\pi\)
\(564\) 0 0
\(565\) −0.513779 + 0.513779i −0.0216148 + 0.0216148i
\(566\) 0 0
\(567\) 5.65561i 0.237513i
\(568\) 0 0
\(569\) −3.63750 −0.152492 −0.0762460 0.997089i \(-0.524293\pi\)
−0.0762460 + 0.997089i \(0.524293\pi\)
\(570\) 0 0
\(571\) −12.0122 + 12.0122i −0.502695 + 0.502695i −0.912275 0.409579i \(-0.865676\pi\)
0.409579 + 0.912275i \(0.365676\pi\)
\(572\) 0 0
\(573\) 13.5503 13.5503i 0.566072 0.566072i
\(574\) 0 0
\(575\) 20.4293 + 12.4912i 0.851961 + 0.520918i
\(576\) 0 0
\(577\) −20.4216 −0.850164 −0.425082 0.905155i \(-0.639755\pi\)
−0.425082 + 0.905155i \(0.639755\pi\)
\(578\) 0 0
\(579\) 8.55781 8.55781i 0.355650 0.355650i
\(580\) 0 0
\(581\) 18.5148 18.5148i 0.768123 0.768123i
\(582\) 0 0
\(583\) −37.8097 −1.56592
\(584\) 0 0
\(585\) 0.238773 0.00987206
\(586\) 0 0
\(587\) 17.0110 + 17.0110i 0.702118 + 0.702118i 0.964865 0.262747i \(-0.0846284\pi\)
−0.262747 + 0.964865i \(0.584628\pi\)
\(588\) 0 0
\(589\) 10.8754 10.8754i 0.448112 0.448112i
\(590\) 0 0
\(591\) 20.6833i 0.850799i
\(592\) 0 0
\(593\) −3.97528 −0.163245 −0.0816226 0.996663i \(-0.526010\pi\)
−0.0816226 + 0.996663i \(0.526010\pi\)
\(594\) 0 0
\(595\) −0.200142 0.200142i −0.00820502 0.00820502i
\(596\) 0 0
\(597\) 10.4290 + 10.4290i 0.426831 + 0.426831i
\(598\) 0 0
\(599\) 22.1613 0.905487 0.452744 0.891641i \(-0.350445\pi\)
0.452744 + 0.891641i \(0.350445\pi\)
\(600\) 0 0
\(601\) 16.7533i 0.683381i 0.939813 + 0.341690i \(0.110999\pi\)
−0.939813 + 0.341690i \(0.889001\pi\)
\(602\) 0 0
\(603\) −0.366505 + 0.366505i −0.0149253 + 0.0149253i
\(604\) 0 0
\(605\) −0.585575 + 0.585575i −0.0238070 + 0.0238070i
\(606\) 0 0
\(607\) 36.1916i 1.46897i 0.678624 + 0.734486i \(0.262577\pi\)
−0.678624 + 0.734486i \(0.737423\pi\)
\(608\) 0 0
\(609\) 5.57253i 0.225810i
\(610\) 0 0
\(611\) 2.29190 2.29190i 0.0927203 0.0927203i
\(612\) 0 0
\(613\) 30.4776 + 30.4776i 1.23098 + 1.23098i 0.963588 + 0.267392i \(0.0861619\pi\)
0.267392 + 0.963588i \(0.413838\pi\)
\(614\) 0 0
\(615\) 0.250795i 0.0101130i
\(616\) 0 0
\(617\) 16.7959 0.676176 0.338088 0.941114i \(-0.390220\pi\)
0.338088 + 0.941114i \(0.390220\pi\)
\(618\) 0 0
\(619\) 10.5813 10.5813i 0.425300 0.425300i −0.461724 0.887024i \(-0.652769\pi\)
0.887024 + 0.461724i \(0.152769\pi\)
\(620\) 0 0
\(621\) 25.6353 6.18144i 1.02871 0.248053i
\(622\) 0 0
\(623\) 37.9222i 1.51932i
\(624\) 0 0
\(625\) −24.8947 −0.995787
\(626\) 0 0
\(627\) 26.1052 26.1052i 1.04254 1.04254i
\(628\) 0 0
\(629\) −1.96571 + 1.96571i −0.0783782 + 0.0783782i
\(630\) 0 0
\(631\) 44.3752i 1.76655i −0.468857 0.883274i \(-0.655334\pi\)
0.468857 0.883274i \(-0.344666\pi\)
\(632\) 0 0
\(633\) 15.2206i 0.604965i
\(634\) 0 0
\(635\) −0.309432 + 0.309432i −0.0122794 + 0.0122794i
\(636\) 0 0
\(637\) −0.0943110 0.0943110i −0.00373674 0.00373674i
\(638\) 0 0
\(639\) 22.8272i 0.903029i
\(640\) 0 0
\(641\) 22.6166i 0.893303i −0.894708 0.446652i \(-0.852616\pi\)
0.894708 0.446652i \(-0.147384\pi\)
\(642\) 0 0
\(643\) 25.9171 + 25.9171i 1.02207 + 1.02207i 0.999751 + 0.0223210i \(0.00710559\pi\)
0.0223210 + 0.999751i \(0.492894\pi\)
\(644\) 0 0
\(645\) 0.837795 0.837795i 0.0329881 0.0329881i
\(646\) 0 0
\(647\) 16.0802 0.632179 0.316090 0.948729i \(-0.397630\pi\)
0.316090 + 0.948729i \(0.397630\pi\)
\(648\) 0 0
\(649\) −66.0623 −2.59317
\(650\) 0 0
\(651\) −5.29604 + 5.29604i −0.207568 + 0.207568i
\(652\) 0 0
\(653\) 25.6456 + 25.6456i 1.00359 + 1.00359i 0.999994 + 0.00359817i \(0.00114534\pi\)
0.00359817 + 0.999994i \(0.498855\pi\)
\(654\) 0 0
\(655\) 0.395227 0.0154428
\(656\) 0 0
\(657\) −3.35523 −0.130900
\(658\) 0 0
\(659\) −5.67720 5.67720i −0.221152 0.221152i 0.587831 0.808984i \(-0.299982\pi\)
−0.808984 + 0.587831i \(0.799982\pi\)
\(660\) 0 0
\(661\) −25.6539 25.6539i −0.997820 0.997820i 0.00217783 0.999998i \(-0.499307\pi\)
−0.999998 + 0.00217783i \(0.999307\pi\)
\(662\) 0 0
\(663\) 2.89460i 0.112417i
\(664\) 0 0
\(665\) 1.48028 0.0574030
\(666\) 0 0
\(667\) 8.03220 1.93681i 0.311008 0.0749936i
\(668\) 0 0
\(669\) −7.16979 7.16979i −0.277200 0.277200i
\(670\) 0 0
\(671\) 59.3517i 2.29125i
\(672\) 0 0
\(673\) −14.3871 −0.554583 −0.277291 0.960786i \(-0.589437\pi\)
−0.277291 + 0.960786i \(0.589437\pi\)
\(674\) 0 0
\(675\) −19.4129 + 19.4129i −0.747203 + 0.747203i
\(676\) 0 0
\(677\) 9.48874 + 9.48874i 0.364682 + 0.364682i 0.865533 0.500851i \(-0.166980\pi\)
−0.500851 + 0.865533i \(0.666980\pi\)
\(678\) 0 0
\(679\) −21.2604 −0.815898
\(680\) 0 0
\(681\) 8.12869 0.311492
\(682\) 0 0
\(683\) 10.0685 + 10.0685i 0.385260 + 0.385260i 0.872993 0.487733i \(-0.162176\pi\)
−0.487733 + 0.872993i \(0.662176\pi\)
\(684\) 0 0
\(685\) −0.440026 0.440026i −0.0168125 0.0168125i
\(686\) 0 0
\(687\) 27.0682 1.03272
\(688\) 0 0
\(689\) 15.5039i 0.590652i
\(690\) 0 0
\(691\) 25.0974 25.0974i 0.954750 0.954750i −0.0442700 0.999020i \(-0.514096\pi\)
0.999020 + 0.0442700i \(0.0140962\pi\)
\(692\) 0 0
\(693\) 13.0641 13.0641i 0.496266 0.496266i
\(694\) 0 0
\(695\) 0.789613i 0.0299517i
\(696\) 0 0
\(697\) 3.12441 0.118346
\(698\) 0 0
\(699\) −4.35324 4.35324i −0.164655 0.164655i
\(700\) 0 0
\(701\) −1.25488 + 1.25488i −0.0473963 + 0.0473963i −0.730408 0.683011i \(-0.760670\pi\)
0.683011 + 0.730408i \(0.260670\pi\)
\(702\) 0 0
\(703\) 14.5388i 0.548340i
\(704\) 0 0
\(705\) 0.176342i 0.00664144i
\(706\) 0 0
\(707\) 9.69453 + 9.69453i 0.364600 + 0.364600i
\(708\) 0 0
\(709\) −17.0708 17.0708i −0.641106 0.641106i 0.309721 0.950827i \(-0.399764\pi\)
−0.950827 + 0.309721i \(0.899764\pi\)
\(710\) 0 0
\(711\) 10.4981i 0.393711i
\(712\) 0 0
\(713\) −9.47438 5.79296i −0.354818 0.216948i
\(714\) 0 0
\(715\) −0.507425 0.507425i −0.0189766 0.0189766i
\(716\) 0 0
\(717\) −21.8854 21.8854i −0.817325 0.817325i
\(718\) 0 0
\(719\) 10.8401i 0.404268i 0.979358 + 0.202134i \(0.0647876\pi\)
−0.979358 + 0.202134i \(0.935212\pi\)
\(720\) 0 0
\(721\) 35.4343 1.31964
\(722\) 0 0
\(723\) −6.59940 6.59940i −0.245434 0.245434i
\(724\) 0 0
\(725\) −6.08258 + 6.08258i −0.225901 + 0.225901i
\(726\) 0 0
\(727\) 10.3403i 0.383501i −0.981444 0.191751i \(-0.938583\pi\)
0.981444 0.191751i \(-0.0614165\pi\)
\(728\) 0 0
\(729\) 23.2984i 0.862903i
\(730\) 0 0
\(731\) 10.4373 + 10.4373i 0.386037 + 0.386037i
\(732\) 0 0
\(733\) −18.2971 + 18.2971i −0.675819 + 0.675819i −0.959051 0.283232i \(-0.908593\pi\)
0.283232 + 0.959051i \(0.408593\pi\)
\(734\) 0 0
\(735\) −0.00725644 −0.000267658
\(736\) 0 0
\(737\) 1.55775 0.0573803
\(738\) 0 0
\(739\) −29.3914 + 29.3914i −1.08118 + 1.08118i −0.0847802 + 0.996400i \(0.527019\pi\)
−0.996400 + 0.0847802i \(0.972981\pi\)
\(740\) 0 0
\(741\) 10.7045 + 10.7045i 0.393238 + 0.393238i
\(742\) 0 0
\(743\) 15.4325i 0.566163i 0.959096 + 0.283081i \(0.0913566\pi\)
−0.959096 + 0.283081i \(0.908643\pi\)
\(744\) 0 0
\(745\) 0.779703i 0.0285661i
\(746\) 0 0
\(747\) −10.5864 + 10.5864i −0.387335 + 0.387335i
\(748\) 0 0
\(749\) −18.6914 18.6914i −0.682969 0.682969i
\(750\) 0 0
\(751\) 14.9635 0.546026 0.273013 0.962010i \(-0.411980\pi\)
0.273013 + 0.962010i \(0.411980\pi\)
\(752\) 0 0
\(753\) 30.9793i 1.12895i
\(754\) 0 0
\(755\) 0.924836 + 0.924836i 0.0336582 + 0.0336582i
\(756\) 0 0
\(757\) −11.8442 11.8442i −0.430485 0.430485i 0.458308 0.888793i \(-0.348456\pi\)
−0.888793 + 0.458308i \(0.848456\pi\)
\(758\) 0 0
\(759\) −22.7422 13.9054i −0.825491 0.504733i
\(760\) 0 0
\(761\) 0.408106i 0.0147938i 0.999973 + 0.00739692i \(0.00235453\pi\)
−0.999973 + 0.00739692i \(0.997645\pi\)
\(762\) 0 0
\(763\) −8.31408 8.31408i −0.300990 0.300990i
\(764\) 0 0
\(765\) 0.114437 + 0.114437i 0.00413748 + 0.00413748i
\(766\) 0 0
\(767\) 27.0890i 0.978126i
\(768\) 0 0
\(769\) 44.9499i 1.62093i −0.585784 0.810467i \(-0.699213\pi\)
0.585784 0.810467i \(-0.300787\pi\)
\(770\) 0 0
\(771\) 9.91873 9.91873i 0.357214 0.357214i
\(772\) 0 0
\(773\) 28.2917 + 28.2917i 1.01758 + 1.01758i 0.999843 + 0.0177385i \(0.00564664\pi\)
0.0177385 + 0.999843i \(0.494353\pi\)
\(774\) 0 0
\(775\) 11.5616 0.415303
\(776\) 0 0
\(777\) 7.08003i 0.253995i
\(778\) 0 0
\(779\) −11.5543 + 11.5543i −0.413977 + 0.413977i
\(780\) 0 0
\(781\) 48.5108 48.5108i 1.73585 1.73585i
\(782\) 0 0
\(783\) 9.47304i 0.338539i
\(784\) 0 0
\(785\) 0.717752 0.0256177
\(786\) 0 0
\(787\) 23.2407 + 23.2407i 0.828442 + 0.828442i 0.987301 0.158859i \(-0.0507815\pi\)
−0.158859 + 0.987301i \(0.550782\pi\)
\(788\) 0 0
\(789\) −22.2250 22.2250i −0.791232 0.791232i
\(790\) 0 0
\(791\) −23.0537 −0.819694
\(792\) 0 0
\(793\) 24.3373 0.864242
\(794\) 0 0
\(795\) −0.596448 0.596448i −0.0211538 0.0211538i
\(796\) 0 0
\(797\) −16.5321 + 16.5321i −0.585598 + 0.585598i −0.936436 0.350838i \(-0.885897\pi\)
0.350838 + 0.936436i \(0.385897\pi\)
\(798\) 0 0
\(799\) 2.19688 0.0777200
\(800\) 0 0
\(801\) 21.6831i 0.766136i
\(802\) 0 0
\(803\) 7.13030 + 7.13030i 0.251623 + 0.251623i
\(804\) 0 0
\(805\) −0.250546 1.03905i −0.00883057 0.0366215i
\(806\) 0 0
\(807\) −20.7910 −0.731879
\(808\) 0 0
\(809\) 3.22326i 0.113324i 0.998393 + 0.0566618i \(0.0180457\pi\)
−0.998393 + 0.0566618i \(0.981954\pi\)
\(810\) 0 0
\(811\) 12.6982 + 12.6982i 0.445893 + 0.445893i 0.893987 0.448093i \(-0.147897\pi\)
−0.448093 + 0.893987i \(0.647897\pi\)
\(812\) 0 0
\(813\) −16.9350 16.9350i −0.593937 0.593937i
\(814\) 0 0
\(815\) −1.27874 −0.0447924
\(816\) 0 0
\(817\) −77.1959 −2.70074
\(818\) 0 0
\(819\) 5.35698 + 5.35698i 0.187188 + 0.187188i
\(820\) 0 0
\(821\) −24.5612 + 24.5612i −0.857192 + 0.857192i −0.991006 0.133814i \(-0.957277\pi\)
0.133814 + 0.991006i \(0.457277\pi\)
\(822\) 0 0
\(823\) 45.6245 1.59037 0.795185 0.606367i \(-0.207374\pi\)
0.795185 + 0.606367i \(0.207374\pi\)
\(824\) 0 0
\(825\) 27.7523 0.966210
\(826\) 0 0
\(827\) 0.390922 0.390922i 0.0135937 0.0135937i −0.700277 0.713871i \(-0.746940\pi\)
0.713871 + 0.700277i \(0.246940\pi\)
\(828\) 0 0
\(829\) −12.4079 12.4079i −0.430943 0.430943i 0.458006 0.888949i \(-0.348564\pi\)
−0.888949 + 0.458006i \(0.848564\pi\)
\(830\) 0 0
\(831\) 14.7956i 0.513253i
\(832\) 0 0
\(833\) 0.0904010i 0.00313221i
\(834\) 0 0
\(835\) −0.395851 0.395851i −0.0136990 0.0136990i
\(836\) 0 0
\(837\) 9.00301 9.00301i 0.311190 0.311190i
\(838\) 0 0
\(839\) 2.88285i 0.0995269i 0.998761 + 0.0497635i \(0.0158467\pi\)
−0.998761 + 0.0497635i \(0.984153\pi\)
\(840\) 0 0
\(841\) 26.0318i 0.897650i
\(842\) 0 0
\(843\) −24.6449 + 24.6449i −0.848816 + 0.848816i
\(844\) 0 0
\(845\) −0.562346 + 0.562346i −0.0193453 + 0.0193453i
\(846\) 0 0
\(847\) −26.2752 −0.902827
\(848\) 0 0
\(849\) 6.88409i 0.236261i
\(850\) 0 0
\(851\) −10.2051 + 2.46076i −0.349826 + 0.0843538i
\(852\) 0 0
\(853\) −4.58595 + 4.58595i −0.157020 + 0.157020i −0.781245 0.624225i \(-0.785415\pi\)
0.624225 + 0.781245i \(0.285415\pi\)
\(854\) 0 0
\(855\) −0.846396 −0.0289461
\(856\) 0 0
\(857\) 18.1650i 0.620506i −0.950654 0.310253i \(-0.899586\pi\)
0.950654 0.310253i \(-0.100414\pi\)
\(858\) 0 0
\(859\) −24.8997 24.8997i −0.849566 0.849566i 0.140513 0.990079i \(-0.455125\pi\)
−0.990079 + 0.140513i \(0.955125\pi\)
\(860\) 0 0
\(861\) 5.62669 5.62669i 0.191757 0.191757i
\(862\) 0 0
\(863\) 17.1216i 0.582825i −0.956598 0.291412i \(-0.905875\pi\)
0.956598 0.291412i \(-0.0941252\pi\)
\(864\) 0 0
\(865\) 1.07966i 0.0367096i
\(866\) 0 0
\(867\) −13.2344 + 13.2344i −0.449464 + 0.449464i
\(868\) 0 0
\(869\) −22.3099 + 22.3099i −0.756813 + 0.756813i
\(870\) 0 0
\(871\) 0.638756i 0.0216434i
\(872\) 0 0
\(873\) 12.1562 0.411426
\(874\) 0 0
\(875\) 1.57479 + 1.57479i 0.0532376 + 0.0532376i
\(876\) 0 0
\(877\) −15.2309 15.2309i −0.514312 0.514312i 0.401532 0.915845i \(-0.368478\pi\)
−0.915845 + 0.401532i \(0.868478\pi\)
\(878\) 0 0
\(879\) −17.1107 −0.577131
\(880\) 0 0
\(881\) 51.1387i 1.72291i −0.507837 0.861453i \(-0.669555\pi\)
0.507837 0.861453i \(-0.330445\pi\)
\(882\) 0 0
\(883\) 2.24931 2.24931i 0.0756953 0.0756953i −0.668245 0.743941i \(-0.732954\pi\)
0.743941 + 0.668245i \(0.232954\pi\)
\(884\) 0 0
\(885\) −1.04213 1.04213i −0.0350310 0.0350310i
\(886\) 0 0
\(887\) −41.9597 −1.40887 −0.704435 0.709769i \(-0.748799\pi\)
−0.704435 + 0.709769i \(0.748799\pi\)
\(888\) 0 0
\(889\) −13.8845 −0.465670
\(890\) 0 0
\(891\) 6.87217 6.87217i 0.230226 0.230226i
\(892\) 0 0
\(893\) −8.12425 + 8.12425i −0.271868 + 0.271868i
\(894\) 0 0
\(895\) 0.0107824 0.000360416
\(896\) 0 0
\(897\) 5.70192 9.32549i 0.190382 0.311369i
\(898\) 0 0
\(899\) 2.82088 2.82088i 0.0940817 0.0940817i
\(900\) 0 0
\(901\) 7.43057 7.43057i 0.247548 0.247548i
\(902\) 0 0
\(903\) 37.5925 1.25100
\(904\) 0 0
\(905\) 1.34136i 0.0445882i
\(906\) 0 0
\(907\) −6.73858 + 6.73858i −0.223751 + 0.223751i −0.810076 0.586325i \(-0.800574\pi\)
0.586325 + 0.810076i \(0.300574\pi\)
\(908\) 0 0
\(909\) −5.54313 5.54313i −0.183854 0.183854i
\(910\) 0 0
\(911\) 58.1801 1.92759 0.963796 0.266642i \(-0.0859142\pi\)
0.963796 + 0.266642i \(0.0859142\pi\)
\(912\) 0 0
\(913\) 44.9949 1.48911
\(914\) 0 0
\(915\) 0.936275 0.936275i 0.0309523 0.0309523i
\(916\) 0 0
\(917\) 8.86708 + 8.86708i 0.292817 + 0.292817i
\(918\) 0 0
\(919\) 45.9219i 1.51482i −0.652938 0.757411i \(-0.726464\pi\)
0.652938 0.757411i \(-0.273536\pi\)
\(920\) 0 0
\(921\) 18.4845i 0.609083i
\(922\) 0 0
\(923\) 19.8919 + 19.8919i 0.654751 + 0.654751i
\(924\) 0 0
\(925\) 7.72805 7.72805i 0.254097 0.254097i
\(926\) 0 0
\(927\) −20.2606 −0.665446
\(928\) 0 0
\(929\) 18.0479 0.592132 0.296066 0.955167i \(-0.404325\pi\)
0.296066 + 0.955167i \(0.404325\pi\)
\(930\) 0 0
\(931\) 0.334311 + 0.334311i 0.0109566 + 0.0109566i
\(932\) 0 0
\(933\) 12.1482 12.1482i 0.397714 0.397714i
\(934\) 0 0
\(935\) 0.486388i 0.0159066i
\(936\) 0 0
\(937\) −3.77047 −0.123176 −0.0615879 0.998102i \(-0.519616\pi\)
−0.0615879 + 0.998102i \(0.519616\pi\)
\(938\) 0 0
\(939\) 20.9612 20.9612i 0.684044 0.684044i
\(940\) 0 0
\(941\) −19.3322 + 19.3322i −0.630212 + 0.630212i −0.948121 0.317909i \(-0.897019\pi\)
0.317909 + 0.948121i \(0.397019\pi\)
\(942\) 0 0
\(943\) 10.0659 + 6.15462i 0.327790 + 0.200422i
\(944\) 0 0
\(945\) 1.22543 0.0398633
\(946\) 0 0
\(947\) −0.659158 + 0.659158i −0.0214197 + 0.0214197i −0.717736 0.696316i \(-0.754821\pi\)
0.696316 + 0.717736i \(0.254821\pi\)
\(948\) 0 0
\(949\) −2.92379 + 2.92379i −0.0949104 + 0.0949104i
\(950\) 0 0
\(951\) −18.0701 −0.585964
\(952\) 0 0
\(953\) 26.8329 0.869203 0.434601 0.900623i \(-0.356889\pi\)
0.434601 + 0.900623i \(0.356889\pi\)
\(954\) 0 0
\(955\) 0.933645 + 0.933645i 0.0302121 + 0.0302121i
\(956\) 0 0
\(957\) 6.77123 6.77123i 0.218883 0.218883i
\(958\) 0 0
\(959\) 19.7443i 0.637578i
\(960\) 0 0
\(961\) 25.6382 0.827037
\(962\) 0 0
\(963\) 10.6874 + 10.6874i 0.344395 + 0.344395i
\(964\) 0 0
\(965\) 0.589652 + 0.589652i 0.0189816 + 0.0189816i
\(966\) 0 0
\(967\) 15.2802 0.491379 0.245690 0.969349i \(-0.420986\pi\)
0.245690 + 0.969349i \(0.420986\pi\)
\(968\) 0 0
\(969\) 10.2607i 0.329620i
\(970\) 0 0
\(971\) −5.62452 + 5.62452i −0.180499 + 0.180499i −0.791573 0.611074i \(-0.790738\pi\)
0.611074 + 0.791573i \(0.290738\pi\)
\(972\) 0 0
\(973\) −17.7153 + 17.7153i −0.567926 + 0.567926i
\(974\) 0 0
\(975\) 11.3799i 0.364448i
\(976\) 0 0
\(977\) 15.3837i 0.492169i 0.969248 + 0.246085i \(0.0791441\pi\)
−0.969248 + 0.246085i \(0.920856\pi\)
\(978\) 0 0
\(979\) 46.0796 46.0796i 1.47271 1.47271i
\(980\) 0 0
\(981\) 4.75382 + 4.75382i 0.151778 + 0.151778i
\(982\) 0 0
\(983\) 31.2924i 0.998073i 0.866581 + 0.499037i \(0.166313\pi\)
−0.866581 + 0.499037i \(0.833687\pi\)
\(984\) 0 0
\(985\) −1.42513 −0.0454084
\(986\) 0 0
\(987\) 3.95631 3.95631i 0.125931 0.125931i
\(988\) 0 0
\(989\) 13.0658 + 54.1856i 0.415468 + 1.72300i
\(990\) 0 0
\(991\) 27.6157i 0.877241i −0.898672 0.438620i \(-0.855467\pi\)
0.898672 0.438620i \(-0.144533\pi\)
\(992\) 0 0
\(993\) −15.1991 −0.482329
\(994\) 0 0
\(995\) −0.718583 + 0.718583i −0.0227806 + 0.0227806i
\(996\) 0 0
\(997\) 26.4275 26.4275i 0.836969 0.836969i −0.151490 0.988459i \(-0.548407\pi\)
0.988459 + 0.151490i \(0.0484072\pi\)
\(998\) 0 0
\(999\) 12.0357i 0.380793i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.i.b.367.12 80
4.3 odd 2 368.2.i.b.275.5 yes 80
16.5 even 4 368.2.i.b.91.6 yes 80
16.11 odd 4 inner 1472.2.i.b.1103.11 80
23.22 odd 2 inner 1472.2.i.b.367.11 80
92.91 even 2 368.2.i.b.275.6 yes 80
368.91 even 4 inner 1472.2.i.b.1103.12 80
368.229 odd 4 368.2.i.b.91.5 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.2.i.b.91.5 80 368.229 odd 4
368.2.i.b.91.6 yes 80 16.5 even 4
368.2.i.b.275.5 yes 80 4.3 odd 2
368.2.i.b.275.6 yes 80 92.91 even 2
1472.2.i.b.367.11 80 23.22 odd 2 inner
1472.2.i.b.367.12 80 1.1 even 1 trivial
1472.2.i.b.1103.11 80 16.11 odd 4 inner
1472.2.i.b.1103.12 80 368.91 even 4 inner