Properties

Label 1472.2.j.c.369.3
Level $1472$
Weight $2$
Character 1472.369
Analytic conductor $11.754$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(369,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.369");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 368)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 369.3
Root \(-1.18970 + 0.764606i\) of defining polynomial
Character \(\chi\) \(=\) 1472.369
Dual form 1472.2.j.c.1105.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.631541 + 0.631541i) q^{3} +(-2.74053 - 2.74053i) q^{5} -1.52921i q^{7} +2.20231i q^{9} +(2.02278 + 2.02278i) q^{11} +(2.71814 - 2.71814i) q^{13} +3.46152 q^{15} +3.66304 q^{17} +(-1.20231 + 1.20231i) q^{19} +(0.965760 + 0.965760i) q^{21} -1.00000i q^{23} +10.0210i q^{25} +(-3.28547 - 3.28547i) q^{27} +(2.52960 - 2.52960i) q^{29} -2.74954 q^{31} -2.55494 q^{33} +(-4.19086 + 4.19086i) q^{35} +(-4.37038 - 4.37038i) q^{37} +3.43323i q^{39} -7.70478i q^{41} +(-8.96110 - 8.96110i) q^{43} +(6.03551 - 6.03551i) q^{45} -4.24239 q^{47} +4.66151 q^{49} +(-2.31336 + 2.31336i) q^{51} +(-7.11480 - 7.11480i) q^{53} -11.0870i q^{55} -1.51862i q^{57} +(-5.81873 - 5.81873i) q^{59} +(-6.37705 + 6.37705i) q^{61} +3.36780 q^{63} -14.8983 q^{65} +(0.0827674 - 0.0827674i) q^{67} +(0.631541 + 0.631541i) q^{69} +6.62784i q^{71} +7.91866i q^{73} +(-6.32869 - 6.32869i) q^{75} +(3.09326 - 3.09326i) q^{77} -6.42623 q^{79} -2.45712 q^{81} +(11.6430 - 11.6430i) q^{83} +(-10.0387 - 10.0387i) q^{85} +3.19510i q^{87} +2.76733i q^{89} +(-4.15662 - 4.15662i) q^{91} +(1.73645 - 1.73645i) q^{93} +6.58995 q^{95} -6.61383 q^{97} +(-4.45480 + 4.45480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 4 q^{5} + 4 q^{11} + 18 q^{13} - 8 q^{17} + 8 q^{19} + 8 q^{21} - 14 q^{27} + 2 q^{29} - 20 q^{31} - 36 q^{33} - 4 q^{35} - 4 q^{37} - 20 q^{43} - 20 q^{45} + 16 q^{47} + 52 q^{49} + 4 q^{51}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.631541 + 0.631541i −0.364620 + 0.364620i −0.865511 0.500890i \(-0.833006\pi\)
0.500890 + 0.865511i \(0.333006\pi\)
\(4\) 0 0
\(5\) −2.74053 2.74053i −1.22560 1.22560i −0.965611 0.259993i \(-0.916280\pi\)
−0.259993 0.965611i \(-0.583720\pi\)
\(6\) 0 0
\(7\) 1.52921i 0.577988i −0.957331 0.288994i \(-0.906679\pi\)
0.957331 0.288994i \(-0.0933207\pi\)
\(8\) 0 0
\(9\) 2.20231i 0.734104i
\(10\) 0 0
\(11\) 2.02278 + 2.02278i 0.609892 + 0.609892i 0.942918 0.333026i \(-0.108070\pi\)
−0.333026 + 0.942918i \(0.608070\pi\)
\(12\) 0 0
\(13\) 2.71814 2.71814i 0.753877 0.753877i −0.221324 0.975200i \(-0.571038\pi\)
0.975200 + 0.221324i \(0.0710377\pi\)
\(14\) 0 0
\(15\) 3.46152 0.893760
\(16\) 0 0
\(17\) 3.66304 0.888419 0.444209 0.895923i \(-0.353485\pi\)
0.444209 + 0.895923i \(0.353485\pi\)
\(18\) 0 0
\(19\) −1.20231 + 1.20231i −0.275829 + 0.275829i −0.831442 0.555612i \(-0.812484\pi\)
0.555612 + 0.831442i \(0.312484\pi\)
\(20\) 0 0
\(21\) 0.965760 + 0.965760i 0.210746 + 0.210746i
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 10.0210i 2.00421i
\(26\) 0 0
\(27\) −3.28547 3.28547i −0.632289 0.632289i
\(28\) 0 0
\(29\) 2.52960 2.52960i 0.469736 0.469736i −0.432093 0.901829i \(-0.642225\pi\)
0.901829 + 0.432093i \(0.142225\pi\)
\(30\) 0 0
\(31\) −2.74954 −0.493832 −0.246916 0.969037i \(-0.579417\pi\)
−0.246916 + 0.969037i \(0.579417\pi\)
\(32\) 0 0
\(33\) −2.55494 −0.444758
\(34\) 0 0
\(35\) −4.19086 + 4.19086i −0.708384 + 0.708384i
\(36\) 0 0
\(37\) −4.37038 4.37038i −0.718487 0.718487i 0.249808 0.968295i \(-0.419632\pi\)
−0.968295 + 0.249808i \(0.919632\pi\)
\(38\) 0 0
\(39\) 3.43323i 0.549757i
\(40\) 0 0
\(41\) 7.70478i 1.20328i −0.798766 0.601642i \(-0.794513\pi\)
0.798766 0.601642i \(-0.205487\pi\)
\(42\) 0 0
\(43\) −8.96110 8.96110i −1.36655 1.36655i −0.865299 0.501255i \(-0.832872\pi\)
−0.501255 0.865299i \(-0.667128\pi\)
\(44\) 0 0
\(45\) 6.03551 6.03551i 0.899721 0.899721i
\(46\) 0 0
\(47\) −4.24239 −0.618816 −0.309408 0.950929i \(-0.600131\pi\)
−0.309408 + 0.950929i \(0.600131\pi\)
\(48\) 0 0
\(49\) 4.66151 0.665930
\(50\) 0 0
\(51\) −2.31336 + 2.31336i −0.323935 + 0.323935i
\(52\) 0 0
\(53\) −7.11480 7.11480i −0.977292 0.977292i 0.0224555 0.999748i \(-0.492852\pi\)
−0.999748 + 0.0224555i \(0.992852\pi\)
\(54\) 0 0
\(55\) 11.0870i 1.49497i
\(56\) 0 0
\(57\) 1.51862i 0.201146i
\(58\) 0 0
\(59\) −5.81873 5.81873i −0.757534 0.757534i 0.218339 0.975873i \(-0.429936\pi\)
−0.975873 + 0.218339i \(0.929936\pi\)
\(60\) 0 0
\(61\) −6.37705 + 6.37705i −0.816497 + 0.816497i −0.985599 0.169101i \(-0.945913\pi\)
0.169101 + 0.985599i \(0.445913\pi\)
\(62\) 0 0
\(63\) 3.36780 0.424303
\(64\) 0 0
\(65\) −14.8983 −1.84791
\(66\) 0 0
\(67\) 0.0827674 0.0827674i 0.0101116 0.0101116i −0.702033 0.712145i \(-0.747724\pi\)
0.712145 + 0.702033i \(0.247724\pi\)
\(68\) 0 0
\(69\) 0.631541 + 0.631541i 0.0760286 + 0.0760286i
\(70\) 0 0
\(71\) 6.62784i 0.786579i 0.919415 + 0.393290i \(0.128663\pi\)
−0.919415 + 0.393290i \(0.871337\pi\)
\(72\) 0 0
\(73\) 7.91866i 0.926809i 0.886147 + 0.463405i \(0.153372\pi\)
−0.886147 + 0.463405i \(0.846628\pi\)
\(74\) 0 0
\(75\) −6.32869 6.32869i −0.730775 0.730775i
\(76\) 0 0
\(77\) 3.09326 3.09326i 0.352510 0.352510i
\(78\) 0 0
\(79\) −6.42623 −0.723007 −0.361504 0.932371i \(-0.617736\pi\)
−0.361504 + 0.932371i \(0.617736\pi\)
\(80\) 0 0
\(81\) −2.45712 −0.273013
\(82\) 0 0
\(83\) 11.6430 11.6430i 1.27799 1.27799i 0.336200 0.941791i \(-0.390858\pi\)
0.941791 0.336200i \(-0.109142\pi\)
\(84\) 0 0
\(85\) −10.0387 10.0387i −1.08885 1.08885i
\(86\) 0 0
\(87\) 3.19510i 0.342550i
\(88\) 0 0
\(89\) 2.76733i 0.293336i 0.989186 + 0.146668i \(0.0468549\pi\)
−0.989186 + 0.146668i \(0.953145\pi\)
\(90\) 0 0
\(91\) −4.15662 4.15662i −0.435732 0.435732i
\(92\) 0 0
\(93\) 1.73645 1.73645i 0.180061 0.180061i
\(94\) 0 0
\(95\) 6.58995 0.676115
\(96\) 0 0
\(97\) −6.61383 −0.671533 −0.335766 0.941945i \(-0.608995\pi\)
−0.335766 + 0.941945i \(0.608995\pi\)
\(98\) 0 0
\(99\) −4.45480 + 4.45480i −0.447724 + 0.447724i
\(100\) 0 0
\(101\) 11.5250 + 11.5250i 1.14678 + 1.14678i 0.987182 + 0.159596i \(0.0510193\pi\)
0.159596 + 0.987182i \(0.448981\pi\)
\(102\) 0 0
\(103\) 0.605918i 0.0597028i 0.999554 + 0.0298514i \(0.00950341\pi\)
−0.999554 + 0.0298514i \(0.990497\pi\)
\(104\) 0 0
\(105\) 5.29339i 0.516582i
\(106\) 0 0
\(107\) −6.39585 6.39585i −0.618310 0.618310i 0.326788 0.945098i \(-0.394034\pi\)
−0.945098 + 0.326788i \(0.894034\pi\)
\(108\) 0 0
\(109\) −4.79918 + 4.79918i −0.459678 + 0.459678i −0.898550 0.438872i \(-0.855378\pi\)
0.438872 + 0.898550i \(0.355378\pi\)
\(110\) 0 0
\(111\) 5.52015 0.523950
\(112\) 0 0
\(113\) 4.58640 0.431452 0.215726 0.976454i \(-0.430788\pi\)
0.215726 + 0.976454i \(0.430788\pi\)
\(114\) 0 0
\(115\) −2.74053 + 2.74053i −0.255556 + 0.255556i
\(116\) 0 0
\(117\) 5.98620 + 5.98620i 0.553424 + 0.553424i
\(118\) 0 0
\(119\) 5.60157i 0.513495i
\(120\) 0 0
\(121\) 2.81670i 0.256063i
\(122\) 0 0
\(123\) 4.86588 + 4.86588i 0.438742 + 0.438742i
\(124\) 0 0
\(125\) 13.7603 13.7603i 1.23076 1.23076i
\(126\) 0 0
\(127\) −8.38407 −0.743966 −0.371983 0.928240i \(-0.621322\pi\)
−0.371983 + 0.928240i \(0.621322\pi\)
\(128\) 0 0
\(129\) 11.3186 0.996547
\(130\) 0 0
\(131\) 15.3109 15.3109i 1.33772 1.33772i 0.439459 0.898263i \(-0.355170\pi\)
0.898263 0.439459i \(-0.144830\pi\)
\(132\) 0 0
\(133\) 1.83859 + 1.83859i 0.159426 + 0.159426i
\(134\) 0 0
\(135\) 18.0079i 1.54987i
\(136\) 0 0
\(137\) 20.1453i 1.72113i −0.509339 0.860566i \(-0.670110\pi\)
0.509339 0.860566i \(-0.329890\pi\)
\(138\) 0 0
\(139\) 11.0916 + 11.0916i 0.940775 + 0.940775i 0.998342 0.0575665i \(-0.0183341\pi\)
−0.0575665 + 0.998342i \(0.518334\pi\)
\(140\) 0 0
\(141\) 2.67924 2.67924i 0.225633 0.225633i
\(142\) 0 0
\(143\) 10.9964 0.919567
\(144\) 0 0
\(145\) −13.8649 −1.15142
\(146\) 0 0
\(147\) −2.94393 + 2.94393i −0.242812 + 0.242812i
\(148\) 0 0
\(149\) −15.6772 15.6772i −1.28432 1.28432i −0.938183 0.346140i \(-0.887492\pi\)
−0.346140 0.938183i \(-0.612508\pi\)
\(150\) 0 0
\(151\) 15.1976i 1.23677i −0.785876 0.618384i \(-0.787788\pi\)
0.785876 0.618384i \(-0.212212\pi\)
\(152\) 0 0
\(153\) 8.06717i 0.652192i
\(154\) 0 0
\(155\) 7.53521 + 7.53521i 0.605242 + 0.605242i
\(156\) 0 0
\(157\) 3.41307 3.41307i 0.272393 0.272393i −0.557670 0.830063i \(-0.688305\pi\)
0.830063 + 0.557670i \(0.188305\pi\)
\(158\) 0 0
\(159\) 8.98657 0.712681
\(160\) 0 0
\(161\) −1.52921 −0.120519
\(162\) 0 0
\(163\) −2.00990 + 2.00990i −0.157428 + 0.157428i −0.781426 0.623998i \(-0.785507\pi\)
0.623998 + 0.781426i \(0.285507\pi\)
\(164\) 0 0
\(165\) 7.00190 + 7.00190i 0.545097 + 0.545097i
\(166\) 0 0
\(167\) 13.4952i 1.04429i −0.852857 0.522144i \(-0.825132\pi\)
0.852857 0.522144i \(-0.174868\pi\)
\(168\) 0 0
\(169\) 1.77659i 0.136661i
\(170\) 0 0
\(171\) −2.64787 2.64787i −0.202488 0.202488i
\(172\) 0 0
\(173\) −0.604284 + 0.604284i −0.0459429 + 0.0459429i −0.729705 0.683762i \(-0.760343\pi\)
0.683762 + 0.729705i \(0.260343\pi\)
\(174\) 0 0
\(175\) 15.3243 1.15841
\(176\) 0 0
\(177\) 7.34952 0.552424
\(178\) 0 0
\(179\) −12.6718 + 12.6718i −0.947132 + 0.947132i −0.998671 0.0515388i \(-0.983587\pi\)
0.0515388 + 0.998671i \(0.483587\pi\)
\(180\) 0 0
\(181\) 6.30067 + 6.30067i 0.468325 + 0.468325i 0.901372 0.433046i \(-0.142561\pi\)
−0.433046 + 0.901372i \(0.642561\pi\)
\(182\) 0 0
\(183\) 8.05473i 0.595423i
\(184\) 0 0
\(185\) 23.9544i 1.76116i
\(186\) 0 0
\(187\) 7.40954 + 7.40954i 0.541839 + 0.541839i
\(188\) 0 0
\(189\) −5.02418 + 5.02418i −0.365456 + 0.365456i
\(190\) 0 0
\(191\) 15.8762 1.14876 0.574382 0.818588i \(-0.305243\pi\)
0.574382 + 0.818588i \(0.305243\pi\)
\(192\) 0 0
\(193\) −15.8800 −1.14307 −0.571535 0.820578i \(-0.693652\pi\)
−0.571535 + 0.820578i \(0.693652\pi\)
\(194\) 0 0
\(195\) 9.40889 9.40889i 0.673785 0.673785i
\(196\) 0 0
\(197\) −4.36304 4.36304i −0.310854 0.310854i 0.534387 0.845240i \(-0.320543\pi\)
−0.845240 + 0.534387i \(0.820543\pi\)
\(198\) 0 0
\(199\) 1.83276i 0.129921i 0.997888 + 0.0649604i \(0.0206921\pi\)
−0.997888 + 0.0649604i \(0.979308\pi\)
\(200\) 0 0
\(201\) 0.104542i 0.00737382i
\(202\) 0 0
\(203\) −3.86830 3.86830i −0.271502 0.271502i
\(204\) 0 0
\(205\) −21.1152 + 21.1152i −1.47475 + 1.47475i
\(206\) 0 0
\(207\) 2.20231 0.153071
\(208\) 0 0
\(209\) −4.86404 −0.336452
\(210\) 0 0
\(211\) 0.176084 0.176084i 0.0121221 0.0121221i −0.701020 0.713142i \(-0.747272\pi\)
0.713142 + 0.701020i \(0.247272\pi\)
\(212\) 0 0
\(213\) −4.18575 4.18575i −0.286803 0.286803i
\(214\) 0 0
\(215\) 49.1164i 3.34971i
\(216\) 0 0
\(217\) 4.20463i 0.285429i
\(218\) 0 0
\(219\) −5.00096 5.00096i −0.337933 0.337933i
\(220\) 0 0
\(221\) 9.95667 9.95667i 0.669758 0.669758i
\(222\) 0 0
\(223\) −7.23146 −0.484254 −0.242127 0.970245i \(-0.577845\pi\)
−0.242127 + 0.970245i \(0.577845\pi\)
\(224\) 0 0
\(225\) −22.0695 −1.47130
\(226\) 0 0
\(227\) −15.8466 + 15.8466i −1.05177 + 1.05177i −0.0531903 + 0.998584i \(0.516939\pi\)
−0.998584 + 0.0531903i \(0.983061\pi\)
\(228\) 0 0
\(229\) 7.41129 + 7.41129i 0.489752 + 0.489752i 0.908228 0.418476i \(-0.137436\pi\)
−0.418476 + 0.908228i \(0.637436\pi\)
\(230\) 0 0
\(231\) 3.90704i 0.257065i
\(232\) 0 0
\(233\) 0.641549i 0.0420293i 0.999779 + 0.0210146i \(0.00668966\pi\)
−0.999779 + 0.0210146i \(0.993310\pi\)
\(234\) 0 0
\(235\) 11.6264 + 11.6264i 0.758423 + 0.758423i
\(236\) 0 0
\(237\) 4.05842 4.05842i 0.263623 0.263623i
\(238\) 0 0
\(239\) 7.78652 0.503668 0.251834 0.967770i \(-0.418966\pi\)
0.251834 + 0.967770i \(0.418966\pi\)
\(240\) 0 0
\(241\) 5.29100 0.340824 0.170412 0.985373i \(-0.445490\pi\)
0.170412 + 0.985373i \(0.445490\pi\)
\(242\) 0 0
\(243\) 11.4082 11.4082i 0.731836 0.731836i
\(244\) 0 0
\(245\) −12.7750 12.7750i −0.816166 0.816166i
\(246\) 0 0
\(247\) 6.53611i 0.415883i
\(248\) 0 0
\(249\) 14.7061i 0.931962i
\(250\) 0 0
\(251\) −20.1654 20.1654i −1.27283 1.27283i −0.944599 0.328227i \(-0.893549\pi\)
−0.328227 0.944599i \(-0.606451\pi\)
\(252\) 0 0
\(253\) 2.02278 2.02278i 0.127171 0.127171i
\(254\) 0 0
\(255\) 12.6797 0.794033
\(256\) 0 0
\(257\) −2.15836 −0.134635 −0.0673174 0.997732i \(-0.521444\pi\)
−0.0673174 + 0.997732i \(0.521444\pi\)
\(258\) 0 0
\(259\) −6.68325 + 6.68325i −0.415277 + 0.415277i
\(260\) 0 0
\(261\) 5.57098 + 5.57098i 0.344835 + 0.344835i
\(262\) 0 0
\(263\) 13.7070i 0.845209i −0.906314 0.422604i \(-0.861116\pi\)
0.906314 0.422604i \(-0.138884\pi\)
\(264\) 0 0
\(265\) 38.9967i 2.39555i
\(266\) 0 0
\(267\) −1.74768 1.74768i −0.106956 0.106956i
\(268\) 0 0
\(269\) 18.5467 18.5467i 1.13081 1.13081i 0.140767 0.990043i \(-0.455043\pi\)
0.990043 0.140767i \(-0.0449569\pi\)
\(270\) 0 0
\(271\) 6.66642 0.404956 0.202478 0.979287i \(-0.435100\pi\)
0.202478 + 0.979287i \(0.435100\pi\)
\(272\) 0 0
\(273\) 5.25014 0.317753
\(274\) 0 0
\(275\) −20.2704 + 20.2704i −1.22235 + 1.22235i
\(276\) 0 0
\(277\) −12.6524 12.6524i −0.760208 0.760208i 0.216152 0.976360i \(-0.430649\pi\)
−0.976360 + 0.216152i \(0.930649\pi\)
\(278\) 0 0
\(279\) 6.05535i 0.362524i
\(280\) 0 0
\(281\) 5.57139i 0.332361i −0.986095 0.166181i \(-0.946856\pi\)
0.986095 0.166181i \(-0.0531435\pi\)
\(282\) 0 0
\(283\) 11.5638 + 11.5638i 0.687397 + 0.687397i 0.961656 0.274259i \(-0.0884325\pi\)
−0.274259 + 0.961656i \(0.588433\pi\)
\(284\) 0 0
\(285\) −4.16182 + 4.16182i −0.246525 + 0.246525i
\(286\) 0 0
\(287\) −11.7822 −0.695483
\(288\) 0 0
\(289\) −3.58211 −0.210712
\(290\) 0 0
\(291\) 4.17690 4.17690i 0.244854 0.244854i
\(292\) 0 0
\(293\) −0.585664 0.585664i −0.0342149 0.0342149i 0.689792 0.724007i \(-0.257702\pi\)
−0.724007 + 0.689792i \(0.757702\pi\)
\(294\) 0 0
\(295\) 31.8928i 1.85687i
\(296\) 0 0
\(297\) 13.2916i 0.771257i
\(298\) 0 0
\(299\) −2.71814 2.71814i −0.157194 0.157194i
\(300\) 0 0
\(301\) −13.7034 + 13.7034i −0.789852 + 0.789852i
\(302\) 0 0
\(303\) −14.5570 −0.836277
\(304\) 0 0
\(305\) 34.9530 2.00140
\(306\) 0 0
\(307\) −20.2702 + 20.2702i −1.15688 + 1.15688i −0.171738 + 0.985143i \(0.554938\pi\)
−0.985143 + 0.171738i \(0.945062\pi\)
\(308\) 0 0
\(309\) −0.382662 0.382662i −0.0217689 0.0217689i
\(310\) 0 0
\(311\) 10.5264i 0.596899i −0.954425 0.298449i \(-0.903531\pi\)
0.954425 0.298449i \(-0.0964694\pi\)
\(312\) 0 0
\(313\) 17.6161i 0.995722i −0.867257 0.497861i \(-0.834119\pi\)
0.867257 0.497861i \(-0.165881\pi\)
\(314\) 0 0
\(315\) −9.22957 9.22957i −0.520028 0.520028i
\(316\) 0 0
\(317\) −7.47881 + 7.47881i −0.420052 + 0.420052i −0.885222 0.465170i \(-0.845993\pi\)
0.465170 + 0.885222i \(0.345993\pi\)
\(318\) 0 0
\(319\) 10.2337 0.572976
\(320\) 0 0
\(321\) 8.07848 0.450897
\(322\) 0 0
\(323\) −4.40412 + 4.40412i −0.245052 + 0.245052i
\(324\) 0 0
\(325\) 27.2386 + 27.2386i 1.51093 + 1.51093i
\(326\) 0 0
\(327\) 6.06175i 0.335216i
\(328\) 0 0
\(329\) 6.48751i 0.357668i
\(330\) 0 0
\(331\) 1.01083 + 1.01083i 0.0555603 + 0.0555603i 0.734341 0.678781i \(-0.237491\pi\)
−0.678781 + 0.734341i \(0.737491\pi\)
\(332\) 0 0
\(333\) 9.62495 9.62495i 0.527444 0.527444i
\(334\) 0 0
\(335\) −0.453653 −0.0247857
\(336\) 0 0
\(337\) 27.4738 1.49659 0.748296 0.663366i \(-0.230873\pi\)
0.748296 + 0.663366i \(0.230873\pi\)
\(338\) 0 0
\(339\) −2.89650 + 2.89650i −0.157316 + 0.157316i
\(340\) 0 0
\(341\) −5.56172 5.56172i −0.301184 0.301184i
\(342\) 0 0
\(343\) 17.8329i 0.962887i
\(344\) 0 0
\(345\) 3.46152i 0.186362i
\(346\) 0 0
\(347\) 5.81298 + 5.81298i 0.312057 + 0.312057i 0.845706 0.533649i \(-0.179180\pi\)
−0.533649 + 0.845706i \(0.679180\pi\)
\(348\) 0 0
\(349\) −16.7479 + 16.7479i −0.896495 + 0.896495i −0.995124 0.0986290i \(-0.968554\pi\)
0.0986290 + 0.995124i \(0.468554\pi\)
\(350\) 0 0
\(351\) −17.8608 −0.953337
\(352\) 0 0
\(353\) 33.2587 1.77018 0.885091 0.465418i \(-0.154096\pi\)
0.885091 + 0.465418i \(0.154096\pi\)
\(354\) 0 0
\(355\) 18.1638 18.1638i 0.964034 0.964034i
\(356\) 0 0
\(357\) 3.53762 + 3.53762i 0.187231 + 0.187231i
\(358\) 0 0
\(359\) 18.6590i 0.984786i −0.870373 0.492393i \(-0.836122\pi\)
0.870373 0.492393i \(-0.163878\pi\)
\(360\) 0 0
\(361\) 16.1089i 0.847836i
\(362\) 0 0
\(363\) 1.77886 + 1.77886i 0.0933659 + 0.0933659i
\(364\) 0 0
\(365\) 21.7014 21.7014i 1.13590 1.13590i
\(366\) 0 0
\(367\) 8.93581 0.466446 0.233223 0.972423i \(-0.425073\pi\)
0.233223 + 0.972423i \(0.425073\pi\)
\(368\) 0 0
\(369\) 16.9683 0.883336
\(370\) 0 0
\(371\) −10.8800 + 10.8800i −0.564863 + 0.564863i
\(372\) 0 0
\(373\) 9.78549 + 9.78549i 0.506673 + 0.506673i 0.913504 0.406830i \(-0.133366\pi\)
−0.406830 + 0.913504i \(0.633366\pi\)
\(374\) 0 0
\(375\) 17.3804i 0.897520i
\(376\) 0 0
\(377\) 13.7516i 0.708246i
\(378\) 0 0
\(379\) −23.5423 23.5423i −1.20928 1.20928i −0.971259 0.238026i \(-0.923500\pi\)
−0.238026 0.971259i \(-0.576500\pi\)
\(380\) 0 0
\(381\) 5.29488 5.29488i 0.271265 0.271265i
\(382\) 0 0
\(383\) 33.3581 1.70452 0.852260 0.523119i \(-0.175232\pi\)
0.852260 + 0.523119i \(0.175232\pi\)
\(384\) 0 0
\(385\) −16.9544 −0.864075
\(386\) 0 0
\(387\) 19.7351 19.7351i 1.00319 1.00319i
\(388\) 0 0
\(389\) 22.4106 + 22.4106i 1.13626 + 1.13626i 0.989115 + 0.147146i \(0.0470087\pi\)
0.147146 + 0.989115i \(0.452991\pi\)
\(390\) 0 0
\(391\) 3.66304i 0.185248i
\(392\) 0 0
\(393\) 19.3389i 0.975521i
\(394\) 0 0
\(395\) 17.6113 + 17.6113i 0.886120 + 0.886120i
\(396\) 0 0
\(397\) 1.72193 1.72193i 0.0864212 0.0864212i −0.662575 0.748996i \(-0.730536\pi\)
0.748996 + 0.662575i \(0.230536\pi\)
\(398\) 0 0
\(399\) −2.32229 −0.116260
\(400\) 0 0
\(401\) −4.68163 −0.233790 −0.116895 0.993144i \(-0.537294\pi\)
−0.116895 + 0.993144i \(0.537294\pi\)
\(402\) 0 0
\(403\) −7.47364 + 7.47364i −0.372289 + 0.372289i
\(404\) 0 0
\(405\) 6.73381 + 6.73381i 0.334606 + 0.334606i
\(406\) 0 0
\(407\) 17.6807i 0.876399i
\(408\) 0 0
\(409\) 4.60355i 0.227631i 0.993502 + 0.113815i \(0.0363073\pi\)
−0.993502 + 0.113815i \(0.963693\pi\)
\(410\) 0 0
\(411\) 12.7226 + 12.7226i 0.627559 + 0.627559i
\(412\) 0 0
\(413\) −8.89807 + 8.89807i −0.437845 + 0.437845i
\(414\) 0 0
\(415\) −63.8163 −3.13262
\(416\) 0 0
\(417\) −14.0096 −0.686051
\(418\) 0 0
\(419\) −13.2797 + 13.2797i −0.648758 + 0.648758i −0.952693 0.303935i \(-0.901699\pi\)
0.303935 + 0.952693i \(0.401699\pi\)
\(420\) 0 0
\(421\) −8.04601 8.04601i −0.392138 0.392138i 0.483311 0.875449i \(-0.339434\pi\)
−0.875449 + 0.483311i \(0.839434\pi\)
\(422\) 0 0
\(423\) 9.34306i 0.454275i
\(424\) 0 0
\(425\) 36.7075i 1.78058i
\(426\) 0 0
\(427\) 9.75186 + 9.75186i 0.471926 + 0.471926i
\(428\) 0 0
\(429\) −6.94469 + 6.94469i −0.335293 + 0.335293i
\(430\) 0 0
\(431\) −23.9168 −1.15203 −0.576016 0.817439i \(-0.695393\pi\)
−0.576016 + 0.817439i \(0.695393\pi\)
\(432\) 0 0
\(433\) 13.5472 0.651039 0.325519 0.945535i \(-0.394461\pi\)
0.325519 + 0.945535i \(0.394461\pi\)
\(434\) 0 0
\(435\) 8.75627 8.75627i 0.419831 0.419831i
\(436\) 0 0
\(437\) 1.20231 + 1.20231i 0.0575144 + 0.0575144i
\(438\) 0 0
\(439\) 11.2376i 0.536343i −0.963371 0.268172i \(-0.913581\pi\)
0.963371 0.268172i \(-0.0864194\pi\)
\(440\) 0 0
\(441\) 10.2661i 0.488862i
\(442\) 0 0
\(443\) 25.7097 + 25.7097i 1.22150 + 1.22150i 0.967098 + 0.254406i \(0.0818799\pi\)
0.254406 + 0.967098i \(0.418120\pi\)
\(444\) 0 0
\(445\) 7.58395 7.58395i 0.359514 0.359514i
\(446\) 0 0
\(447\) 19.8015 0.936580
\(448\) 0 0
\(449\) −5.13588 −0.242377 −0.121188 0.992630i \(-0.538671\pi\)
−0.121188 + 0.992630i \(0.538671\pi\)
\(450\) 0 0
\(451\) 15.5851 15.5851i 0.733873 0.733873i
\(452\) 0 0
\(453\) 9.59793 + 9.59793i 0.450950 + 0.450950i
\(454\) 0 0
\(455\) 22.7827i 1.06807i
\(456\) 0 0
\(457\) 27.2294i 1.27374i −0.770972 0.636870i \(-0.780229\pi\)
0.770972 0.636870i \(-0.219771\pi\)
\(458\) 0 0
\(459\) −12.0348 12.0348i −0.561738 0.561738i
\(460\) 0 0
\(461\) −21.9976 + 21.9976i −1.02453 + 1.02453i −0.0248390 + 0.999691i \(0.507907\pi\)
−0.999691 + 0.0248390i \(0.992093\pi\)
\(462\) 0 0
\(463\) 21.8570 1.01578 0.507890 0.861422i \(-0.330425\pi\)
0.507890 + 0.861422i \(0.330425\pi\)
\(464\) 0 0
\(465\) −9.51758 −0.441367
\(466\) 0 0
\(467\) 8.55730 8.55730i 0.395985 0.395985i −0.480829 0.876814i \(-0.659664\pi\)
0.876814 + 0.480829i \(0.159664\pi\)
\(468\) 0 0
\(469\) −0.126569 0.126569i −0.00584441 0.00584441i
\(470\) 0 0
\(471\) 4.31098i 0.198640i
\(472\) 0 0
\(473\) 36.2527i 1.66690i
\(474\) 0 0
\(475\) −12.0484 12.0484i −0.552819 0.552819i
\(476\) 0 0
\(477\) 15.6690 15.6690i 0.717434 0.717434i
\(478\) 0 0
\(479\) −40.7842 −1.86348 −0.931739 0.363129i \(-0.881708\pi\)
−0.931739 + 0.363129i \(0.881708\pi\)
\(480\) 0 0
\(481\) −23.7587 −1.08330
\(482\) 0 0
\(483\) 0.965760 0.965760i 0.0439436 0.0439436i
\(484\) 0 0
\(485\) 18.1254 + 18.1254i 0.823033 + 0.823033i
\(486\) 0 0
\(487\) 31.6590i 1.43460i 0.696762 + 0.717302i \(0.254623\pi\)
−0.696762 + 0.717302i \(0.745377\pi\)
\(488\) 0 0
\(489\) 2.53867i 0.114803i
\(490\) 0 0
\(491\) 16.7060 + 16.7060i 0.753931 + 0.753931i 0.975210 0.221279i \(-0.0710233\pi\)
−0.221279 + 0.975210i \(0.571023\pi\)
\(492\) 0 0
\(493\) 9.26605 9.26605i 0.417322 0.417322i
\(494\) 0 0
\(495\) 24.4171 1.09746
\(496\) 0 0
\(497\) 10.1354 0.454633
\(498\) 0 0
\(499\) 21.7208 21.7208i 0.972357 0.972357i −0.0272707 0.999628i \(-0.508682\pi\)
0.999628 + 0.0272707i \(0.00868160\pi\)
\(500\) 0 0
\(501\) 8.52276 + 8.52276i 0.380769 + 0.380769i
\(502\) 0 0
\(503\) 12.3248i 0.549534i −0.961511 0.274767i \(-0.911399\pi\)
0.961511 0.274767i \(-0.0886008\pi\)
\(504\) 0 0
\(505\) 63.1692i 2.81099i
\(506\) 0 0
\(507\) 1.12199 + 1.12199i 0.0498293 + 0.0498293i
\(508\) 0 0
\(509\) −19.2068 + 19.2068i −0.851326 + 0.851326i −0.990296 0.138971i \(-0.955621\pi\)
0.138971 + 0.990296i \(0.455621\pi\)
\(510\) 0 0
\(511\) 12.1093 0.535684
\(512\) 0 0
\(513\) 7.90033 0.348808
\(514\) 0 0
\(515\) 1.66054 1.66054i 0.0731720 0.0731720i
\(516\) 0 0
\(517\) −8.58143 8.58143i −0.377411 0.377411i
\(518\) 0 0
\(519\) 0.763260i 0.0335034i
\(520\) 0 0
\(521\) 0.515650i 0.0225910i −0.999936 0.0112955i \(-0.996404\pi\)
0.999936 0.0112955i \(-0.00359555\pi\)
\(522\) 0 0
\(523\) 6.17927 + 6.17927i 0.270201 + 0.270201i 0.829181 0.558980i \(-0.188807\pi\)
−0.558980 + 0.829181i \(0.688807\pi\)
\(524\) 0 0
\(525\) −9.67791 + 9.67791i −0.422379 + 0.422379i
\(526\) 0 0
\(527\) −10.0717 −0.438730
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 12.8147 12.8147i 0.556109 0.556109i
\(532\) 0 0
\(533\) −20.9427 20.9427i −0.907128 0.907128i
\(534\) 0 0
\(535\) 35.0561i 1.51561i
\(536\) 0 0
\(537\) 16.0055i 0.690687i
\(538\) 0 0
\(539\) 9.42923 + 9.42923i 0.406145 + 0.406145i
\(540\) 0 0
\(541\) −5.80628 + 5.80628i −0.249632 + 0.249632i −0.820819 0.571188i \(-0.806483\pi\)
0.571188 + 0.820819i \(0.306483\pi\)
\(542\) 0 0
\(543\) −7.95826 −0.341522
\(544\) 0 0
\(545\) 26.3046 1.12677
\(546\) 0 0
\(547\) −16.8634 + 16.8634i −0.721029 + 0.721029i −0.968815 0.247786i \(-0.920297\pi\)
0.247786 + 0.968815i \(0.420297\pi\)
\(548\) 0 0
\(549\) −14.0443 14.0443i −0.599394 0.599394i
\(550\) 0 0
\(551\) 6.08275i 0.259134i
\(552\) 0 0
\(553\) 9.82706i 0.417889i
\(554\) 0 0
\(555\) −15.1282 15.1282i −0.642155 0.642155i
\(556\) 0 0
\(557\) 12.6709 12.6709i 0.536885 0.536885i −0.385728 0.922613i \(-0.626050\pi\)
0.922613 + 0.385728i \(0.126050\pi\)
\(558\) 0 0
\(559\) −48.7151 −2.06043
\(560\) 0 0
\(561\) −9.35886 −0.395131
\(562\) 0 0
\(563\) 30.8676 30.8676i 1.30091 1.30091i 0.373136 0.927777i \(-0.378282\pi\)
0.927777 0.373136i \(-0.121718\pi\)
\(564\) 0 0
\(565\) −12.5692 12.5692i −0.528789 0.528789i
\(566\) 0 0
\(567\) 3.75746i 0.157798i
\(568\) 0 0
\(569\) 26.9844i 1.13125i 0.824664 + 0.565623i \(0.191364\pi\)
−0.824664 + 0.565623i \(0.808636\pi\)
\(570\) 0 0
\(571\) 1.83019 + 1.83019i 0.0765912 + 0.0765912i 0.744365 0.667773i \(-0.232752\pi\)
−0.667773 + 0.744365i \(0.732752\pi\)
\(572\) 0 0
\(573\) −10.0265 + 10.0265i −0.418862 + 0.418862i
\(574\) 0 0
\(575\) 10.0210 0.417906
\(576\) 0 0
\(577\) −18.1595 −0.755991 −0.377995 0.925807i \(-0.623386\pi\)
−0.377995 + 0.925807i \(0.623386\pi\)
\(578\) 0 0
\(579\) 10.0289 10.0289i 0.416787 0.416787i
\(580\) 0 0
\(581\) −17.8047 17.8047i −0.738663 0.738663i
\(582\) 0 0
\(583\) 28.7834i 1.19209i
\(584\) 0 0
\(585\) 32.8107i 1.35656i
\(586\) 0 0
\(587\) 14.8262 + 14.8262i 0.611941 + 0.611941i 0.943452 0.331510i \(-0.107558\pi\)
−0.331510 + 0.943452i \(0.607558\pi\)
\(588\) 0 0
\(589\) 3.30581 3.30581i 0.136213 0.136213i
\(590\) 0 0
\(591\) 5.51087 0.226687
\(592\) 0 0
\(593\) 31.8803 1.30917 0.654583 0.755990i \(-0.272844\pi\)
0.654583 + 0.755990i \(0.272844\pi\)
\(594\) 0 0
\(595\) −15.3513 + 15.3513i −0.629341 + 0.629341i
\(596\) 0 0
\(597\) −1.15746 1.15746i −0.0473717 0.0473717i
\(598\) 0 0
\(599\) 39.1635i 1.60018i 0.599882 + 0.800088i \(0.295214\pi\)
−0.599882 + 0.800088i \(0.704786\pi\)
\(600\) 0 0
\(601\) 44.0527i 1.79695i −0.439026 0.898474i \(-0.644676\pi\)
0.439026 0.898474i \(-0.355324\pi\)
\(602\) 0 0
\(603\) 0.182280 + 0.182280i 0.00742300 + 0.00742300i
\(604\) 0 0
\(605\) −7.71925 + 7.71925i −0.313832 + 0.313832i
\(606\) 0 0
\(607\) −21.5920 −0.876393 −0.438196 0.898879i \(-0.644383\pi\)
−0.438196 + 0.898879i \(0.644383\pi\)
\(608\) 0 0
\(609\) 4.88598 0.197990
\(610\) 0 0
\(611\) −11.5314 + 11.5314i −0.466511 + 0.466511i
\(612\) 0 0
\(613\) 20.9053 + 20.9053i 0.844357 + 0.844357i 0.989422 0.145065i \(-0.0463392\pi\)
−0.145065 + 0.989422i \(0.546339\pi\)
\(614\) 0 0
\(615\) 26.6702i 1.07545i
\(616\) 0 0
\(617\) 4.01122i 0.161486i 0.996735 + 0.0807429i \(0.0257293\pi\)
−0.996735 + 0.0807429i \(0.974271\pi\)
\(618\) 0 0
\(619\) 8.52811 + 8.52811i 0.342774 + 0.342774i 0.857409 0.514635i \(-0.172073\pi\)
−0.514635 + 0.857409i \(0.672073\pi\)
\(620\) 0 0
\(621\) −3.28547 + 3.28547i −0.131841 + 0.131841i
\(622\) 0 0
\(623\) 4.23183 0.169545
\(624\) 0 0
\(625\) −25.3160 −1.01264
\(626\) 0 0
\(627\) 3.07184 3.07184i 0.122677 0.122677i
\(628\) 0 0
\(629\) −16.0089 16.0089i −0.638317 0.638317i
\(630\) 0 0
\(631\) 14.7297i 0.586379i −0.956054 0.293189i \(-0.905283\pi\)
0.956054 0.293189i \(-0.0947166\pi\)
\(632\) 0 0
\(633\) 0.222408i 0.00883992i
\(634\) 0 0
\(635\) 22.9768 + 22.9768i 0.911808 + 0.911808i
\(636\) 0 0
\(637\) 12.6706 12.6706i 0.502029 0.502029i
\(638\) 0 0
\(639\) −14.5966 −0.577431
\(640\) 0 0
\(641\) −25.1609 −0.993796 −0.496898 0.867809i \(-0.665528\pi\)
−0.496898 + 0.867809i \(0.665528\pi\)
\(642\) 0 0
\(643\) −16.7541 + 16.7541i −0.660718 + 0.660718i −0.955549 0.294831i \(-0.904737\pi\)
0.294831 + 0.955549i \(0.404737\pi\)
\(644\) 0 0
\(645\) −31.0190 31.0190i −1.22137 1.22137i
\(646\) 0 0
\(647\) 17.2641i 0.678721i −0.940656 0.339360i \(-0.889789\pi\)
0.940656 0.339360i \(-0.110211\pi\)
\(648\) 0 0
\(649\) 23.5400i 0.924027i
\(650\) 0 0
\(651\) −2.65540 2.65540i −0.104073 0.104073i
\(652\) 0 0
\(653\) −29.8896 + 29.8896i −1.16967 + 1.16967i −0.187384 + 0.982287i \(0.560001\pi\)
−0.982287 + 0.187384i \(0.939999\pi\)
\(654\) 0 0
\(655\) −83.9202 −3.27903
\(656\) 0 0
\(657\) −17.4394 −0.680375
\(658\) 0 0
\(659\) 18.7646 18.7646i 0.730967 0.730967i −0.239845 0.970811i \(-0.577097\pi\)
0.970811 + 0.239845i \(0.0770965\pi\)
\(660\) 0 0
\(661\) 30.7092 + 30.7092i 1.19445 + 1.19445i 0.975805 + 0.218644i \(0.0701635\pi\)
0.218644 + 0.975805i \(0.429837\pi\)
\(662\) 0 0
\(663\) 12.5761i 0.488415i
\(664\) 0 0
\(665\) 10.0774i 0.390786i
\(666\) 0 0
\(667\) −2.52960 2.52960i −0.0979467 0.0979467i
\(668\) 0 0
\(669\) 4.56696 4.56696i 0.176569 0.176569i
\(670\) 0 0
\(671\) −25.7988 −0.995950
\(672\) 0 0
\(673\) −18.7694 −0.723506 −0.361753 0.932274i \(-0.617822\pi\)
−0.361753 + 0.932274i \(0.617822\pi\)
\(674\) 0 0
\(675\) 32.9238 32.9238i 1.26724 1.26724i
\(676\) 0 0
\(677\) −7.27989 7.27989i −0.279789 0.279789i 0.553236 0.833025i \(-0.313393\pi\)
−0.833025 + 0.553236i \(0.813393\pi\)
\(678\) 0 0
\(679\) 10.1140i 0.388138i
\(680\) 0 0
\(681\) 20.0155i 0.766997i
\(682\) 0 0
\(683\) 12.4210 + 12.4210i 0.475277 + 0.475277i 0.903618 0.428340i \(-0.140901\pi\)
−0.428340 + 0.903618i \(0.640901\pi\)
\(684\) 0 0
\(685\) −55.2089 + 55.2089i −2.10943 + 2.10943i
\(686\) 0 0
\(687\) −9.36106 −0.357147
\(688\) 0 0
\(689\) −38.6780 −1.47352
\(690\) 0 0
\(691\) 33.8504 33.8504i 1.28773 1.28773i 0.351565 0.936163i \(-0.385650\pi\)
0.936163 0.351565i \(-0.114350\pi\)
\(692\) 0 0
\(693\) 6.81233 + 6.81233i 0.258779 + 0.258779i
\(694\) 0 0
\(695\) 60.7937i 2.30603i
\(696\) 0 0
\(697\) 28.2229i 1.06902i
\(698\) 0 0
\(699\) −0.405164 0.405164i −0.0153247 0.0153247i
\(700\) 0 0
\(701\) −11.9805 + 11.9805i −0.452498 + 0.452498i −0.896183 0.443685i \(-0.853671\pi\)
0.443685 + 0.896183i \(0.353671\pi\)
\(702\) 0 0
\(703\) 10.5091 0.396360
\(704\) 0 0
\(705\) −14.6851 −0.553073
\(706\) 0 0
\(707\) 17.6241 17.6241i 0.662824 0.662824i
\(708\) 0 0
\(709\) −8.81693 8.81693i −0.331127 0.331127i 0.521887 0.853014i \(-0.325228\pi\)
−0.853014 + 0.521887i \(0.825228\pi\)
\(710\) 0 0
\(711\) 14.1526i 0.530762i
\(712\) 0 0
\(713\) 2.74954i 0.102971i
\(714\) 0 0
\(715\) −30.1361 30.1361i −1.12702 1.12702i
\(716\) 0 0
\(717\) −4.91751 + 4.91751i −0.183648 + 0.183648i
\(718\) 0 0
\(719\) 41.8588 1.56107 0.780534 0.625113i \(-0.214947\pi\)
0.780534 + 0.625113i \(0.214947\pi\)
\(720\) 0 0
\(721\) 0.926576 0.0345075
\(722\) 0 0
\(723\) −3.34148 + 3.34148i −0.124271 + 0.124271i
\(724\) 0 0
\(725\) 25.3493 + 25.3493i 0.941448 + 0.941448i
\(726\) 0 0
\(727\) 2.66804i 0.0989520i −0.998775 0.0494760i \(-0.984245\pi\)
0.998775 0.0494760i \(-0.0157551\pi\)
\(728\) 0 0
\(729\) 7.03811i 0.260671i
\(730\) 0 0
\(731\) −32.8249 32.8249i −1.21407 1.21407i
\(732\) 0 0
\(733\) 16.3265 16.3265i 0.603033 0.603033i −0.338083 0.941116i \(-0.609778\pi\)
0.941116 + 0.338083i \(0.109778\pi\)
\(734\) 0 0
\(735\) 16.1359 0.595181
\(736\) 0 0
\(737\) 0.334841 0.0123340
\(738\) 0 0
\(739\) 13.4540 13.4540i 0.494913 0.494913i −0.414937 0.909850i \(-0.636196\pi\)
0.909850 + 0.414937i \(0.136196\pi\)
\(740\) 0 0
\(741\) −4.12782 4.12782i −0.151639 0.151639i
\(742\) 0 0
\(743\) 6.92795i 0.254162i −0.991892 0.127081i \(-0.959439\pi\)
0.991892 0.127081i \(-0.0405608\pi\)
\(744\) 0 0
\(745\) 85.9275i 3.14814i
\(746\) 0 0
\(747\) 25.6416 + 25.6416i 0.938178 + 0.938178i
\(748\) 0 0
\(749\) −9.78061 + 9.78061i −0.357376 + 0.357376i
\(750\) 0 0
\(751\) 18.5653 0.677457 0.338729 0.940884i \(-0.390003\pi\)
0.338729 + 0.940884i \(0.390003\pi\)
\(752\) 0 0
\(753\) 25.4705 0.928196
\(754\) 0 0
\(755\) −41.6497 + 41.6497i −1.51579 + 1.51579i
\(756\) 0 0
\(757\) 18.6823 + 18.6823i 0.679020 + 0.679020i 0.959778 0.280759i \(-0.0905860\pi\)
−0.280759 + 0.959778i \(0.590586\pi\)
\(758\) 0 0
\(759\) 2.55494i 0.0927384i
\(760\) 0 0
\(761\) 43.1942i 1.56579i −0.622154 0.782895i \(-0.713742\pi\)
0.622154 0.782895i \(-0.286258\pi\)
\(762\) 0 0
\(763\) 7.33896 + 7.33896i 0.265688 + 0.265688i
\(764\) 0 0
\(765\) 22.1083 22.1083i 0.799329 0.799329i
\(766\) 0 0
\(767\) −31.6322 −1.14217
\(768\) 0 0
\(769\) 0.777724 0.0280454 0.0140227 0.999902i \(-0.495536\pi\)
0.0140227 + 0.999902i \(0.495536\pi\)
\(770\) 0 0
\(771\) 1.36309 1.36309i 0.0490906 0.0490906i
\(772\) 0 0
\(773\) 5.97402 + 5.97402i 0.214870 + 0.214870i 0.806333 0.591462i \(-0.201449\pi\)
−0.591462 + 0.806333i \(0.701449\pi\)
\(774\) 0 0
\(775\) 27.5533i 0.989742i
\(776\) 0 0
\(777\) 8.44148i 0.302837i
\(778\) 0 0
\(779\) 9.26355 + 9.26355i 0.331901 + 0.331901i
\(780\) 0 0
\(781\) −13.4067 + 13.4067i −0.479728 + 0.479728i
\(782\) 0 0
\(783\) −16.6219 −0.594018
\(784\) 0 0
\(785\) −18.7072 −0.667690
\(786\) 0 0
\(787\) −25.2892 + 25.2892i −0.901463 + 0.901463i −0.995563 0.0940993i \(-0.970003\pi\)
0.0940993 + 0.995563i \(0.470003\pi\)
\(788\) 0 0
\(789\) 8.65652 + 8.65652i 0.308180 + 0.308180i
\(790\) 0 0
\(791\) 7.01357i 0.249374i
\(792\) 0 0
\(793\) 34.6674i 1.23108i
\(794\) 0 0
\(795\) −24.6280 24.6280i −0.873464 0.873464i
\(796\) 0 0
\(797\) 11.1069 11.1069i 0.393428 0.393428i −0.482479 0.875907i \(-0.660264\pi\)
0.875907 + 0.482479i \(0.160264\pi\)
\(798\) 0 0
\(799\) −15.5401 −0.549767
\(800\) 0 0
\(801\) −6.09452 −0.215339
\(802\) 0 0
\(803\) −16.0177 + 16.0177i −0.565254 + 0.565254i
\(804\) 0 0
\(805\) 4.19086 + 4.19086i 0.147708 + 0.147708i
\(806\) 0 0
\(807\) 23.4259i 0.824632i
\(808\) 0 0
\(809\) 20.5338i 0.721930i 0.932579 + 0.360965i \(0.117553\pi\)
−0.932579 + 0.360965i \(0.882447\pi\)
\(810\) 0 0
\(811\) −7.79332 7.79332i −0.273660 0.273660i 0.556911 0.830572i \(-0.311986\pi\)
−0.830572 + 0.556911i \(0.811986\pi\)
\(812\) 0 0
\(813\) −4.21012 + 4.21012i −0.147655 + 0.147655i
\(814\) 0 0
\(815\) 11.0164 0.385888
\(816\) 0 0
\(817\) 21.5481 0.753872
\(818\) 0 0
\(819\) 9.15417 9.15417i 0.319872 0.319872i
\(820\) 0 0
\(821\) −14.2693 14.2693i −0.498003 0.498003i 0.412813 0.910816i \(-0.364546\pi\)
−0.910816 + 0.412813i \(0.864546\pi\)
\(822\) 0 0
\(823\) 17.0118i 0.592995i −0.955034 0.296497i \(-0.904181\pi\)
0.955034 0.296497i \(-0.0958186\pi\)
\(824\) 0 0
\(825\) 25.6032i 0.891387i
\(826\) 0 0
\(827\) 11.1872 + 11.1872i 0.389017 + 0.389017i 0.874337 0.485320i \(-0.161297\pi\)
−0.485320 + 0.874337i \(0.661297\pi\)
\(828\) 0 0
\(829\) 23.8978 23.8978i 0.830006 0.830006i −0.157511 0.987517i \(-0.550347\pi\)
0.987517 + 0.157511i \(0.0503470\pi\)
\(830\) 0 0
\(831\) 15.9810 0.554374
\(832\) 0 0
\(833\) 17.0753 0.591625
\(834\) 0 0
\(835\) −36.9840 + 36.9840i −1.27988 + 1.27988i
\(836\) 0 0
\(837\) 9.03354 + 9.03354i 0.312245 + 0.312245i
\(838\) 0 0
\(839\) 18.4135i 0.635703i −0.948140 0.317852i \(-0.897039\pi\)
0.948140 0.317852i \(-0.102961\pi\)
\(840\) 0 0
\(841\) 16.2022i 0.558697i
\(842\) 0 0
\(843\) 3.51856 + 3.51856i 0.121186 + 0.121186i
\(844\) 0 0
\(845\) −4.86880 + 4.86880i −0.167492 + 0.167492i
\(846\) 0 0
\(847\) −4.30733 −0.148001
\(848\) 0 0
\(849\) −14.6060 −0.501278
\(850\) 0 0
\(851\) −4.37038 + 4.37038i −0.149815 + 0.149815i
\(852\) 0 0
\(853\) −29.8210 29.8210i −1.02105 1.02105i −0.999774 0.0212793i \(-0.993226\pi\)
−0.0212793 0.999774i \(-0.506774\pi\)
\(854\) 0 0
\(855\) 14.5131i 0.496339i
\(856\) 0 0
\(857\) 10.5633i 0.360836i 0.983590 + 0.180418i \(0.0577451\pi\)
−0.983590 + 0.180418i \(0.942255\pi\)
\(858\) 0 0
\(859\) −7.21536 7.21536i −0.246185 0.246185i 0.573218 0.819403i \(-0.305695\pi\)
−0.819403 + 0.573218i \(0.805695\pi\)
\(860\) 0 0
\(861\) 7.44096 7.44096i 0.253587 0.253587i
\(862\) 0 0
\(863\) 56.9903 1.93997 0.969986 0.243161i \(-0.0781844\pi\)
0.969986 + 0.243161i \(0.0781844\pi\)
\(864\) 0 0
\(865\) 3.31212 0.112615
\(866\) 0 0
\(867\) 2.26225 2.26225i 0.0768300 0.0768300i
\(868\) 0 0
\(869\) −12.9989 12.9989i −0.440956 0.440956i
\(870\) 0 0
\(871\) 0.449947i 0.0152459i
\(872\) 0 0
\(873\) 14.5657i 0.492975i
\(874\) 0 0
\(875\) −21.0424 21.0424i −0.711364 0.711364i
\(876\) 0 0
\(877\) 12.2367 12.2367i 0.413205 0.413205i −0.469649 0.882853i \(-0.655619\pi\)
0.882853 + 0.469649i \(0.155619\pi\)
\(878\) 0 0
\(879\) 0.739741 0.0249509
\(880\) 0 0
\(881\) 38.5162 1.29764 0.648822 0.760940i \(-0.275262\pi\)
0.648822 + 0.760940i \(0.275262\pi\)
\(882\) 0 0
\(883\) 4.60476 4.60476i 0.154962 0.154962i −0.625368 0.780330i \(-0.715051\pi\)
0.780330 + 0.625368i \(0.215051\pi\)
\(884\) 0 0
\(885\) −20.1416 20.1416i −0.677053 0.677053i
\(886\) 0 0
\(887\) 6.69978i 0.224957i 0.993654 + 0.112478i \(0.0358789\pi\)
−0.993654 + 0.112478i \(0.964121\pi\)
\(888\) 0 0
\(889\) 12.8210i 0.430003i
\(890\) 0 0
\(891\) −4.97022 4.97022i −0.166509 0.166509i
\(892\) 0 0
\(893\) 5.10068 5.10068i 0.170688 0.170688i
\(894\) 0 0
\(895\) 69.4548 2.32162
\(896\) 0 0
\(897\) 3.43323 0.114632
\(898\) 0 0
\(899\) −6.95525 + 6.95525i −0.231971 + 0.231971i
\(900\) 0 0
\(901\) −26.0618 26.0618i −0.868245 0.868245i
\(902\) 0 0
\(903\) 17.3085i 0.575992i
\(904\) 0 0
\(905\) 34.5344i 1.14796i
\(906\) 0 0
\(907\) 27.1221 + 27.1221i 0.900573 + 0.900573i 0.995486 0.0949124i \(-0.0302571\pi\)
−0.0949124 + 0.995486i \(0.530257\pi\)
\(908\) 0 0
\(909\) −25.3816 + 25.3816i −0.841855 + 0.841855i
\(910\) 0 0
\(911\) 40.4261 1.33938 0.669688 0.742643i \(-0.266428\pi\)
0.669688 + 0.742643i \(0.266428\pi\)
\(912\) 0 0
\(913\) 47.1027 1.55887
\(914\) 0 0
\(915\) −22.0743 + 22.0743i −0.729752 + 0.729752i
\(916\) 0 0
\(917\) −23.4137 23.4137i −0.773187 0.773187i
\(918\) 0 0
\(919\) 28.9812i 0.956002i 0.878359 + 0.478001i \(0.158639\pi\)
−0.878359 + 0.478001i \(0.841361\pi\)
\(920\) 0 0
\(921\) 25.6029i 0.843644i
\(922\) 0 0
\(923\) 18.0154 + 18.0154i 0.592984 + 0.592984i
\(924\) 0 0
\(925\) 43.7958 43.7958i 1.44000 1.44000i
\(926\) 0 0
\(927\) −1.33442 −0.0438281
\(928\) 0 0
\(929\) −1.76699 −0.0579730 −0.0289865 0.999580i \(-0.509228\pi\)
−0.0289865 + 0.999580i \(0.509228\pi\)
\(930\) 0 0
\(931\) −5.60459 + 5.60459i −0.183683 + 0.183683i
\(932\) 0 0
\(933\) 6.64787 + 6.64787i 0.217641 + 0.217641i
\(934\) 0 0
\(935\) 40.6122i 1.32816i
\(936\) 0 0
\(937\) 2.15821i 0.0705055i 0.999378 + 0.0352528i \(0.0112236\pi\)
−0.999378 + 0.0352528i \(0.988776\pi\)
\(938\) 0 0
\(939\) 11.1253 + 11.1253i 0.363060 + 0.363060i
\(940\) 0 0
\(941\) −6.70952 + 6.70952i −0.218724 + 0.218724i −0.807961 0.589237i \(-0.799429\pi\)
0.589237 + 0.807961i \(0.299429\pi\)
\(942\) 0 0
\(943\) −7.70478 −0.250902
\(944\) 0 0
\(945\) 27.5379 0.895807
\(946\) 0 0
\(947\) 11.6213 11.6213i 0.377642 0.377642i −0.492609 0.870251i \(-0.663957\pi\)
0.870251 + 0.492609i \(0.163957\pi\)
\(948\) 0 0
\(949\) 21.5240 + 21.5240i 0.698700 + 0.698700i
\(950\) 0 0
\(951\) 9.44634i 0.306319i
\(952\) 0 0
\(953\) 20.7869i 0.673354i −0.941620 0.336677i \(-0.890697\pi\)
0.941620 0.336677i \(-0.109303\pi\)
\(954\) 0 0
\(955\) −43.5093 43.5093i −1.40793 1.40793i
\(956\) 0 0
\(957\) −6.46299 + 6.46299i −0.208919 + 0.208919i
\(958\) 0 0
\(959\) −30.8065 −0.994793
\(960\) 0 0
\(961\) −23.4400 −0.756130
\(962\) 0 0
\(963\) 14.0857 14.0857i 0.453904 0.453904i
\(964\) 0 0
\(965\) 43.5198 + 43.5198i 1.40095 + 1.40095i
\(966\) 0 0
\(967\) 34.3551i 1.10479i 0.833584 + 0.552393i \(0.186285\pi\)
−0.833584 + 0.552393i \(0.813715\pi\)
\(968\) 0 0
\(969\) 5.56277i 0.178702i
\(970\) 0 0
\(971\) 5.58481 + 5.58481i 0.179225 + 0.179225i 0.791018 0.611793i \(-0.209551\pi\)
−0.611793 + 0.791018i \(0.709551\pi\)
\(972\) 0 0
\(973\) 16.9614 16.9614i 0.543757 0.543757i
\(974\) 0 0
\(975\) −34.4046 −1.10183
\(976\) 0 0
\(977\) −28.9353 −0.925723 −0.462861 0.886431i \(-0.653177\pi\)
−0.462861 + 0.886431i \(0.653177\pi\)
\(978\) 0 0
\(979\) −5.59770 + 5.59770i −0.178903 + 0.178903i
\(980\) 0 0
\(981\) −10.5693 10.5693i −0.337451 0.337451i
\(982\) 0 0
\(983\) 37.8206i 1.20629i −0.797631 0.603145i \(-0.793914\pi\)
0.797631 0.603145i \(-0.206086\pi\)
\(984\) 0 0
\(985\) 23.9141i 0.761966i
\(986\) 0 0
\(987\) −4.09713 4.09713i −0.130413 0.130413i
\(988\) 0 0
\(989\) −8.96110 + 8.96110i −0.284946 + 0.284946i
\(990\) 0 0
\(991\) −26.7617 −0.850114 −0.425057 0.905166i \(-0.639746\pi\)
−0.425057 + 0.905166i \(0.639746\pi\)
\(992\) 0 0
\(993\) −1.27676 −0.0405168
\(994\) 0 0
\(995\) 5.02273 5.02273i 0.159231 0.159231i
\(996\) 0 0
\(997\) −5.50519 5.50519i −0.174351 0.174351i 0.614537 0.788888i \(-0.289343\pi\)
−0.788888 + 0.614537i \(0.789343\pi\)
\(998\) 0 0
\(999\) 28.7176i 0.908583i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.j.c.369.3 12
4.3 odd 2 368.2.j.c.277.5 yes 12
16.3 odd 4 368.2.j.c.93.5 12
16.13 even 4 inner 1472.2.j.c.1105.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.2.j.c.93.5 12 16.3 odd 4
368.2.j.c.277.5 yes 12 4.3 odd 2
1472.2.j.c.369.3 12 1.1 even 1 trivial
1472.2.j.c.1105.3 12 16.13 even 4 inner