Properties

Label 1472.2.j.c.369.6
Level $1472$
Weight $2$
Character 1472.369
Analytic conductor $11.754$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(369,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.369");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.221124989353984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 2 x^{10} + 2 x^{9} + 12 x^{8} - 8 x^{7} - 14 x^{6} - 16 x^{5} + 48 x^{4} + 16 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 368)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 369.6
Root \(-1.14441 - 0.830857i\) of defining polynomial
Character \(\chi\) \(=\) 1472.369
Dual form 1472.2.j.c.1105.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70582 - 1.70582i) q^{3} +(-2.61219 - 2.61219i) q^{5} +1.66171i q^{7} -2.81967i q^{9} +(-3.35563 - 3.35563i) q^{11} +(1.50815 - 1.50815i) q^{13} -8.91186 q^{15} -0.812201 q^{17} +(3.81967 - 3.81967i) q^{19} +(2.83459 + 2.83459i) q^{21} -1.00000i q^{23} +8.64704i q^{25} +(0.307612 + 0.307612i) q^{27} +(-7.12138 + 7.12138i) q^{29} -10.7058 q^{31} -11.4482 q^{33} +(4.34071 - 4.34071i) q^{35} +(3.80475 + 3.80475i) q^{37} -5.14528i q^{39} +0.765711i q^{41} +(-3.75797 - 3.75797i) q^{43} +(-7.36550 + 7.36550i) q^{45} -2.18890 q^{47} +4.23871 q^{49} +(-1.38547 + 1.38547i) q^{51} +(-1.48798 - 1.48798i) q^{53} +17.5311i q^{55} -13.0314i q^{57} +(-9.46671 - 9.46671i) q^{59} +(0.442628 - 0.442628i) q^{61} +4.68548 q^{63} -7.87914 q^{65} +(7.97172 - 7.97172i) q^{67} +(-1.70582 - 1.70582i) q^{69} -2.88774i q^{71} +7.28135i q^{73} +(14.7503 + 14.7503i) q^{75} +(5.57609 - 5.57609i) q^{77} -1.36206 q^{79} +9.50847 q^{81} +(-6.09040 + 6.09040i) q^{83} +(2.12162 + 2.12162i) q^{85} +24.2956i q^{87} -4.98060i q^{89} +(2.50612 + 2.50612i) q^{91} +(-18.2621 + 18.2621i) q^{93} -19.9554 q^{95} -7.46120 q^{97} +(-9.46176 + 9.46176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 4 q^{5} + 4 q^{11} + 18 q^{13} - 8 q^{17} + 8 q^{19} + 8 q^{21} - 14 q^{27} + 2 q^{29} - 20 q^{31} - 36 q^{33} - 4 q^{35} - 4 q^{37} - 20 q^{43} - 20 q^{45} + 16 q^{47} + 52 q^{49} + 4 q^{51}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70582 1.70582i 0.984858 0.984858i −0.0150292 0.999887i \(-0.504784\pi\)
0.999887 + 0.0150292i \(0.00478414\pi\)
\(4\) 0 0
\(5\) −2.61219 2.61219i −1.16821 1.16821i −0.982630 0.185575i \(-0.940585\pi\)
−0.185575 0.982630i \(-0.559415\pi\)
\(6\) 0 0
\(7\) 1.66171i 0.628069i 0.949412 + 0.314034i \(0.101681\pi\)
−0.949412 + 0.314034i \(0.898319\pi\)
\(8\) 0 0
\(9\) 2.81967i 0.939890i
\(10\) 0 0
\(11\) −3.35563 3.35563i −1.01176 1.01176i −0.999930 0.0118300i \(-0.996234\pi\)
−0.0118300 0.999930i \(-0.503766\pi\)
\(12\) 0 0
\(13\) 1.50815 1.50815i 0.418286 0.418286i −0.466327 0.884613i \(-0.654423\pi\)
0.884613 + 0.466327i \(0.154423\pi\)
\(14\) 0 0
\(15\) −8.91186 −2.30103
\(16\) 0 0
\(17\) −0.812201 −0.196988 −0.0984938 0.995138i \(-0.531402\pi\)
−0.0984938 + 0.995138i \(0.531402\pi\)
\(18\) 0 0
\(19\) 3.81967 3.81967i 0.876292 0.876292i −0.116857 0.993149i \(-0.537282\pi\)
0.993149 + 0.116857i \(0.0372818\pi\)
\(20\) 0 0
\(21\) 2.83459 + 2.83459i 0.618559 + 0.618559i
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 8.64704i 1.72941i
\(26\) 0 0
\(27\) 0.307612 + 0.307612i 0.0592000 + 0.0592000i
\(28\) 0 0
\(29\) −7.12138 + 7.12138i −1.32241 + 1.32241i −0.410584 + 0.911823i \(0.634675\pi\)
−0.911823 + 0.410584i \(0.865325\pi\)
\(30\) 0 0
\(31\) −10.7058 −1.92281 −0.961405 0.275136i \(-0.911277\pi\)
−0.961405 + 0.275136i \(0.911277\pi\)
\(32\) 0 0
\(33\) −11.4482 −1.99288
\(34\) 0 0
\(35\) 4.34071 4.34071i 0.733713 0.733713i
\(36\) 0 0
\(37\) 3.80475 + 3.80475i 0.625497 + 0.625497i 0.946932 0.321435i \(-0.104165\pi\)
−0.321435 + 0.946932i \(0.604165\pi\)
\(38\) 0 0
\(39\) 5.14528i 0.823904i
\(40\) 0 0
\(41\) 0.765711i 0.119584i 0.998211 + 0.0597920i \(0.0190437\pi\)
−0.998211 + 0.0597920i \(0.980956\pi\)
\(42\) 0 0
\(43\) −3.75797 3.75797i −0.573086 0.573086i 0.359904 0.932989i \(-0.382810\pi\)
−0.932989 + 0.359904i \(0.882810\pi\)
\(44\) 0 0
\(45\) −7.36550 + 7.36550i −1.09798 + 1.09798i
\(46\) 0 0
\(47\) −2.18890 −0.319284 −0.159642 0.987175i \(-0.551034\pi\)
−0.159642 + 0.987175i \(0.551034\pi\)
\(48\) 0 0
\(49\) 4.23871 0.605530
\(50\) 0 0
\(51\) −1.38547 + 1.38547i −0.194005 + 0.194005i
\(52\) 0 0
\(53\) −1.48798 1.48798i −0.204390 0.204390i 0.597488 0.801878i \(-0.296166\pi\)
−0.801878 + 0.597488i \(0.796166\pi\)
\(54\) 0 0
\(55\) 17.5311i 2.36389i
\(56\) 0 0
\(57\) 13.0314i 1.72605i
\(58\) 0 0
\(59\) −9.46671 9.46671i −1.23246 1.23246i −0.963016 0.269444i \(-0.913160\pi\)
−0.269444 0.963016i \(-0.586840\pi\)
\(60\) 0 0
\(61\) 0.442628 0.442628i 0.0566727 0.0566727i −0.678202 0.734875i \(-0.737241\pi\)
0.734875 + 0.678202i \(0.237241\pi\)
\(62\) 0 0
\(63\) 4.68548 0.590316
\(64\) 0 0
\(65\) −7.87914 −0.977287
\(66\) 0 0
\(67\) 7.97172 7.97172i 0.973901 0.973901i −0.0257672 0.999668i \(-0.508203\pi\)
0.999668 + 0.0257672i \(0.00820286\pi\)
\(68\) 0 0
\(69\) −1.70582 1.70582i −0.205357 0.205357i
\(70\) 0 0
\(71\) 2.88774i 0.342712i −0.985209 0.171356i \(-0.945185\pi\)
0.985209 0.171356i \(-0.0548149\pi\)
\(72\) 0 0
\(73\) 7.28135i 0.852218i 0.904672 + 0.426109i \(0.140116\pi\)
−0.904672 + 0.426109i \(0.859884\pi\)
\(74\) 0 0
\(75\) 14.7503 + 14.7503i 1.70322 + 1.70322i
\(76\) 0 0
\(77\) 5.57609 5.57609i 0.635455 0.635455i
\(78\) 0 0
\(79\) −1.36206 −0.153243 −0.0766217 0.997060i \(-0.524413\pi\)
−0.0766217 + 0.997060i \(0.524413\pi\)
\(80\) 0 0
\(81\) 9.50847 1.05650
\(82\) 0 0
\(83\) −6.09040 + 6.09040i −0.668508 + 0.668508i −0.957371 0.288863i \(-0.906723\pi\)
0.288863 + 0.957371i \(0.406723\pi\)
\(84\) 0 0
\(85\) 2.12162 + 2.12162i 0.230122 + 0.230122i
\(86\) 0 0
\(87\) 24.2956i 2.60477i
\(88\) 0 0
\(89\) 4.98060i 0.527942i −0.964531 0.263971i \(-0.914968\pi\)
0.964531 0.263971i \(-0.0850324\pi\)
\(90\) 0 0
\(91\) 2.50612 + 2.50612i 0.262712 + 0.262712i
\(92\) 0 0
\(93\) −18.2621 + 18.2621i −1.89370 + 1.89370i
\(94\) 0 0
\(95\) −19.9554 −2.04738
\(96\) 0 0
\(97\) −7.46120 −0.757571 −0.378785 0.925485i \(-0.623658\pi\)
−0.378785 + 0.925485i \(0.623658\pi\)
\(98\) 0 0
\(99\) −9.46176 + 9.46176i −0.950943 + 0.950943i
\(100\) 0 0
\(101\) −4.78167 4.78167i −0.475794 0.475794i 0.427989 0.903784i \(-0.359222\pi\)
−0.903784 + 0.427989i \(0.859222\pi\)
\(102\) 0 0
\(103\) 2.63340i 0.259477i −0.991548 0.129738i \(-0.958586\pi\)
0.991548 0.129738i \(-0.0414137\pi\)
\(104\) 0 0
\(105\) 14.8090i 1.44521i
\(106\) 0 0
\(107\) −2.82518 2.82518i −0.273121 0.273121i 0.557234 0.830355i \(-0.311862\pi\)
−0.830355 + 0.557234i \(0.811862\pi\)
\(108\) 0 0
\(109\) 3.66953 3.66953i 0.351477 0.351477i −0.509182 0.860659i \(-0.670052\pi\)
0.860659 + 0.509182i \(0.170052\pi\)
\(110\) 0 0
\(111\) 12.9805 1.23205
\(112\) 0 0
\(113\) 12.9321 1.21655 0.608273 0.793728i \(-0.291863\pi\)
0.608273 + 0.793728i \(0.291863\pi\)
\(114\) 0 0
\(115\) −2.61219 + 2.61219i −0.243588 + 0.243588i
\(116\) 0 0
\(117\) −4.25249 4.25249i −0.393143 0.393143i
\(118\) 0 0
\(119\) 1.34965i 0.123722i
\(120\) 0 0
\(121\) 11.5205i 1.04732i
\(122\) 0 0
\(123\) 1.30617 + 1.30617i 0.117773 + 0.117773i
\(124\) 0 0
\(125\) 9.52674 9.52674i 0.852097 0.852097i
\(126\) 0 0
\(127\) 16.2134 1.43870 0.719352 0.694646i \(-0.244439\pi\)
0.719352 + 0.694646i \(0.244439\pi\)
\(128\) 0 0
\(129\) −12.8209 −1.12882
\(130\) 0 0
\(131\) −4.32736 + 4.32736i −0.378083 + 0.378083i −0.870410 0.492327i \(-0.836146\pi\)
0.492327 + 0.870410i \(0.336146\pi\)
\(132\) 0 0
\(133\) 6.34720 + 6.34720i 0.550372 + 0.550372i
\(134\) 0 0
\(135\) 1.60708i 0.138315i
\(136\) 0 0
\(137\) 11.7584i 1.00459i −0.864698 0.502293i \(-0.832490\pi\)
0.864698 0.502293i \(-0.167510\pi\)
\(138\) 0 0
\(139\) 7.86498 + 7.86498i 0.667099 + 0.667099i 0.957044 0.289944i \(-0.0936368\pi\)
−0.289944 + 0.957044i \(0.593637\pi\)
\(140\) 0 0
\(141\) −3.73387 + 3.73387i −0.314449 + 0.314449i
\(142\) 0 0
\(143\) −10.1216 −0.846410
\(144\) 0 0
\(145\) 37.2047 3.08968
\(146\) 0 0
\(147\) 7.23049 7.23049i 0.596360 0.596360i
\(148\) 0 0
\(149\) −0.992711 0.992711i −0.0813261 0.0813261i 0.665274 0.746600i \(-0.268315\pi\)
−0.746600 + 0.665274i \(0.768315\pi\)
\(150\) 0 0
\(151\) 20.4191i 1.66168i −0.556508 0.830842i \(-0.687859\pi\)
0.556508 0.830842i \(-0.312141\pi\)
\(152\) 0 0
\(153\) 2.29014i 0.185147i
\(154\) 0 0
\(155\) 27.9654 + 27.9654i 2.24624 + 2.24624i
\(156\) 0 0
\(157\) 12.4153 12.4153i 0.990847 0.990847i −0.00911182 0.999958i \(-0.502900\pi\)
0.999958 + 0.00911182i \(0.00290042\pi\)
\(158\) 0 0
\(159\) −5.07647 −0.402590
\(160\) 0 0
\(161\) 1.66171 0.130961
\(162\) 0 0
\(163\) 5.10777 5.10777i 0.400072 0.400072i −0.478187 0.878258i \(-0.658706\pi\)
0.878258 + 0.478187i \(0.158706\pi\)
\(164\) 0 0
\(165\) 29.9049 + 29.9049i 2.32809 + 2.32809i
\(166\) 0 0
\(167\) 21.0732i 1.63069i −0.578972 0.815347i \(-0.696546\pi\)
0.578972 0.815347i \(-0.303454\pi\)
\(168\) 0 0
\(169\) 8.45096i 0.650074i
\(170\) 0 0
\(171\) −10.7702 10.7702i −0.823618 0.823618i
\(172\) 0 0
\(173\) 0.742883 0.742883i 0.0564804 0.0564804i −0.678302 0.734783i \(-0.737284\pi\)
0.734783 + 0.678302i \(0.237284\pi\)
\(174\) 0 0
\(175\) −14.3689 −1.08619
\(176\) 0 0
\(177\) −32.2971 −2.42760
\(178\) 0 0
\(179\) 5.87835 5.87835i 0.439369 0.439369i −0.452431 0.891799i \(-0.649443\pi\)
0.891799 + 0.452431i \(0.149443\pi\)
\(180\) 0 0
\(181\) −12.5257 12.5257i −0.931028 0.931028i 0.0667421 0.997770i \(-0.478740\pi\)
−0.997770 + 0.0667421i \(0.978740\pi\)
\(182\) 0 0
\(183\) 1.51009i 0.111629i
\(184\) 0 0
\(185\) 19.8774i 1.46142i
\(186\) 0 0
\(187\) 2.72544 + 2.72544i 0.199304 + 0.199304i
\(188\) 0 0
\(189\) −0.511163 + 0.511163i −0.0371817 + 0.0371817i
\(190\) 0 0
\(191\) −1.64397 −0.118954 −0.0594768 0.998230i \(-0.518943\pi\)
−0.0594768 + 0.998230i \(0.518943\pi\)
\(192\) 0 0
\(193\) −19.0438 −1.37080 −0.685401 0.728166i \(-0.740373\pi\)
−0.685401 + 0.728166i \(0.740373\pi\)
\(194\) 0 0
\(195\) −13.4404 + 13.4404i −0.962489 + 0.962489i
\(196\) 0 0
\(197\) 12.5735 + 12.5735i 0.895824 + 0.895824i 0.995064 0.0992395i \(-0.0316410\pi\)
−0.0992395 + 0.995064i \(0.531641\pi\)
\(198\) 0 0
\(199\) 15.8114i 1.12084i −0.828209 0.560419i \(-0.810640\pi\)
0.828209 0.560419i \(-0.189360\pi\)
\(200\) 0 0
\(201\) 27.1967i 1.91831i
\(202\) 0 0
\(203\) −11.8337 11.8337i −0.830562 0.830562i
\(204\) 0 0
\(205\) 2.00018 2.00018i 0.139699 0.139699i
\(206\) 0 0
\(207\) −2.81967 −0.195981
\(208\) 0 0
\(209\) −25.6348 −1.77320
\(210\) 0 0
\(211\) −8.18793 + 8.18793i −0.563680 + 0.563680i −0.930351 0.366671i \(-0.880498\pi\)
0.366671 + 0.930351i \(0.380498\pi\)
\(212\) 0 0
\(213\) −4.92598 4.92598i −0.337523 0.337523i
\(214\) 0 0
\(215\) 19.6331i 1.33896i
\(216\) 0 0
\(217\) 17.7899i 1.20766i
\(218\) 0 0
\(219\) 12.4207 + 12.4207i 0.839314 + 0.839314i
\(220\) 0 0
\(221\) −1.22492 + 1.22492i −0.0823972 + 0.0823972i
\(222\) 0 0
\(223\) 13.6729 0.915607 0.457804 0.889053i \(-0.348636\pi\)
0.457804 + 0.889053i \(0.348636\pi\)
\(224\) 0 0
\(225\) 24.3818 1.62545
\(226\) 0 0
\(227\) 10.5639 10.5639i 0.701148 0.701148i −0.263509 0.964657i \(-0.584880\pi\)
0.964657 + 0.263509i \(0.0848798\pi\)
\(228\) 0 0
\(229\) −18.5926 18.5926i −1.22863 1.22863i −0.964480 0.264155i \(-0.914907\pi\)
−0.264155 0.964480i \(-0.585093\pi\)
\(230\) 0 0
\(231\) 19.0237i 1.25167i
\(232\) 0 0
\(233\) 15.7207i 1.02990i 0.857220 + 0.514950i \(0.172189\pi\)
−0.857220 + 0.514950i \(0.827811\pi\)
\(234\) 0 0
\(235\) 5.71781 + 5.71781i 0.372989 + 0.372989i
\(236\) 0 0
\(237\) −2.32343 + 2.32343i −0.150923 + 0.150923i
\(238\) 0 0
\(239\) 3.11445 0.201457 0.100729 0.994914i \(-0.467883\pi\)
0.100729 + 0.994914i \(0.467883\pi\)
\(240\) 0 0
\(241\) −11.6111 −0.747938 −0.373969 0.927441i \(-0.622003\pi\)
−0.373969 + 0.927441i \(0.622003\pi\)
\(242\) 0 0
\(243\) 15.2969 15.2969i 0.981299 0.981299i
\(244\) 0 0
\(245\) −11.0723 11.0723i −0.707383 0.707383i
\(246\) 0 0
\(247\) 11.5213i 0.733081i
\(248\) 0 0
\(249\) 20.7783i 1.31677i
\(250\) 0 0
\(251\) −14.1075 14.1075i −0.890454 0.890454i 0.104111 0.994566i \(-0.466800\pi\)
−0.994566 + 0.104111i \(0.966800\pi\)
\(252\) 0 0
\(253\) −3.35563 + 3.35563i −0.210967 + 0.210967i
\(254\) 0 0
\(255\) 7.23822 0.453275
\(256\) 0 0
\(257\) 8.50878 0.530763 0.265382 0.964143i \(-0.414502\pi\)
0.265382 + 0.964143i \(0.414502\pi\)
\(258\) 0 0
\(259\) −6.32240 + 6.32240i −0.392855 + 0.392855i
\(260\) 0 0
\(261\) 20.0799 + 20.0799i 1.24292 + 1.24292i
\(262\) 0 0
\(263\) 5.49050i 0.338559i 0.985568 + 0.169279i \(0.0541440\pi\)
−0.985568 + 0.169279i \(0.945856\pi\)
\(264\) 0 0
\(265\) 7.77377i 0.477539i
\(266\) 0 0
\(267\) −8.49602 8.49602i −0.519948 0.519948i
\(268\) 0 0
\(269\) −1.16630 + 1.16630i −0.0711108 + 0.0711108i −0.741768 0.670657i \(-0.766012\pi\)
0.670657 + 0.741768i \(0.266012\pi\)
\(270\) 0 0
\(271\) 0.427919 0.0259942 0.0129971 0.999916i \(-0.495863\pi\)
0.0129971 + 0.999916i \(0.495863\pi\)
\(272\) 0 0
\(273\) 8.54998 0.517468
\(274\) 0 0
\(275\) 29.0162 29.0162i 1.74974 1.74974i
\(276\) 0 0
\(277\) 14.2225 + 14.2225i 0.854549 + 0.854549i 0.990690 0.136141i \(-0.0434699\pi\)
−0.136141 + 0.990690i \(0.543470\pi\)
\(278\) 0 0
\(279\) 30.1867i 1.80723i
\(280\) 0 0
\(281\) 25.6942i 1.53279i −0.642370 0.766395i \(-0.722049\pi\)
0.642370 0.766395i \(-0.277951\pi\)
\(282\) 0 0
\(283\) −4.50559 4.50559i −0.267830 0.267830i 0.560396 0.828225i \(-0.310649\pi\)
−0.828225 + 0.560396i \(0.810649\pi\)
\(284\) 0 0
\(285\) −34.0404 + 34.0404i −2.01638 + 2.01638i
\(286\) 0 0
\(287\) −1.27239 −0.0751070
\(288\) 0 0
\(289\) −16.3403 −0.961196
\(290\) 0 0
\(291\) −12.7275 + 12.7275i −0.746099 + 0.746099i
\(292\) 0 0
\(293\) 14.1998 + 14.1998i 0.829559 + 0.829559i 0.987456 0.157897i \(-0.0504713\pi\)
−0.157897 + 0.987456i \(0.550471\pi\)
\(294\) 0 0
\(295\) 49.4576i 2.87953i
\(296\) 0 0
\(297\) 2.06446i 0.119792i
\(298\) 0 0
\(299\) −1.50815 1.50815i −0.0872186 0.0872186i
\(300\) 0 0
\(301\) 6.24468 6.24468i 0.359937 0.359937i
\(302\) 0 0
\(303\) −16.3134 −0.937179
\(304\) 0 0
\(305\) −2.31245 −0.132411
\(306\) 0 0
\(307\) −8.90060 + 8.90060i −0.507984 + 0.507984i −0.913907 0.405923i \(-0.866950\pi\)
0.405923 + 0.913907i \(0.366950\pi\)
\(308\) 0 0
\(309\) −4.49212 4.49212i −0.255548 0.255548i
\(310\) 0 0
\(311\) 4.52341i 0.256499i −0.991742 0.128249i \(-0.959064\pi\)
0.991742 0.128249i \(-0.0409358\pi\)
\(312\) 0 0
\(313\) 10.0966i 0.570694i −0.958424 0.285347i \(-0.907891\pi\)
0.958424 0.285347i \(-0.0921089\pi\)
\(314\) 0 0
\(315\) −12.2394 12.2394i −0.689610 0.689610i
\(316\) 0 0
\(317\) 13.8631 13.8631i 0.778627 0.778627i −0.200970 0.979597i \(-0.564409\pi\)
0.979597 + 0.200970i \(0.0644094\pi\)
\(318\) 0 0
\(319\) 47.7934 2.67592
\(320\) 0 0
\(321\) −9.63853 −0.537970
\(322\) 0 0
\(323\) −3.10234 + 3.10234i −0.172619 + 0.172619i
\(324\) 0 0
\(325\) 13.0410 + 13.0410i 0.723386 + 0.723386i
\(326\) 0 0
\(327\) 12.5191i 0.692310i
\(328\) 0 0
\(329\) 3.63732i 0.200532i
\(330\) 0 0
\(331\) −7.42842 7.42842i −0.408303 0.408303i 0.472843 0.881146i \(-0.343228\pi\)
−0.881146 + 0.472843i \(0.843228\pi\)
\(332\) 0 0
\(333\) 10.7281 10.7281i 0.587898 0.587898i
\(334\) 0 0
\(335\) −41.6472 −2.27543
\(336\) 0 0
\(337\) 27.7241 1.51023 0.755113 0.655595i \(-0.227582\pi\)
0.755113 + 0.655595i \(0.227582\pi\)
\(338\) 0 0
\(339\) 22.0598 22.0598i 1.19812 1.19812i
\(340\) 0 0
\(341\) 35.9245 + 35.9245i 1.94542 + 1.94542i
\(342\) 0 0
\(343\) 18.6755i 1.00838i
\(344\) 0 0
\(345\) 8.91186i 0.479798i
\(346\) 0 0
\(347\) 7.58296 + 7.58296i 0.407075 + 0.407075i 0.880717 0.473643i \(-0.157061\pi\)
−0.473643 + 0.880717i \(0.657061\pi\)
\(348\) 0 0
\(349\) 23.1963 23.1963i 1.24167 1.24167i 0.282364 0.959307i \(-0.408882\pi\)
0.959307 0.282364i \(-0.0911184\pi\)
\(350\) 0 0
\(351\) 0.927851 0.0495250
\(352\) 0 0
\(353\) −14.5140 −0.772500 −0.386250 0.922394i \(-0.626230\pi\)
−0.386250 + 0.922394i \(0.626230\pi\)
\(354\) 0 0
\(355\) −7.54333 + 7.54333i −0.400358 + 0.400358i
\(356\) 0 0
\(357\) −2.30226 2.30226i −0.121848 0.121848i
\(358\) 0 0
\(359\) 5.94898i 0.313975i 0.987601 + 0.156988i \(0.0501783\pi\)
−0.987601 + 0.156988i \(0.949822\pi\)
\(360\) 0 0
\(361\) 10.1798i 0.535776i
\(362\) 0 0
\(363\) 19.6519 + 19.6519i 1.03146 + 1.03146i
\(364\) 0 0
\(365\) 19.0203 19.0203i 0.995566 0.995566i
\(366\) 0 0
\(367\) −22.5189 −1.17548 −0.587738 0.809052i \(-0.699981\pi\)
−0.587738 + 0.809052i \(0.699981\pi\)
\(368\) 0 0
\(369\) 2.15905 0.112396
\(370\) 0 0
\(371\) 2.47260 2.47260i 0.128371 0.128371i
\(372\) 0 0
\(373\) −3.70962 3.70962i −0.192077 0.192077i 0.604516 0.796593i \(-0.293366\pi\)
−0.796593 + 0.604516i \(0.793366\pi\)
\(374\) 0 0
\(375\) 32.5019i 1.67839i
\(376\) 0 0
\(377\) 21.4802i 1.10629i
\(378\) 0 0
\(379\) 5.06716 + 5.06716i 0.260282 + 0.260282i 0.825169 0.564886i \(-0.191080\pi\)
−0.564886 + 0.825169i \(0.691080\pi\)
\(380\) 0 0
\(381\) 27.6571 27.6571i 1.41692 1.41692i
\(382\) 0 0
\(383\) 15.1644 0.774864 0.387432 0.921898i \(-0.373362\pi\)
0.387432 + 0.921898i \(0.373362\pi\)
\(384\) 0 0
\(385\) −29.1316 −1.48468
\(386\) 0 0
\(387\) −10.5962 + 10.5962i −0.538637 + 0.538637i
\(388\) 0 0
\(389\) −24.4010 24.4010i −1.23718 1.23718i −0.961149 0.276029i \(-0.910982\pi\)
−0.276029 0.961149i \(-0.589018\pi\)
\(390\) 0 0
\(391\) 0.812201i 0.0410748i
\(392\) 0 0
\(393\) 14.7634i 0.744716i
\(394\) 0 0
\(395\) 3.55794 + 3.55794i 0.179020 + 0.179020i
\(396\) 0 0
\(397\) −15.6879 + 15.6879i −0.787352 + 0.787352i −0.981059 0.193707i \(-0.937949\pi\)
0.193707 + 0.981059i \(0.437949\pi\)
\(398\) 0 0
\(399\) 21.6544 1.08408
\(400\) 0 0
\(401\) 22.7601 1.13659 0.568293 0.822826i \(-0.307604\pi\)
0.568293 + 0.822826i \(0.307604\pi\)
\(402\) 0 0
\(403\) −16.1459 + 16.1459i −0.804284 + 0.804284i
\(404\) 0 0
\(405\) −24.8379 24.8379i −1.23421 1.23421i
\(406\) 0 0
\(407\) 25.5346i 1.26571i
\(408\) 0 0
\(409\) 19.7572i 0.976929i 0.872584 + 0.488465i \(0.162443\pi\)
−0.872584 + 0.488465i \(0.837557\pi\)
\(410\) 0 0
\(411\) −20.0577 20.0577i −0.989374 0.989374i
\(412\) 0 0
\(413\) 15.7310 15.7310i 0.774070 0.774070i
\(414\) 0 0
\(415\) 31.8185 1.56191
\(416\) 0 0
\(417\) 26.8326 1.31400
\(418\) 0 0
\(419\) −13.2965 + 13.2965i −0.649578 + 0.649578i −0.952891 0.303313i \(-0.901907\pi\)
0.303313 + 0.952891i \(0.401907\pi\)
\(420\) 0 0
\(421\) 10.7611 + 10.7611i 0.524465 + 0.524465i 0.918917 0.394451i \(-0.129065\pi\)
−0.394451 + 0.918917i \(0.629065\pi\)
\(422\) 0 0
\(423\) 6.17197i 0.300091i
\(424\) 0 0
\(425\) 7.02313i 0.340672i
\(426\) 0 0
\(427\) 0.735521 + 0.735521i 0.0355943 + 0.0355943i
\(428\) 0 0
\(429\) −17.2656 + 17.2656i −0.833593 + 0.833593i
\(430\) 0 0
\(431\) 30.6031 1.47410 0.737050 0.675838i \(-0.236218\pi\)
0.737050 + 0.675838i \(0.236218\pi\)
\(432\) 0 0
\(433\) −18.9640 −0.911352 −0.455676 0.890146i \(-0.650602\pi\)
−0.455676 + 0.890146i \(0.650602\pi\)
\(434\) 0 0
\(435\) 63.4647 63.4647i 3.04290 3.04290i
\(436\) 0 0
\(437\) −3.81967 3.81967i −0.182720 0.182720i
\(438\) 0 0
\(439\) 9.69923i 0.462919i 0.972845 + 0.231460i \(0.0743501\pi\)
−0.972845 + 0.231460i \(0.925650\pi\)
\(440\) 0 0
\(441\) 11.9518i 0.569131i
\(442\) 0 0
\(443\) 7.91936 + 7.91936i 0.376260 + 0.376260i 0.869751 0.493491i \(-0.164279\pi\)
−0.493491 + 0.869751i \(0.664279\pi\)
\(444\) 0 0
\(445\) −13.0103 + 13.0103i −0.616745 + 0.616745i
\(446\) 0 0
\(447\) −3.38678 −0.160189
\(448\) 0 0
\(449\) 34.5114 1.62869 0.814346 0.580380i \(-0.197096\pi\)
0.814346 + 0.580380i \(0.197096\pi\)
\(450\) 0 0
\(451\) 2.56944 2.56944i 0.120990 0.120990i
\(452\) 0 0
\(453\) −34.8314 34.8314i −1.63652 1.63652i
\(454\) 0 0
\(455\) 13.0929i 0.613804i
\(456\) 0 0
\(457\) 33.1088i 1.54877i 0.632717 + 0.774383i \(0.281939\pi\)
−0.632717 + 0.774383i \(0.718061\pi\)
\(458\) 0 0
\(459\) −0.249843 0.249843i −0.0116617 0.0116617i
\(460\) 0 0
\(461\) 9.64848 9.64848i 0.449374 0.449374i −0.445772 0.895147i \(-0.647071\pi\)
0.895147 + 0.445772i \(0.147071\pi\)
\(462\) 0 0
\(463\) −26.3833 −1.22613 −0.613067 0.790031i \(-0.710065\pi\)
−0.613067 + 0.790031i \(0.710065\pi\)
\(464\) 0 0
\(465\) 95.4082 4.42445
\(466\) 0 0
\(467\) 9.91627 9.91627i 0.458870 0.458870i −0.439414 0.898285i \(-0.644814\pi\)
0.898285 + 0.439414i \(0.144814\pi\)
\(468\) 0 0
\(469\) 13.2467 + 13.2467i 0.611677 + 0.611677i
\(470\) 0 0
\(471\) 42.3565i 1.95169i
\(472\) 0 0
\(473\) 25.2207i 1.15965i
\(474\) 0 0
\(475\) 33.0288 + 33.0288i 1.51547 + 1.51547i
\(476\) 0 0
\(477\) −4.19561 + 4.19561i −0.192104 + 0.192104i
\(478\) 0 0
\(479\) 6.32910 0.289184 0.144592 0.989491i \(-0.453813\pi\)
0.144592 + 0.989491i \(0.453813\pi\)
\(480\) 0 0
\(481\) 11.4763 0.523273
\(482\) 0 0
\(483\) 2.83459 2.83459i 0.128978 0.128978i
\(484\) 0 0
\(485\) 19.4901 + 19.4901i 0.884998 + 0.884998i
\(486\) 0 0
\(487\) 43.0783i 1.95207i −0.217623 0.976033i \(-0.569830\pi\)
0.217623 0.976033i \(-0.430170\pi\)
\(488\) 0 0
\(489\) 17.4259i 0.788027i
\(490\) 0 0
\(491\) −4.44148 4.44148i −0.200441 0.200441i 0.599748 0.800189i \(-0.295268\pi\)
−0.800189 + 0.599748i \(0.795268\pi\)
\(492\) 0 0
\(493\) 5.78399 5.78399i 0.260498 0.260498i
\(494\) 0 0
\(495\) 49.4318 2.22179
\(496\) 0 0
\(497\) 4.79861 0.215247
\(498\) 0 0
\(499\) 7.83750 7.83750i 0.350855 0.350855i −0.509573 0.860428i \(-0.670197\pi\)
0.860428 + 0.509573i \(0.170197\pi\)
\(500\) 0 0
\(501\) −35.9472 35.9472i −1.60600 1.60600i
\(502\) 0 0
\(503\) 2.51611i 0.112188i 0.998425 + 0.0560939i \(0.0178646\pi\)
−0.998425 + 0.0560939i \(0.982135\pi\)
\(504\) 0 0
\(505\) 24.9812i 1.11165i
\(506\) 0 0
\(507\) 14.4159 + 14.4159i 0.640230 + 0.640230i
\(508\) 0 0
\(509\) −18.5730 + 18.5730i −0.823235 + 0.823235i −0.986571 0.163336i \(-0.947775\pi\)
0.163336 + 0.986571i \(0.447775\pi\)
\(510\) 0 0
\(511\) −12.0995 −0.535252
\(512\) 0 0
\(513\) 2.34995 0.103753
\(514\) 0 0
\(515\) −6.87893 + 6.87893i −0.303122 + 0.303122i
\(516\) 0 0
\(517\) 7.34513 + 7.34513i 0.323038 + 0.323038i
\(518\) 0 0
\(519\) 2.53446i 0.111250i
\(520\) 0 0
\(521\) 26.4008i 1.15664i 0.815810 + 0.578320i \(0.196292\pi\)
−0.815810 + 0.578320i \(0.803708\pi\)
\(522\) 0 0
\(523\) −29.1181 29.1181i −1.27324 1.27324i −0.944376 0.328869i \(-0.893333\pi\)
−0.328869 0.944376i \(-0.606667\pi\)
\(524\) 0 0
\(525\) −24.5108 + 24.5108i −1.06974 + 1.06974i
\(526\) 0 0
\(527\) 8.69523 0.378770
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −26.6930 + 26.6930i −1.15838 + 1.15838i
\(532\) 0 0
\(533\) 1.15481 + 1.15481i 0.0500203 + 0.0500203i
\(534\) 0 0
\(535\) 14.7598i 0.638122i
\(536\) 0 0
\(537\) 20.0549i 0.865431i
\(538\) 0 0
\(539\) −14.2235 14.2235i −0.612651 0.612651i
\(540\) 0 0
\(541\) −16.9801 + 16.9801i −0.730031 + 0.730031i −0.970626 0.240595i \(-0.922658\pi\)
0.240595 + 0.970626i \(0.422658\pi\)
\(542\) 0 0
\(543\) −42.7333 −1.83386
\(544\) 0 0
\(545\) −19.1710 −0.821194
\(546\) 0 0
\(547\) 1.44323 1.44323i 0.0617081 0.0617081i −0.675579 0.737287i \(-0.736106\pi\)
0.737287 + 0.675579i \(0.236106\pi\)
\(548\) 0 0
\(549\) −1.24806 1.24806i −0.0532661 0.0532661i
\(550\) 0 0
\(551\) 54.4026i 2.31763i
\(552\) 0 0
\(553\) 2.26335i 0.0962473i
\(554\) 0 0
\(555\) −33.9074 33.9074i −1.43929 1.43929i
\(556\) 0 0
\(557\) 5.09710 5.09710i 0.215971 0.215971i −0.590827 0.806798i \(-0.701198\pi\)
0.806798 + 0.590827i \(0.201198\pi\)
\(558\) 0 0
\(559\) −11.3352 −0.479427
\(560\) 0 0
\(561\) 9.29826 0.392573
\(562\) 0 0
\(563\) −6.95433 + 6.95433i −0.293090 + 0.293090i −0.838300 0.545210i \(-0.816450\pi\)
0.545210 + 0.838300i \(0.316450\pi\)
\(564\) 0 0
\(565\) −33.7809 33.7809i −1.42117 1.42117i
\(566\) 0 0
\(567\) 15.8004i 0.663553i
\(568\) 0 0
\(569\) 0.100497i 0.00421306i 0.999998 + 0.00210653i \(0.000670529\pi\)
−0.999998 + 0.00210653i \(0.999329\pi\)
\(570\) 0 0
\(571\) 29.6374 + 29.6374i 1.24029 + 1.24029i 0.959881 + 0.280406i \(0.0904691\pi\)
0.280406 + 0.959881i \(0.409531\pi\)
\(572\) 0 0
\(573\) −2.80432 + 2.80432i −0.117152 + 0.117152i
\(574\) 0 0
\(575\) 8.64704 0.360606
\(576\) 0 0
\(577\) 11.2586 0.468702 0.234351 0.972152i \(-0.424703\pi\)
0.234351 + 0.972152i \(0.424703\pi\)
\(578\) 0 0
\(579\) −32.4853 + 32.4853i −1.35004 + 1.35004i
\(580\) 0 0
\(581\) −10.1205 10.1205i −0.419869 0.419869i
\(582\) 0 0
\(583\) 9.98622i 0.413587i
\(584\) 0 0
\(585\) 22.2166i 0.918542i
\(586\) 0 0
\(587\) −2.71169 2.71169i −0.111923 0.111923i 0.648927 0.760850i \(-0.275218\pi\)
−0.760850 + 0.648927i \(0.775218\pi\)
\(588\) 0 0
\(589\) −40.8925 + 40.8925i −1.68494 + 1.68494i
\(590\) 0 0
\(591\) 42.8963 1.76452
\(592\) 0 0
\(593\) −11.6754 −0.479451 −0.239726 0.970841i \(-0.577058\pi\)
−0.239726 + 0.970841i \(0.577058\pi\)
\(594\) 0 0
\(595\) −3.52553 + 3.52553i −0.144532 + 0.144532i
\(596\) 0 0
\(597\) −26.9714 26.9714i −1.10387 1.10387i
\(598\) 0 0
\(599\) 29.4312i 1.20253i 0.799051 + 0.601263i \(0.205336\pi\)
−0.799051 + 0.601263i \(0.794664\pi\)
\(600\) 0 0
\(601\) 7.06623i 0.288237i −0.989560 0.144119i \(-0.953965\pi\)
0.989560 0.144119i \(-0.0460347\pi\)
\(602\) 0 0
\(603\) −22.4776 22.4776i −0.915359 0.915359i
\(604\) 0 0
\(605\) 30.0937 30.0937i 1.22348 1.22348i
\(606\) 0 0
\(607\) −0.575135 −0.0233440 −0.0116720 0.999932i \(-0.503715\pi\)
−0.0116720 + 0.999932i \(0.503715\pi\)
\(608\) 0 0
\(609\) −40.3724 −1.63597
\(610\) 0 0
\(611\) −3.30119 + 3.30119i −0.133552 + 0.133552i
\(612\) 0 0
\(613\) −26.7943 26.7943i −1.08221 1.08221i −0.996303 0.0859064i \(-0.972621\pi\)
−0.0859064 0.996303i \(-0.527379\pi\)
\(614\) 0 0
\(615\) 6.82391i 0.275167i
\(616\) 0 0
\(617\) 39.6599i 1.59665i 0.602229 + 0.798323i \(0.294279\pi\)
−0.602229 + 0.798323i \(0.705721\pi\)
\(618\) 0 0
\(619\) 14.8037 + 14.8037i 0.595011 + 0.595011i 0.938981 0.343970i \(-0.111772\pi\)
−0.343970 + 0.938981i \(0.611772\pi\)
\(620\) 0 0
\(621\) 0.307612 0.307612i 0.0123440 0.0123440i
\(622\) 0 0
\(623\) 8.27633 0.331584
\(624\) 0 0
\(625\) −6.53605 −0.261442
\(626\) 0 0
\(627\) −43.7284 + 43.7284i −1.74634 + 1.74634i
\(628\) 0 0
\(629\) −3.09022 3.09022i −0.123215 0.123215i
\(630\) 0 0
\(631\) 14.6400i 0.582807i −0.956600 0.291404i \(-0.905878\pi\)
0.956600 0.291404i \(-0.0941223\pi\)
\(632\) 0 0
\(633\) 27.9343i 1.11029i
\(634\) 0 0
\(635\) −42.3523 42.3523i −1.68070 1.68070i
\(636\) 0 0
\(637\) 6.39261 6.39261i 0.253284 0.253284i
\(638\) 0 0
\(639\) −8.14248 −0.322112
\(640\) 0 0
\(641\) 43.2014 1.70635 0.853176 0.521622i \(-0.174673\pi\)
0.853176 + 0.521622i \(0.174673\pi\)
\(642\) 0 0
\(643\) 10.5494 10.5494i 0.416029 0.416029i −0.467803 0.883833i \(-0.654954\pi\)
0.883833 + 0.467803i \(0.154954\pi\)
\(644\) 0 0
\(645\) 33.4905 + 33.4905i 1.31869 + 1.31869i
\(646\) 0 0
\(647\) 28.3175i 1.11328i 0.830755 + 0.556638i \(0.187909\pi\)
−0.830755 + 0.556638i \(0.812091\pi\)
\(648\) 0 0
\(649\) 63.5335i 2.49391i
\(650\) 0 0
\(651\) −30.3464 30.3464i −1.18937 1.18937i
\(652\) 0 0
\(653\) 10.8329 10.8329i 0.423926 0.423926i −0.462627 0.886553i \(-0.653093\pi\)
0.886553 + 0.462627i \(0.153093\pi\)
\(654\) 0 0
\(655\) 22.6077 0.883358
\(656\) 0 0
\(657\) 20.5310 0.800991
\(658\) 0 0
\(659\) −21.1434 + 21.1434i −0.823630 + 0.823630i −0.986627 0.162997i \(-0.947884\pi\)
0.162997 + 0.986627i \(0.447884\pi\)
\(660\) 0 0
\(661\) 3.71648 + 3.71648i 0.144554 + 0.144554i 0.775680 0.631126i \(-0.217407\pi\)
−0.631126 + 0.775680i \(0.717407\pi\)
\(662\) 0 0
\(663\) 4.17900i 0.162299i
\(664\) 0 0
\(665\) 33.1601i 1.28589i
\(666\) 0 0
\(667\) 7.12138 + 7.12138i 0.275741 + 0.275741i
\(668\) 0 0
\(669\) 23.3236 23.3236i 0.901743 0.901743i
\(670\) 0 0
\(671\) −2.97059 −0.114678
\(672\) 0 0
\(673\) −18.1480 −0.699552 −0.349776 0.936833i \(-0.613742\pi\)
−0.349776 + 0.936833i \(0.613742\pi\)
\(674\) 0 0
\(675\) −2.65993 + 2.65993i −0.102381 + 0.102381i
\(676\) 0 0
\(677\) −8.16589 8.16589i −0.313841 0.313841i 0.532555 0.846396i \(-0.321232\pi\)
−0.846396 + 0.532555i \(0.821232\pi\)
\(678\) 0 0
\(679\) 12.3984i 0.475806i
\(680\) 0 0
\(681\) 36.0402i 1.38106i
\(682\) 0 0
\(683\) −4.85358 4.85358i −0.185717 0.185717i 0.608125 0.793842i \(-0.291922\pi\)
−0.793842 + 0.608125i \(0.791922\pi\)
\(684\) 0 0
\(685\) −30.7151 + 30.7151i −1.17356 + 1.17356i
\(686\) 0 0
\(687\) −63.4315 −2.42006
\(688\) 0 0
\(689\) −4.48820 −0.170987
\(690\) 0 0
\(691\) −10.8867 + 10.8867i −0.414149 + 0.414149i −0.883181 0.469032i \(-0.844603\pi\)
0.469032 + 0.883181i \(0.344603\pi\)
\(692\) 0 0
\(693\) −15.7227 15.7227i −0.597258 0.597258i
\(694\) 0 0
\(695\) 41.0896i 1.55862i
\(696\) 0 0
\(697\) 0.621911i 0.0235566i
\(698\) 0 0
\(699\) 26.8168 + 26.8168i 1.01430 + 1.01430i
\(700\) 0 0
\(701\) −4.48997 + 4.48997i −0.169584 + 0.169584i −0.786797 0.617212i \(-0.788262\pi\)
0.617212 + 0.786797i \(0.288262\pi\)
\(702\) 0 0
\(703\) 29.0658 1.09624
\(704\) 0 0
\(705\) 19.5072 0.734682
\(706\) 0 0
\(707\) 7.94577 7.94577i 0.298832 0.298832i
\(708\) 0 0
\(709\) 8.56006 + 8.56006i 0.321480 + 0.321480i 0.849335 0.527855i \(-0.177003\pi\)
−0.527855 + 0.849335i \(0.677003\pi\)
\(710\) 0 0
\(711\) 3.84055i 0.144032i
\(712\) 0 0
\(713\) 10.7058i 0.400934i
\(714\) 0 0
\(715\) 26.4395 + 26.4395i 0.988780 + 0.988780i
\(716\) 0 0
\(717\) 5.31271 5.31271i 0.198407 0.198407i
\(718\) 0 0
\(719\) 17.5883 0.655932 0.327966 0.944689i \(-0.393637\pi\)
0.327966 + 0.944689i \(0.393637\pi\)
\(720\) 0 0
\(721\) 4.37596 0.162969
\(722\) 0 0
\(723\) −19.8065 + 19.8065i −0.736612 + 0.736612i
\(724\) 0 0
\(725\) −61.5788 61.5788i −2.28698 2.28698i
\(726\) 0 0
\(727\) 41.4212i 1.53623i 0.640315 + 0.768113i \(0.278804\pi\)
−0.640315 + 0.768113i \(0.721196\pi\)
\(728\) 0 0
\(729\) 23.6624i 0.876384i
\(730\) 0 0
\(731\) 3.05223 + 3.05223i 0.112891 + 0.112891i
\(732\) 0 0
\(733\) 24.4478 24.4478i 0.902998 0.902998i −0.0926961 0.995694i \(-0.529549\pi\)
0.995694 + 0.0926961i \(0.0295485\pi\)
\(734\) 0 0
\(735\) −37.7748 −1.39334
\(736\) 0 0
\(737\) −53.5003 −1.97071
\(738\) 0 0
\(739\) 28.9582 28.9582i 1.06525 1.06525i 0.0675288 0.997717i \(-0.478489\pi\)
0.997717 0.0675288i \(-0.0215114\pi\)
\(740\) 0 0
\(741\) −19.6533 19.6533i −0.721981 0.721981i
\(742\) 0 0
\(743\) 27.0393i 0.991975i 0.868330 + 0.495987i \(0.165194\pi\)
−0.868330 + 0.495987i \(0.834806\pi\)
\(744\) 0 0
\(745\) 5.18629i 0.190011i
\(746\) 0 0
\(747\) 17.1729 + 17.1729i 0.628324 + 0.628324i
\(748\) 0 0
\(749\) 4.69465 4.69465i 0.171539 0.171539i
\(750\) 0 0
\(751\) −8.86802 −0.323598 −0.161799 0.986824i \(-0.551730\pi\)
−0.161799 + 0.986824i \(0.551730\pi\)
\(752\) 0 0
\(753\) −48.1297 −1.75394
\(754\) 0 0
\(755\) −53.3385 + 53.3385i −1.94119 + 1.94119i
\(756\) 0 0
\(757\) −4.85766 4.85766i −0.176555 0.176555i 0.613297 0.789852i \(-0.289843\pi\)
−0.789852 + 0.613297i \(0.789843\pi\)
\(758\) 0 0
\(759\) 11.4482i 0.415544i
\(760\) 0 0
\(761\) 16.9685i 0.615109i −0.951530 0.307554i \(-0.900489\pi\)
0.951530 0.307554i \(-0.0995106\pi\)
\(762\) 0 0
\(763\) 6.09770 + 6.09770i 0.220752 + 0.220752i
\(764\) 0 0
\(765\) 5.98227 5.98227i 0.216289 0.216289i
\(766\) 0 0
\(767\) −28.5544 −1.03104
\(768\) 0 0
\(769\) −31.9813 −1.15328 −0.576638 0.817000i \(-0.695636\pi\)
−0.576638 + 0.817000i \(0.695636\pi\)
\(770\) 0 0
\(771\) 14.5145 14.5145i 0.522726 0.522726i
\(772\) 0 0
\(773\) 21.7694 + 21.7694i 0.782991 + 0.782991i 0.980334 0.197344i \(-0.0632314\pi\)
−0.197344 + 0.980334i \(0.563231\pi\)
\(774\) 0 0
\(775\) 92.5731i 3.32532i
\(776\) 0 0
\(777\) 21.5698i 0.773813i
\(778\) 0 0
\(779\) 2.92476 + 2.92476i 0.104791 + 0.104791i
\(780\) 0 0
\(781\) −9.69020 + 9.69020i −0.346743 + 0.346743i
\(782\) 0 0
\(783\) −4.38124 −0.156573
\(784\) 0 0
\(785\) −64.8620 −2.31502
\(786\) 0 0
\(787\) 3.18657 3.18657i 0.113589 0.113589i −0.648028 0.761617i \(-0.724406\pi\)
0.761617 + 0.648028i \(0.224406\pi\)
\(788\) 0 0
\(789\) 9.36582 + 9.36582i 0.333432 + 0.333432i
\(790\) 0 0
\(791\) 21.4894i 0.764074i
\(792\) 0 0
\(793\) 1.33510i 0.0474108i
\(794\) 0 0
\(795\) 13.2607 + 13.2607i 0.470308 + 0.470308i
\(796\) 0 0
\(797\) 26.7398 26.7398i 0.947171 0.947171i −0.0515023 0.998673i \(-0.516401\pi\)
0.998673 + 0.0515023i \(0.0164009\pi\)
\(798\) 0 0
\(799\) 1.77783 0.0628949
\(800\) 0 0
\(801\) −14.0436 −0.496208
\(802\) 0 0
\(803\) 24.4335 24.4335i 0.862240 0.862240i
\(804\) 0 0
\(805\) −4.34071 4.34071i −0.152990 0.152990i
\(806\) 0 0
\(807\) 3.97902i 0.140068i
\(808\) 0 0
\(809\) 9.52410i 0.334849i −0.985885 0.167425i \(-0.946455\pi\)
0.985885 0.167425i \(-0.0535451\pi\)
\(810\) 0 0
\(811\) −25.8962 25.8962i −0.909340 0.909340i 0.0868788 0.996219i \(-0.472311\pi\)
−0.996219 + 0.0868788i \(0.972311\pi\)
\(812\) 0 0
\(813\) 0.729954 0.729954i 0.0256006 0.0256006i
\(814\) 0 0
\(815\) −26.6849 −0.934732
\(816\) 0 0
\(817\) −28.7084 −1.00438
\(818\) 0 0
\(819\) 7.06642 7.06642i 0.246921 0.246921i
\(820\) 0 0
\(821\) −6.06470 6.06470i −0.211659 0.211659i 0.593313 0.804972i \(-0.297820\pi\)
−0.804972 + 0.593313i \(0.797820\pi\)
\(822\) 0 0
\(823\) 29.8792i 1.04152i −0.853703 0.520761i \(-0.825648\pi\)
0.853703 0.520761i \(-0.174352\pi\)
\(824\) 0 0
\(825\) 98.9932i 3.44650i
\(826\) 0 0
\(827\) −18.3697 18.3697i −0.638777 0.638777i 0.311477 0.950254i \(-0.399176\pi\)
−0.950254 + 0.311477i \(0.899176\pi\)
\(828\) 0 0
\(829\) 30.7996 30.7996i 1.06971 1.06971i 0.0723338 0.997380i \(-0.476955\pi\)
0.997380 0.0723338i \(-0.0230447\pi\)
\(830\) 0 0
\(831\) 48.5223 1.68322
\(832\) 0 0
\(833\) −3.44268 −0.119282
\(834\) 0 0
\(835\) −55.0472 + 55.0472i −1.90499 + 1.90499i
\(836\) 0 0
\(837\) −3.29322 3.29322i −0.113830 0.113830i
\(838\) 0 0
\(839\) 22.5005i 0.776802i 0.921490 + 0.388401i \(0.126972\pi\)
−0.921490 + 0.388401i \(0.873028\pi\)
\(840\) 0 0
\(841\) 72.4280i 2.49752i
\(842\) 0 0
\(843\) −43.8298 43.8298i −1.50958 1.50958i
\(844\) 0 0
\(845\) 22.0755 22.0755i 0.759420 0.759420i
\(846\) 0 0
\(847\) −19.1437 −0.657787
\(848\) 0 0
\(849\) −15.3715 −0.527548
\(850\) 0 0
\(851\) 3.80475 3.80475i 0.130425 0.130425i
\(852\) 0 0
\(853\) −7.30463 7.30463i −0.250106 0.250106i 0.570908 0.821014i \(-0.306591\pi\)
−0.821014 + 0.570908i \(0.806591\pi\)
\(854\) 0 0
\(855\) 56.2676i 1.92431i
\(856\) 0 0
\(857\) 23.4068i 0.799561i 0.916611 + 0.399780i \(0.130914\pi\)
−0.916611 + 0.399780i \(0.869086\pi\)
\(858\) 0 0
\(859\) 26.9063 + 26.9063i 0.918030 + 0.918030i 0.996886 0.0788558i \(-0.0251267\pi\)
−0.0788558 + 0.996886i \(0.525127\pi\)
\(860\) 0 0
\(861\) −2.17048 + 2.17048i −0.0739697 + 0.0739697i
\(862\) 0 0
\(863\) −31.7122 −1.07950 −0.539748 0.841827i \(-0.681481\pi\)
−0.539748 + 0.841827i \(0.681481\pi\)
\(864\) 0 0
\(865\) −3.88110 −0.131961
\(866\) 0 0
\(867\) −27.8737 + 27.8737i −0.946641 + 0.946641i
\(868\) 0 0
\(869\) 4.57055 + 4.57055i 0.155045 + 0.155045i
\(870\) 0 0
\(871\) 24.0451i 0.814738i
\(872\) 0 0
\(873\) 21.0381i 0.712033i
\(874\) 0 0
\(875\) 15.8307 + 15.8307i 0.535176 + 0.535176i
\(876\) 0 0
\(877\) −10.7834 + 10.7834i −0.364128 + 0.364128i −0.865330 0.501202i \(-0.832891\pi\)
0.501202 + 0.865330i \(0.332891\pi\)
\(878\) 0 0
\(879\) 48.4446 1.63400
\(880\) 0 0
\(881\) −36.4108 −1.22671 −0.613355 0.789807i \(-0.710181\pi\)
−0.613355 + 0.789807i \(0.710181\pi\)
\(882\) 0 0
\(883\) −38.0383 + 38.0383i −1.28009 + 1.28009i −0.339478 + 0.940614i \(0.610251\pi\)
−0.940614 + 0.339478i \(0.889749\pi\)
\(884\) 0 0
\(885\) 84.3659 + 84.3659i 2.83593 + 2.83593i
\(886\) 0 0
\(887\) 55.8616i 1.87565i −0.347109 0.937825i \(-0.612837\pi\)
0.347109 0.937825i \(-0.387163\pi\)
\(888\) 0 0
\(889\) 26.9420i 0.903605i
\(890\) 0 0
\(891\) −31.9069 31.9069i −1.06892 1.06892i
\(892\) 0 0
\(893\) −8.36087 + 8.36087i −0.279786 + 0.279786i
\(894\) 0 0
\(895\) −30.7107 −1.02655
\(896\) 0 0
\(897\) −5.14528 −0.171796
\(898\) 0 0
\(899\) 76.2397 76.2397i 2.54274 2.54274i
\(900\) 0 0
\(901\) 1.20854 + 1.20854i 0.0402623 + 0.0402623i
\(902\) 0 0
\(903\) 21.3046i 0.708974i
\(904\) 0 0
\(905\) 65.4389i 2.17526i
\(906\) 0 0
\(907\) 3.28341 + 3.28341i 0.109024 + 0.109024i 0.759514 0.650491i \(-0.225437\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(908\) 0 0
\(909\) −13.4827 + 13.4827i −0.447194 + 0.447194i
\(910\) 0 0
\(911\) 7.38623 0.244717 0.122358 0.992486i \(-0.460954\pi\)
0.122358 + 0.992486i \(0.460954\pi\)
\(912\) 0 0
\(913\) 40.8742 1.35274
\(914\) 0 0
\(915\) −3.94464 + 3.94464i −0.130406 + 0.130406i
\(916\) 0 0
\(917\) −7.19083 7.19083i −0.237462 0.237462i
\(918\) 0 0
\(919\) 34.3845i 1.13424i 0.823635 + 0.567120i \(0.191942\pi\)
−0.823635 + 0.567120i \(0.808058\pi\)
\(920\) 0 0
\(921\) 30.3657i 1.00058i
\(922\) 0 0
\(923\) −4.35515 4.35515i −0.143352 0.143352i
\(924\) 0 0
\(925\) −32.8998 + 32.8998i −1.08174 + 1.08174i
\(926\) 0 0
\(927\) −7.42532 −0.243880
\(928\) 0 0
\(929\) 16.1031 0.528325 0.264162 0.964478i \(-0.414905\pi\)
0.264162 + 0.964478i \(0.414905\pi\)
\(930\) 0 0
\(931\) 16.1905 16.1905i 0.530621 0.530621i
\(932\) 0 0
\(933\) −7.71614 7.71614i −0.252615 0.252615i
\(934\) 0 0
\(935\) 14.2387i 0.465657i
\(936\) 0 0
\(937\) 4.91883i 0.160691i −0.996767 0.0803456i \(-0.974398\pi\)
0.996767 0.0803456i \(-0.0256024\pi\)
\(938\) 0 0
\(939\) −17.2230 17.2230i −0.562053 0.562053i
\(940\) 0 0
\(941\) −3.21178 + 3.21178i −0.104701 + 0.104701i −0.757517 0.652816i \(-0.773588\pi\)
0.652816 + 0.757517i \(0.273588\pi\)
\(942\) 0 0
\(943\) 0.765711 0.0249350
\(944\) 0 0
\(945\) 2.67051 0.0868716
\(946\) 0 0
\(947\) 12.9780 12.9780i 0.421727 0.421727i −0.464071 0.885798i \(-0.653612\pi\)
0.885798 + 0.464071i \(0.153612\pi\)
\(948\) 0 0
\(949\) 10.9814 + 10.9814i 0.356471 + 0.356471i
\(950\) 0 0
\(951\) 47.2959i 1.53367i
\(952\) 0 0
\(953\) 55.7029i 1.80439i −0.431325 0.902197i \(-0.641954\pi\)
0.431325 0.902197i \(-0.358046\pi\)
\(954\) 0 0
\(955\) 4.29436 + 4.29436i 0.138962 + 0.138962i
\(956\) 0 0
\(957\) 81.5271 81.5271i 2.63540 2.63540i
\(958\) 0 0
\(959\) 19.5391 0.630949
\(960\) 0 0
\(961\) 83.6132 2.69720
\(962\) 0 0
\(963\) −7.96609 + 7.96609i −0.256704 + 0.256704i
\(964\) 0 0
\(965\) 49.7459 + 49.7459i 1.60138 + 1.60138i
\(966\) 0 0
\(967\) 0.819088i 0.0263401i −0.999913 0.0131701i \(-0.995808\pi\)
0.999913 0.0131701i \(-0.00419228\pi\)
\(968\) 0 0
\(969\) 10.5841i 0.340010i
\(970\) 0 0
\(971\) −16.2383 16.2383i −0.521112 0.521112i 0.396795 0.917907i \(-0.370122\pi\)
−0.917907 + 0.396795i \(0.870122\pi\)
\(972\) 0 0
\(973\) −13.0694 + 13.0694i −0.418984 + 0.418984i
\(974\) 0 0
\(975\) 44.4914 1.42487
\(976\) 0 0
\(977\) −22.3995 −0.716622 −0.358311 0.933602i \(-0.616647\pi\)
−0.358311 + 0.933602i \(0.616647\pi\)
\(978\) 0 0
\(979\) −16.7130 + 16.7130i −0.534151 + 0.534151i
\(980\) 0 0
\(981\) −10.3469 10.3469i −0.330350 0.330350i
\(982\) 0 0
\(983\) 34.2716i 1.09309i 0.837429 + 0.546546i \(0.184058\pi\)
−0.837429 + 0.546546i \(0.815942\pi\)
\(984\) 0 0
\(985\) 65.6886i 2.09301i
\(986\) 0 0
\(987\) −6.20463 6.20463i −0.197496 0.197496i
\(988\) 0 0
\(989\) −3.75797 + 3.75797i −0.119497 + 0.119497i
\(990\) 0 0
\(991\) −19.8594 −0.630856 −0.315428 0.948950i \(-0.602148\pi\)
−0.315428 + 0.948950i \(0.602148\pi\)
\(992\) 0 0
\(993\) −25.3432 −0.804241
\(994\) 0 0
\(995\) −41.3022 + 41.3022i −1.30937 + 1.30937i
\(996\) 0 0
\(997\) −21.4778 21.4778i −0.680209 0.680209i 0.279838 0.960047i \(-0.409719\pi\)
−0.960047 + 0.279838i \(0.909719\pi\)
\(998\) 0 0
\(999\) 2.34077i 0.0740588i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.j.c.369.6 12
4.3 odd 2 368.2.j.c.277.1 yes 12
16.3 odd 4 368.2.j.c.93.1 12
16.13 even 4 inner 1472.2.j.c.1105.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.2.j.c.93.1 12 16.3 odd 4
368.2.j.c.277.1 yes 12 4.3 odd 2
1472.2.j.c.369.6 12 1.1 even 1 trivial
1472.2.j.c.1105.6 12 16.13 even 4 inner