Properties

Label 150.10.c.h
Level $150$
Weight $10$
Character orbit 150.c
Analytic conductor $77.255$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,10,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(77.2553754246\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 i q^{2} + 81 i q^{3} - 256 q^{4} + 1296 q^{6} + 6332 i q^{7} + 4096 i q^{8} - 6561 q^{9} + 7752 q^{11} - 20736 i q^{12} - 72626 i q^{13} + 101312 q^{14} + 65536 q^{16} - 334698 i q^{17} + 104976 i q^{18} + \cdots - 50860872 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 512 q^{4} + 2592 q^{6} - 13122 q^{9} + 15504 q^{11} + 202624 q^{14} + 131072 q^{16} + 1869320 q^{19} - 1025784 q^{21} - 663552 q^{24} - 2324032 q^{26} + 7277580 q^{29} - 12127376 q^{31} - 10710336 q^{34}+ \cdots - 101721744 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
16.0000i 81.0000i −256.000 0 1296.00 6332.00i 4096.00i −6561.00 0
49.2 16.0000i 81.0000i −256.000 0 1296.00 6332.00i 4096.00i −6561.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.10.c.h 2
5.b even 2 1 inner 150.10.c.h 2
5.c odd 4 1 30.10.a.a 1
5.c odd 4 1 150.10.a.i 1
15.e even 4 1 90.10.a.j 1
20.e even 4 1 240.10.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.10.a.a 1 5.c odd 4 1
90.10.a.j 1 15.e even 4 1
150.10.a.i 1 5.c odd 4 1
150.10.c.h 2 1.a even 1 1 trivial
150.10.c.h 2 5.b even 2 1 inner
240.10.a.d 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 40094224 \) acting on \(S_{10}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 256 \) Copy content Toggle raw display
$3$ \( T^{2} + 6561 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 40094224 \) Copy content Toggle raw display
$11$ \( (T - 7752)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 5274535876 \) Copy content Toggle raw display
$17$ \( T^{2} + 112022751204 \) Copy content Toggle raw display
$19$ \( (T - 934660)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 983476823616 \) Copy content Toggle raw display
$29$ \( (T - 3638790)^{2} \) Copy content Toggle raw display
$31$ \( (T + 6063688)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 155996153184964 \) Copy content Toggle raw display
$41$ \( (T + 5035398)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 909825632115856 \) Copy content Toggle raw display
$47$ \( T^{2} + 553428869184 \) Copy content Toggle raw display
$53$ \( T^{2} + 10\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( (T - 49464840)^{2} \) Copy content Toggle raw display
$61$ \( (T + 130545898)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 10\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T + 190423008)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 13\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T + 175880360)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 10\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T - 660904110)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 17\!\cdots\!84 \) Copy content Toggle raw display
show more
show less