Properties

Label 1472.4.a.w
Level $1472$
Weight $4$
Character orbit 1472.a
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + ( - 3 \beta_{2} + \beta_1 + 4) q^{5} + (3 \beta_{2} + 5 \beta_1 - 18) q^{7} + (2 \beta_{2} - 3 \beta_1 - 10) q^{9} + (11 \beta_{2} + 5 \beta_1 + 16) q^{11} + (6 \beta_{2} + 11 \beta_1 + 9) q^{13}+ \cdots + ( - 62 \beta_{2} - 232 \beta_1 + 104) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 10 q^{5} - 46 q^{7} - 31 q^{9} + 64 q^{11} + 44 q^{13} - 134 q^{15} - 88 q^{17} + 94 q^{19} + 6 q^{21} - 69 q^{23} + 181 q^{25} - 20 q^{27} - 308 q^{29} - 140 q^{31} + 510 q^{33} - 192 q^{35}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 7x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + \nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + \beta _1 + 10 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.59261
2.75153
0.841083
0 −3.31427 0 16.0718 0 −35.2976 0 −16.0156 0
1.2 0 1.18060 0 8.78065 0 9.15411 0 −25.6062 0
1.3 0 6.13366 0 −14.8525 0 −19.8565 0 10.6218 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1472.4.a.w 3
4.b odd 2 1 1472.4.a.p 3
8.b even 2 1 92.4.a.a 3
8.d odd 2 1 368.4.a.k 3
24.h odd 2 1 828.4.a.f 3
40.f even 2 1 2300.4.a.b 3
40.i odd 4 2 2300.4.c.b 6
184.e odd 2 1 2116.4.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.4.a.a 3 8.b even 2 1
368.4.a.k 3 8.d odd 2 1
828.4.a.f 3 24.h odd 2 1
1472.4.a.p 3 4.b odd 2 1
1472.4.a.w 3 1.a even 1 1 trivial
2116.4.a.a 3 184.e odd 2 1
2300.4.a.b 3 40.f even 2 1
2300.4.c.b 6 40.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 4T_{3}^{2} - 17T_{3} + 24 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1472))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$5$ \( T^{3} - 10 T^{2} + \cdots + 2096 \) Copy content Toggle raw display
$7$ \( T^{3} + 46 T^{2} + \cdots - 6416 \) Copy content Toggle raw display
$11$ \( T^{3} - 64 T^{2} + \cdots + 88184 \) Copy content Toggle raw display
$13$ \( T^{3} - 44 T^{2} + \cdots + 3334 \) Copy content Toggle raw display
$17$ \( T^{3} + 88 T^{2} + \cdots - 1617496 \) Copy content Toggle raw display
$19$ \( T^{3} - 94 T^{2} + \cdots + 184984 \) Copy content Toggle raw display
$23$ \( (T + 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 308 T^{2} + \cdots + 1008698 \) Copy content Toggle raw display
$31$ \( T^{3} + 140 T^{2} + \cdots - 1074768 \) Copy content Toggle raw display
$37$ \( T^{3} + 26 T^{2} + \cdots + 4672784 \) Copy content Toggle raw display
$41$ \( T^{3} - 584 T^{2} + \cdots + 21405186 \) Copy content Toggle raw display
$43$ \( T^{3} - 478 T^{2} + \cdots + 14441984 \) Copy content Toggle raw display
$47$ \( T^{3} + 28 T^{2} + \cdots - 25906224 \) Copy content Toggle raw display
$53$ \( T^{3} + 356 T^{2} + \cdots - 63184 \) Copy content Toggle raw display
$59$ \( T^{3} + 144 T^{2} + \cdots + 15495744 \) Copy content Toggle raw display
$61$ \( T^{3} - 1052 T^{2} + \cdots + 55378432 \) Copy content Toggle raw display
$67$ \( T^{3} - 2008 T^{2} + \cdots - 228170232 \) Copy content Toggle raw display
$71$ \( T^{3} - 360 T^{2} + \cdots + 7542816 \) Copy content Toggle raw display
$73$ \( T^{3} + 252 T^{2} + \cdots + 34560066 \) Copy content Toggle raw display
$79$ \( T^{3} + 720 T^{2} + \cdots - 932658192 \) Copy content Toggle raw display
$83$ \( T^{3} - 1404 T^{2} + \cdots + 464610136 \) Copy content Toggle raw display
$89$ \( T^{3} - 534 T^{2} + \cdots + 77599776 \) Copy content Toggle raw display
$97$ \( T^{3} - 736 T^{2} + \cdots + 67270584 \) Copy content Toggle raw display
show more
show less