Properties

Label 2116.4.a.a
Level 21162116
Weight 44
Character orbit 2116.a
Self dual yes
Analytic conductor 124.848124.848
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2116,4,Mod(1,2116)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2116, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2116.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2116=22232 2116 = 2^{2} \cdot 23^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2116.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 124.848041572124.848041572
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.1229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x27x+6 x^{3} - x^{2} - 7x + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 92)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q3+(3β2+β1+4)q5+(3β25β1+18)q7+(2β23β110)q9+(11β2+5β1+16)q11+(6β211β19)q13++(62β2232β1+104)q99+O(q100) q + ( - \beta_{2} - 1) q^{3} + ( - 3 \beta_{2} + \beta_1 + 4) q^{5} + ( - 3 \beta_{2} - 5 \beta_1 + 18) q^{7} + (2 \beta_{2} - 3 \beta_1 - 10) q^{9} + (11 \beta_{2} + 5 \beta_1 + 16) q^{11} + ( - 6 \beta_{2} - 11 \beta_1 - 9) q^{13}+ \cdots + ( - 62 \beta_{2} - 232 \beta_1 + 104) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q4q3+10q5+46q731q9+64q1144q13+134q15+88q17+94q19+6q21+181q25+20q27+308q29140q31510q33+192q3526q37++18q99+O(q100) 3 q - 4 q^{3} + 10 q^{5} + 46 q^{7} - 31 q^{9} + 64 q^{11} - 44 q^{13} + 134 q^{15} + 88 q^{17} + 94 q^{19} + 6 q^{21} + 181 q^{25} + 20 q^{27} + 308 q^{29} - 140 q^{31} - 510 q^{33} + 192 q^{35} - 26 q^{37}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x27x+6 x^{3} - x^{2} - 7x + 6 : Copy content Toggle raw display

β1\beta_{1}== ν2+ν5 \nu^{2} + \nu - 5 Copy content Toggle raw display
β2\beta_{2}== ν2+ν+5 -\nu^{2} + \nu + 5 Copy content Toggle raw display
ν\nu== (β2+β1)/2 ( \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β2+β1+10)/2 ( -\beta_{2} + \beta _1 + 10 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.841083
2.75153
−2.59261
0 −6.13366 0 −14.8525 0 19.8565 0 10.6218 0
1.2 0 −1.18060 0 8.78065 0 −9.15411 0 −25.6062 0
1.3 0 3.31427 0 16.0718 0 35.2976 0 −16.0156 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2116.4.a.a 3
23.b odd 2 1 92.4.a.a 3
69.c even 2 1 828.4.a.f 3
92.b even 2 1 368.4.a.k 3
115.c odd 2 1 2300.4.a.b 3
115.e even 4 2 2300.4.c.b 6
184.e odd 2 1 1472.4.a.w 3
184.h even 2 1 1472.4.a.p 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.4.a.a 3 23.b odd 2 1
368.4.a.k 3 92.b even 2 1
828.4.a.f 3 69.c even 2 1
1472.4.a.p 3 184.h even 2 1
1472.4.a.w 3 184.e odd 2 1
2116.4.a.a 3 1.a even 1 1 trivial
2300.4.a.b 3 115.c odd 2 1
2300.4.c.b 6 115.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2116))S_{4}^{\mathrm{new}}(\Gamma_0(2116)):

T33+4T3217T324 T_{3}^{3} + 4T_{3}^{2} - 17T_{3} - 24 Copy content Toggle raw display
T5310T52228T5+2096 T_{5}^{3} - 10T_{5}^{2} - 228T_{5} + 2096 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+4T2+24 T^{3} + 4 T^{2} + \cdots - 24 Copy content Toggle raw display
55 T310T2++2096 T^{3} - 10 T^{2} + \cdots + 2096 Copy content Toggle raw display
77 T346T2++6416 T^{3} - 46 T^{2} + \cdots + 6416 Copy content Toggle raw display
1111 T364T2++88184 T^{3} - 64 T^{2} + \cdots + 88184 Copy content Toggle raw display
1313 T3+44T2+3334 T^{3} + 44 T^{2} + \cdots - 3334 Copy content Toggle raw display
1717 T388T2++1617496 T^{3} - 88 T^{2} + \cdots + 1617496 Copy content Toggle raw display
1919 T394T2++184984 T^{3} - 94 T^{2} + \cdots + 184984 Copy content Toggle raw display
2323 T3 T^{3} Copy content Toggle raw display
2929 T3308T2+1008698 T^{3} - 308 T^{2} + \cdots - 1008698 Copy content Toggle raw display
3131 T3+140T2+1074768 T^{3} + 140 T^{2} + \cdots - 1074768 Copy content Toggle raw display
3737 T3+26T2++4672784 T^{3} + 26 T^{2} + \cdots + 4672784 Copy content Toggle raw display
4141 T3584T2++21405186 T^{3} - 584 T^{2} + \cdots + 21405186 Copy content Toggle raw display
4343 T3478T2++14441984 T^{3} - 478 T^{2} + \cdots + 14441984 Copy content Toggle raw display
4747 T3+28T2+25906224 T^{3} + 28 T^{2} + \cdots - 25906224 Copy content Toggle raw display
5353 T3+356T2+63184 T^{3} + 356 T^{2} + \cdots - 63184 Copy content Toggle raw display
5959 T3144T2+15495744 T^{3} - 144 T^{2} + \cdots - 15495744 Copy content Toggle raw display
6161 T31052T2++55378432 T^{3} - 1052 T^{2} + \cdots + 55378432 Copy content Toggle raw display
6767 T32008T2+228170232 T^{3} - 2008 T^{2} + \cdots - 228170232 Copy content Toggle raw display
7171 T3360T2++7542816 T^{3} - 360 T^{2} + \cdots + 7542816 Copy content Toggle raw display
7373 T3+252T2++34560066 T^{3} + 252 T^{2} + \cdots + 34560066 Copy content Toggle raw display
7979 T3720T2++932658192 T^{3} - 720 T^{2} + \cdots + 932658192 Copy content Toggle raw display
8383 T31404T2++464610136 T^{3} - 1404 T^{2} + \cdots + 464610136 Copy content Toggle raw display
8989 T3+534T2+77599776 T^{3} + 534 T^{2} + \cdots - 77599776 Copy content Toggle raw display
9797 T3+736T2+67270584 T^{3} + 736 T^{2} + \cdots - 67270584 Copy content Toggle raw display
show more
show less