Properties

Label 150.10.c.f
Level 150150
Weight 1010
Character orbit 150.c
Analytic conductor 77.25577.255
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,10,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 77.255375424677.2553754246
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+16iq281iq3256q4+1296q6+7168iq74096iq86561q983748q11+20736iq12+128126iq13114688q14+65536q16560802iq17104976iq18++549470628q99+O(q100) q + 16 i q^{2} - 81 i q^{3} - 256 q^{4} + 1296 q^{6} + 7168 i q^{7} - 4096 i q^{8} - 6561 q^{9} - 83748 q^{11} + 20736 i q^{12} + 128126 i q^{13} - 114688 q^{14} + 65536 q^{16} - 560802 i q^{17} - 104976 i q^{18} + \cdots + 549470628 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q512q4+2592q613122q9167496q11229376q14+131072q16+1155320q19+1161216q21663552q244100032q2611583420q29+8290624q31+17945664q34++1098941256q99+O(q100) 2 q - 512 q^{4} + 2592 q^{6} - 13122 q^{9} - 167496 q^{11} - 229376 q^{14} + 131072 q^{16} + 1155320 q^{19} + 1161216 q^{21} - 663552 q^{24} - 4100032 q^{26} - 11583420 q^{29} + 8290624 q^{31} + 17945664 q^{34}+ \cdots + 1098941256 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
16.0000i 81.0000i −256.000 0 1296.00 7168.00i 4096.00i −6561.00 0
49.2 16.0000i 81.0000i −256.000 0 1296.00 7168.00i 4096.00i −6561.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.10.c.f 2
5.b even 2 1 inner 150.10.c.f 2
5.c odd 4 1 30.10.a.b 1
5.c odd 4 1 150.10.a.k 1
15.e even 4 1 90.10.a.f 1
20.e even 4 1 240.10.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.10.a.b 1 5.c odd 4 1
90.10.a.f 1 15.e even 4 1
150.10.a.k 1 5.c odd 4 1
150.10.c.f 2 1.a even 1 1 trivial
150.10.c.f 2 5.b even 2 1 inner
240.10.a.i 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+51380224 T_{7}^{2} + 51380224 acting on S10new(150,[χ])S_{10}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+256 T^{2} + 256 Copy content Toggle raw display
33 T2+6561 T^{2} + 6561 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+51380224 T^{2} + 51380224 Copy content Toggle raw display
1111 (T+83748)2 (T + 83748)^{2} Copy content Toggle raw display
1313 T2+16416271876 T^{2} + 16416271876 Copy content Toggle raw display
1717 T2+314498883204 T^{2} + 314498883204 Copy content Toggle raw display
1919 (T577660)2 (T - 577660)^{2} Copy content Toggle raw display
2323 T2+5911200239616 T^{2} + 5911200239616 Copy content Toggle raw display
2929 (T+5791710)2 (T + 5791710)^{2} Copy content Toggle raw display
3131 (T4145312)2 (T - 4145312)^{2} Copy content Toggle raw display
3737 T2+49163347908964 T^{2} + 49163347908964 Copy content Toggle raw display
4141 (T+8881398)2 (T + 8881398)^{2} Copy content Toggle raw display
4343 T2+247454419107856 T^{2} + 247454419107856 Copy content Toggle raw display
4747 T2+36 ⁣ ⁣84 T^{2} + 36\!\cdots\!84 Copy content Toggle raw display
5353 T2+916476688969956 T^{2} + 916476688969956 Copy content Toggle raw display
5959 (T+45957660)2 (T + 45957660)^{2} Copy content Toggle raw display
6161 (T37595102)2 (T - 37595102)^{2} Copy content Toggle raw display
6767 T2+38 ⁣ ⁣44 T^{2} + 38\!\cdots\!44 Copy content Toggle raw display
7171 (T56047992)2 (T - 56047992)^{2} Copy content Toggle raw display
7373 T2+25 ⁣ ⁣16 T^{2} + 25\!\cdots\!16 Copy content Toggle raw display
7979 (T+201923360)2 (T + 201923360)^{2} Copy content Toggle raw display
8383 T2+13 ⁣ ⁣36 T^{2} + 13\!\cdots\!36 Copy content Toggle raw display
8989 (T272479110)2 (T - 272479110)^{2} Copy content Toggle raw display
9797 T2+36 ⁣ ⁣84 T^{2} + 36\!\cdots\!84 Copy content Toggle raw display
show more
show less