gp: [N,k,chi] = [150,10,Mod(49,150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(150, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 10, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("150.49");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-512,0,2592,0,0,-13122,0,15504]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 150 Z ) × \left(\mathbb{Z}/150\mathbb{Z}\right)^\times ( Z / 1 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 2 + 40094224 T_{7}^{2} + 40094224 T 7 2 + 4 0 0 9 4 2 2 4
T7^2 + 40094224
acting on S 10 n e w ( 150 , [ χ ] ) S_{10}^{\mathrm{new}}(150, [\chi]) S 1 0 n e w ( 1 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 256 T^{2} + 256 T 2 + 2 5 6
T^2 + 256
3 3 3
T 2 + 6561 T^{2} + 6561 T 2 + 6 5 6 1
T^2 + 6561
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 40094224 T^{2} + 40094224 T 2 + 4 0 0 9 4 2 2 4
T^2 + 40094224
11 11 1 1
( T − 7752 ) 2 (T - 7752)^{2} ( T − 7 7 5 2 ) 2
(T - 7752)^2
13 13 1 3
T 2 + 5274535876 T^{2} + 5274535876 T 2 + 5 2 7 4 5 3 5 8 7 6
T^2 + 5274535876
17 17 1 7
T 2 + 112022751204 T^{2} + 112022751204 T 2 + 1 1 2 0 2 2 7 5 1 2 0 4
T^2 + 112022751204
19 19 1 9
( T − 934660 ) 2 (T - 934660)^{2} ( T − 9 3 4 6 6 0 ) 2
(T - 934660)^2
23 23 2 3
T 2 + 983476823616 T^{2} + 983476823616 T 2 + 9 8 3 4 7 6 8 2 3 6 1 6
T^2 + 983476823616
29 29 2 9
( T − 3638790 ) 2 (T - 3638790)^{2} ( T − 3 6 3 8 7 9 0 ) 2
(T - 3638790)^2
31 31 3 1
( T + 6063688 ) 2 (T + 6063688)^{2} ( T + 6 0 6 3 6 8 8 ) 2
(T + 6063688)^2
37 37 3 7
T 2 + 155996153184964 T^{2} + 155996153184964 T 2 + 1 5 5 9 9 6 1 5 3 1 8 4 9 6 4
T^2 + 155996153184964
41 41 4 1
( T + 5035398 ) 2 (T + 5035398)^{2} ( T + 5 0 3 5 3 9 8 ) 2
(T + 5035398)^2
43 43 4 3
T 2 + 909825632115856 T^{2} + 909825632115856 T 2 + 9 0 9 8 2 5 6 3 2 1 1 5 8 5 6
T^2 + 909825632115856
47 47 4 7
T 2 + 553428869184 T^{2} + 553428869184 T 2 + 5 5 3 4 2 8 8 6 9 1 8 4
T^2 + 553428869184
53 53 5 3
T 2 + 10 ⋯ 56 T^{2} + 10\!\cdots\!56 T 2 + 1 0 ⋯ 5 6
T^2 + 10483329984001956
59 59 5 9
( T − 49464840 ) 2 (T - 49464840)^{2} ( T − 4 9 4 6 4 8 4 0 ) 2
(T - 49464840)^2
61 61 6 1
( T + 130545898 ) 2 (T + 130545898)^{2} ( T + 1 3 0 5 4 5 8 9 8 ) 2
(T + 130545898)^2
67 67 6 7
T 2 + 10 ⋯ 44 T^{2} + 10\!\cdots\!44 T 2 + 1 0 ⋯ 4 4
T^2 + 10589441494720144
71 71 7 1
( T + 190423008 ) 2 (T + 190423008)^{2} ( T + 1 9 0 4 2 3 0 0 8 ) 2
(T + 190423008)^2
73 73 7 3
T 2 + 13 ⋯ 16 T^{2} + 13\!\cdots\!16 T 2 + 1 3 ⋯ 1 6
T^2 + 135145239344070916
79 79 7 9
( T + 175880360 ) 2 (T + 175880360)^{2} ( T + 1 7 5 8 8 0 3 6 0 ) 2
(T + 175880360)^2
83 83 8 3
T 2 + 10 ⋯ 36 T^{2} + 10\!\cdots\!36 T 2 + 1 0 ⋯ 3 6
T^2 + 10096721552213136
89 89 8 9
( T − 660904110 ) 2 (T - 660904110)^{2} ( T − 6 6 0 9 0 4 1 1 0 ) 2
(T - 660904110)^2
97 97 9 7
T 2 + 17 ⋯ 84 T^{2} + 17\!\cdots\!84 T 2 + 1 7 ⋯ 8 4
T^2 + 1747661584239876484
show more
show less