Properties

Label 150.4.a.g.1.1
Level $150$
Weight $4$
Character 150.1
Self dual yes
Analytic conductor $8.850$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.85028650086\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} +23.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} -30.0000 q^{11} -12.0000 q^{12} +29.0000 q^{13} +46.0000 q^{14} +16.0000 q^{16} +78.0000 q^{17} +18.0000 q^{18} +149.000 q^{19} -69.0000 q^{21} -60.0000 q^{22} +150.000 q^{23} -24.0000 q^{24} +58.0000 q^{26} -27.0000 q^{27} +92.0000 q^{28} -234.000 q^{29} -217.000 q^{31} +32.0000 q^{32} +90.0000 q^{33} +156.000 q^{34} +36.0000 q^{36} +146.000 q^{37} +298.000 q^{38} -87.0000 q^{39} -156.000 q^{41} -138.000 q^{42} -433.000 q^{43} -120.000 q^{44} +300.000 q^{46} +30.0000 q^{47} -48.0000 q^{48} +186.000 q^{49} -234.000 q^{51} +116.000 q^{52} -552.000 q^{53} -54.0000 q^{54} +184.000 q^{56} -447.000 q^{57} -468.000 q^{58} -270.000 q^{59} +275.000 q^{61} -434.000 q^{62} +207.000 q^{63} +64.0000 q^{64} +180.000 q^{66} +803.000 q^{67} +312.000 q^{68} -450.000 q^{69} +660.000 q^{71} +72.0000 q^{72} -646.000 q^{73} +292.000 q^{74} +596.000 q^{76} -690.000 q^{77} -174.000 q^{78} +992.000 q^{79} +81.0000 q^{81} -312.000 q^{82} -846.000 q^{83} -276.000 q^{84} -866.000 q^{86} +702.000 q^{87} -240.000 q^{88} -1488.00 q^{89} +667.000 q^{91} +600.000 q^{92} +651.000 q^{93} +60.0000 q^{94} -96.0000 q^{96} -319.000 q^{97} +372.000 q^{98} -270.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 23.0000 1.24188 0.620942 0.783857i \(-0.286750\pi\)
0.620942 + 0.783857i \(0.286750\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −30.0000 −0.822304 −0.411152 0.911567i \(-0.634873\pi\)
−0.411152 + 0.911567i \(0.634873\pi\)
\(12\) −12.0000 −0.288675
\(13\) 29.0000 0.618704 0.309352 0.950948i \(-0.399888\pi\)
0.309352 + 0.950948i \(0.399888\pi\)
\(14\) 46.0000 0.878144
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 78.0000 1.11281 0.556405 0.830911i \(-0.312180\pi\)
0.556405 + 0.830911i \(0.312180\pi\)
\(18\) 18.0000 0.235702
\(19\) 149.000 1.79910 0.899551 0.436815i \(-0.143894\pi\)
0.899551 + 0.436815i \(0.143894\pi\)
\(20\) 0 0
\(21\) −69.0000 −0.717002
\(22\) −60.0000 −0.581456
\(23\) 150.000 1.35988 0.679938 0.733269i \(-0.262007\pi\)
0.679938 + 0.733269i \(0.262007\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) 58.0000 0.437490
\(27\) −27.0000 −0.192450
\(28\) 92.0000 0.620942
\(29\) −234.000 −1.49837 −0.749185 0.662361i \(-0.769554\pi\)
−0.749185 + 0.662361i \(0.769554\pi\)
\(30\) 0 0
\(31\) −217.000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 32.0000 0.176777
\(33\) 90.0000 0.474757
\(34\) 156.000 0.786876
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) 146.000 0.648710 0.324355 0.945936i \(-0.394853\pi\)
0.324355 + 0.945936i \(0.394853\pi\)
\(38\) 298.000 1.27216
\(39\) −87.0000 −0.357209
\(40\) 0 0
\(41\) −156.000 −0.594222 −0.297111 0.954843i \(-0.596023\pi\)
−0.297111 + 0.954843i \(0.596023\pi\)
\(42\) −138.000 −0.506997
\(43\) −433.000 −1.53563 −0.767813 0.640675i \(-0.778655\pi\)
−0.767813 + 0.640675i \(0.778655\pi\)
\(44\) −120.000 −0.411152
\(45\) 0 0
\(46\) 300.000 0.961578
\(47\) 30.0000 0.0931053 0.0465527 0.998916i \(-0.485176\pi\)
0.0465527 + 0.998916i \(0.485176\pi\)
\(48\) −48.0000 −0.144338
\(49\) 186.000 0.542274
\(50\) 0 0
\(51\) −234.000 −0.642481
\(52\) 116.000 0.309352
\(53\) −552.000 −1.43062 −0.715312 0.698806i \(-0.753715\pi\)
−0.715312 + 0.698806i \(0.753715\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) 184.000 0.439072
\(57\) −447.000 −1.03871
\(58\) −468.000 −1.05951
\(59\) −270.000 −0.595780 −0.297890 0.954600i \(-0.596283\pi\)
−0.297890 + 0.954600i \(0.596283\pi\)
\(60\) 0 0
\(61\) 275.000 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(62\) −434.000 −0.889001
\(63\) 207.000 0.413961
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 180.000 0.335704
\(67\) 803.000 1.46421 0.732105 0.681192i \(-0.238538\pi\)
0.732105 + 0.681192i \(0.238538\pi\)
\(68\) 312.000 0.556405
\(69\) −450.000 −0.785125
\(70\) 0 0
\(71\) 660.000 1.10321 0.551603 0.834107i \(-0.314016\pi\)
0.551603 + 0.834107i \(0.314016\pi\)
\(72\) 72.0000 0.117851
\(73\) −646.000 −1.03573 −0.517867 0.855461i \(-0.673274\pi\)
−0.517867 + 0.855461i \(0.673274\pi\)
\(74\) 292.000 0.458707
\(75\) 0 0
\(76\) 596.000 0.899551
\(77\) −690.000 −1.02121
\(78\) −174.000 −0.252585
\(79\) 992.000 1.41277 0.706384 0.707829i \(-0.250325\pi\)
0.706384 + 0.707829i \(0.250325\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −312.000 −0.420178
\(83\) −846.000 −1.11880 −0.559401 0.828897i \(-0.688969\pi\)
−0.559401 + 0.828897i \(0.688969\pi\)
\(84\) −276.000 −0.358501
\(85\) 0 0
\(86\) −866.000 −1.08585
\(87\) 702.000 0.865084
\(88\) −240.000 −0.290728
\(89\) −1488.00 −1.77222 −0.886111 0.463474i \(-0.846603\pi\)
−0.886111 + 0.463474i \(0.846603\pi\)
\(90\) 0 0
\(91\) 667.000 0.768358
\(92\) 600.000 0.679938
\(93\) 651.000 0.725866
\(94\) 60.0000 0.0658354
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) −319.000 −0.333913 −0.166956 0.985964i \(-0.553394\pi\)
−0.166956 + 0.985964i \(0.553394\pi\)
\(98\) 372.000 0.383446
\(99\) −270.000 −0.274101
\(100\) 0 0
\(101\) −792.000 −0.780267 −0.390133 0.920758i \(-0.627571\pi\)
−0.390133 + 0.920758i \(0.627571\pi\)
\(102\) −468.000 −0.454303
\(103\) 812.000 0.776784 0.388392 0.921494i \(-0.373031\pi\)
0.388392 + 0.921494i \(0.373031\pi\)
\(104\) 232.000 0.218745
\(105\) 0 0
\(106\) −1104.00 −1.01160
\(107\) −1416.00 −1.27934 −0.639672 0.768648i \(-0.720930\pi\)
−0.639672 + 0.768648i \(0.720930\pi\)
\(108\) −108.000 −0.0962250
\(109\) −55.0000 −0.0483307 −0.0241653 0.999708i \(-0.507693\pi\)
−0.0241653 + 0.999708i \(0.507693\pi\)
\(110\) 0 0
\(111\) −438.000 −0.374533
\(112\) 368.000 0.310471
\(113\) 1404.00 1.16882 0.584412 0.811457i \(-0.301325\pi\)
0.584412 + 0.811457i \(0.301325\pi\)
\(114\) −894.000 −0.734480
\(115\) 0 0
\(116\) −936.000 −0.749185
\(117\) 261.000 0.206235
\(118\) −540.000 −0.421280
\(119\) 1794.00 1.38198
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 550.000 0.408153
\(123\) 468.000 0.343074
\(124\) −868.000 −0.628619
\(125\) 0 0
\(126\) 414.000 0.292715
\(127\) 1280.00 0.894344 0.447172 0.894448i \(-0.352431\pi\)
0.447172 + 0.894448i \(0.352431\pi\)
\(128\) 128.000 0.0883883
\(129\) 1299.00 0.886594
\(130\) 0 0
\(131\) 480.000 0.320136 0.160068 0.987106i \(-0.448829\pi\)
0.160068 + 0.987106i \(0.448829\pi\)
\(132\) 360.000 0.237379
\(133\) 3427.00 2.23428
\(134\) 1606.00 1.03535
\(135\) 0 0
\(136\) 624.000 0.393438
\(137\) −282.000 −0.175860 −0.0879302 0.996127i \(-0.528025\pi\)
−0.0879302 + 0.996127i \(0.528025\pi\)
\(138\) −900.000 −0.555167
\(139\) 1604.00 0.978773 0.489387 0.872067i \(-0.337221\pi\)
0.489387 + 0.872067i \(0.337221\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) 1320.00 0.780084
\(143\) −870.000 −0.508763
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −1292.00 −0.732375
\(147\) −558.000 −0.313082
\(148\) 584.000 0.324355
\(149\) −774.000 −0.425561 −0.212780 0.977100i \(-0.568252\pi\)
−0.212780 + 0.977100i \(0.568252\pi\)
\(150\) 0 0
\(151\) 293.000 0.157907 0.0789536 0.996878i \(-0.474842\pi\)
0.0789536 + 0.996878i \(0.474842\pi\)
\(152\) 1192.00 0.636079
\(153\) 702.000 0.370937
\(154\) −1380.00 −0.722101
\(155\) 0 0
\(156\) −348.000 −0.178604
\(157\) −1729.00 −0.878912 −0.439456 0.898264i \(-0.644829\pi\)
−0.439456 + 0.898264i \(0.644829\pi\)
\(158\) 1984.00 0.998978
\(159\) 1656.00 0.825971
\(160\) 0 0
\(161\) 3450.00 1.68881
\(162\) 162.000 0.0785674
\(163\) −1123.00 −0.539633 −0.269816 0.962912i \(-0.586963\pi\)
−0.269816 + 0.962912i \(0.586963\pi\)
\(164\) −624.000 −0.297111
\(165\) 0 0
\(166\) −1692.00 −0.791112
\(167\) 1200.00 0.556041 0.278020 0.960575i \(-0.410322\pi\)
0.278020 + 0.960575i \(0.410322\pi\)
\(168\) −552.000 −0.253498
\(169\) −1356.00 −0.617205
\(170\) 0 0
\(171\) 1341.00 0.599701
\(172\) −1732.00 −0.767813
\(173\) −1734.00 −0.762044 −0.381022 0.924566i \(-0.624428\pi\)
−0.381022 + 0.924566i \(0.624428\pi\)
\(174\) 1404.00 0.611707
\(175\) 0 0
\(176\) −480.000 −0.205576
\(177\) 810.000 0.343974
\(178\) −2976.00 −1.25315
\(179\) 2586.00 1.07981 0.539907 0.841725i \(-0.318459\pi\)
0.539907 + 0.841725i \(0.318459\pi\)
\(180\) 0 0
\(181\) −3931.00 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(182\) 1334.00 0.543311
\(183\) −825.000 −0.333255
\(184\) 1200.00 0.480789
\(185\) 0 0
\(186\) 1302.00 0.513265
\(187\) −2340.00 −0.915068
\(188\) 120.000 0.0465527
\(189\) −621.000 −0.239001
\(190\) 0 0
\(191\) 1566.00 0.593255 0.296628 0.954993i \(-0.404138\pi\)
0.296628 + 0.954993i \(0.404138\pi\)
\(192\) −192.000 −0.0721688
\(193\) 2291.00 0.854455 0.427227 0.904144i \(-0.359490\pi\)
0.427227 + 0.904144i \(0.359490\pi\)
\(194\) −638.000 −0.236112
\(195\) 0 0
\(196\) 744.000 0.271137
\(197\) 2142.00 0.774676 0.387338 0.921938i \(-0.373395\pi\)
0.387338 + 0.921938i \(0.373395\pi\)
\(198\) −540.000 −0.193819
\(199\) −4903.00 −1.74656 −0.873278 0.487223i \(-0.838010\pi\)
−0.873278 + 0.487223i \(0.838010\pi\)
\(200\) 0 0
\(201\) −2409.00 −0.845362
\(202\) −1584.00 −0.551732
\(203\) −5382.00 −1.86080
\(204\) −936.000 −0.321241
\(205\) 0 0
\(206\) 1624.00 0.549269
\(207\) 1350.00 0.453292
\(208\) 464.000 0.154676
\(209\) −4470.00 −1.47941
\(210\) 0 0
\(211\) 605.000 0.197393 0.0986965 0.995118i \(-0.468533\pi\)
0.0986965 + 0.995118i \(0.468533\pi\)
\(212\) −2208.00 −0.715312
\(213\) −1980.00 −0.636936
\(214\) −2832.00 −0.904633
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) −4991.00 −1.56134
\(218\) −110.000 −0.0341750
\(219\) 1938.00 0.597981
\(220\) 0 0
\(221\) 2262.00 0.688500
\(222\) −876.000 −0.264835
\(223\) −145.000 −0.0435422 −0.0217711 0.999763i \(-0.506931\pi\)
−0.0217711 + 0.999763i \(0.506931\pi\)
\(224\) 736.000 0.219536
\(225\) 0 0
\(226\) 2808.00 0.826484
\(227\) 2964.00 0.866641 0.433321 0.901240i \(-0.357342\pi\)
0.433321 + 0.901240i \(0.357342\pi\)
\(228\) −1788.00 −0.519356
\(229\) −5635.00 −1.62608 −0.813038 0.582211i \(-0.802188\pi\)
−0.813038 + 0.582211i \(0.802188\pi\)
\(230\) 0 0
\(231\) 2070.00 0.589593
\(232\) −1872.00 −0.529754
\(233\) 4164.00 1.17078 0.585392 0.810750i \(-0.300941\pi\)
0.585392 + 0.810750i \(0.300941\pi\)
\(234\) 522.000 0.145830
\(235\) 0 0
\(236\) −1080.00 −0.297890
\(237\) −2976.00 −0.815662
\(238\) 3588.00 0.977208
\(239\) −1944.00 −0.526138 −0.263069 0.964777i \(-0.584735\pi\)
−0.263069 + 0.964777i \(0.584735\pi\)
\(240\) 0 0
\(241\) 857.000 0.229063 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(242\) −862.000 −0.228973
\(243\) −243.000 −0.0641500
\(244\) 1100.00 0.288608
\(245\) 0 0
\(246\) 936.000 0.242590
\(247\) 4321.00 1.11311
\(248\) −1736.00 −0.444500
\(249\) 2538.00 0.645941
\(250\) 0 0
\(251\) −3924.00 −0.986776 −0.493388 0.869809i \(-0.664242\pi\)
−0.493388 + 0.869809i \(0.664242\pi\)
\(252\) 828.000 0.206981
\(253\) −4500.00 −1.11823
\(254\) 2560.00 0.632396
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2844.00 −0.690287 −0.345144 0.938550i \(-0.612170\pi\)
−0.345144 + 0.938550i \(0.612170\pi\)
\(258\) 2598.00 0.626916
\(259\) 3358.00 0.805621
\(260\) 0 0
\(261\) −2106.00 −0.499456
\(262\) 960.000 0.226370
\(263\) −6060.00 −1.42082 −0.710410 0.703788i \(-0.751490\pi\)
−0.710410 + 0.703788i \(0.751490\pi\)
\(264\) 720.000 0.167852
\(265\) 0 0
\(266\) 6854.00 1.57987
\(267\) 4464.00 1.02319
\(268\) 3212.00 0.732105
\(269\) 3906.00 0.885327 0.442664 0.896688i \(-0.354034\pi\)
0.442664 + 0.896688i \(0.354034\pi\)
\(270\) 0 0
\(271\) 2144.00 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(272\) 1248.00 0.278203
\(273\) −2001.00 −0.443612
\(274\) −564.000 −0.124352
\(275\) 0 0
\(276\) −1800.00 −0.392563
\(277\) 2321.00 0.503449 0.251725 0.967799i \(-0.419002\pi\)
0.251725 + 0.967799i \(0.419002\pi\)
\(278\) 3208.00 0.692097
\(279\) −1953.00 −0.419079
\(280\) 0 0
\(281\) −6822.00 −1.44828 −0.724140 0.689654i \(-0.757763\pi\)
−0.724140 + 0.689654i \(0.757763\pi\)
\(282\) −180.000 −0.0380101
\(283\) 4049.00 0.850488 0.425244 0.905079i \(-0.360188\pi\)
0.425244 + 0.905079i \(0.360188\pi\)
\(284\) 2640.00 0.551603
\(285\) 0 0
\(286\) −1740.00 −0.359749
\(287\) −3588.00 −0.737955
\(288\) 288.000 0.0589256
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) 957.000 0.192785
\(292\) −2584.00 −0.517867
\(293\) 2238.00 0.446230 0.223115 0.974792i \(-0.428377\pi\)
0.223115 + 0.974792i \(0.428377\pi\)
\(294\) −1116.00 −0.221382
\(295\) 0 0
\(296\) 1168.00 0.229353
\(297\) 810.000 0.158252
\(298\) −1548.00 −0.300917
\(299\) 4350.00 0.841361
\(300\) 0 0
\(301\) −9959.00 −1.90707
\(302\) 586.000 0.111657
\(303\) 2376.00 0.450487
\(304\) 2384.00 0.449776
\(305\) 0 0
\(306\) 1404.00 0.262292
\(307\) 1385.00 0.257479 0.128740 0.991678i \(-0.458907\pi\)
0.128740 + 0.991678i \(0.458907\pi\)
\(308\) −2760.00 −0.510603
\(309\) −2436.00 −0.448476
\(310\) 0 0
\(311\) −5670.00 −1.03381 −0.516907 0.856042i \(-0.672917\pi\)
−0.516907 + 0.856042i \(0.672917\pi\)
\(312\) −696.000 −0.126292
\(313\) −421.000 −0.0760266 −0.0380133 0.999277i \(-0.512103\pi\)
−0.0380133 + 0.999277i \(0.512103\pi\)
\(314\) −3458.00 −0.621485
\(315\) 0 0
\(316\) 3968.00 0.706384
\(317\) 9984.00 1.76895 0.884475 0.466587i \(-0.154517\pi\)
0.884475 + 0.466587i \(0.154517\pi\)
\(318\) 3312.00 0.584049
\(319\) 7020.00 1.23211
\(320\) 0 0
\(321\) 4248.00 0.738630
\(322\) 6900.00 1.19417
\(323\) 11622.0 2.00206
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) −2246.00 −0.381578
\(327\) 165.000 0.0279037
\(328\) −1248.00 −0.210089
\(329\) 690.000 0.115626
\(330\) 0 0
\(331\) −4228.00 −0.702090 −0.351045 0.936359i \(-0.614174\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(332\) −3384.00 −0.559401
\(333\) 1314.00 0.216237
\(334\) 2400.00 0.393180
\(335\) 0 0
\(336\) −1104.00 −0.179250
\(337\) 5393.00 0.871737 0.435869 0.900010i \(-0.356441\pi\)
0.435869 + 0.900010i \(0.356441\pi\)
\(338\) −2712.00 −0.436430
\(339\) −4212.00 −0.674821
\(340\) 0 0
\(341\) 6510.00 1.03383
\(342\) 2682.00 0.424052
\(343\) −3611.00 −0.568442
\(344\) −3464.00 −0.542925
\(345\) 0 0
\(346\) −3468.00 −0.538846
\(347\) −7914.00 −1.22434 −0.612170 0.790726i \(-0.709703\pi\)
−0.612170 + 0.790726i \(0.709703\pi\)
\(348\) 2808.00 0.432542
\(349\) 1010.00 0.154911 0.0774557 0.996996i \(-0.475320\pi\)
0.0774557 + 0.996996i \(0.475320\pi\)
\(350\) 0 0
\(351\) −783.000 −0.119070
\(352\) −960.000 −0.145364
\(353\) 4722.00 0.711974 0.355987 0.934491i \(-0.384145\pi\)
0.355987 + 0.934491i \(0.384145\pi\)
\(354\) 1620.00 0.243226
\(355\) 0 0
\(356\) −5952.00 −0.886111
\(357\) −5382.00 −0.797887
\(358\) 5172.00 0.763544
\(359\) 6204.00 0.912074 0.456037 0.889961i \(-0.349268\pi\)
0.456037 + 0.889961i \(0.349268\pi\)
\(360\) 0 0
\(361\) 15342.0 2.23677
\(362\) −7862.00 −1.14148
\(363\) 1293.00 0.186956
\(364\) 2668.00 0.384179
\(365\) 0 0
\(366\) −1650.00 −0.235647
\(367\) 1361.00 0.193579 0.0967897 0.995305i \(-0.469143\pi\)
0.0967897 + 0.995305i \(0.469143\pi\)
\(368\) 2400.00 0.339969
\(369\) −1404.00 −0.198074
\(370\) 0 0
\(371\) −12696.0 −1.77667
\(372\) 2604.00 0.362933
\(373\) −913.000 −0.126738 −0.0633691 0.997990i \(-0.520185\pi\)
−0.0633691 + 0.997990i \(0.520185\pi\)
\(374\) −4680.00 −0.647051
\(375\) 0 0
\(376\) 240.000 0.0329177
\(377\) −6786.00 −0.927047
\(378\) −1242.00 −0.168999
\(379\) −8881.00 −1.20366 −0.601829 0.798625i \(-0.705561\pi\)
−0.601829 + 0.798625i \(0.705561\pi\)
\(380\) 0 0
\(381\) −3840.00 −0.516350
\(382\) 3132.00 0.419495
\(383\) 5460.00 0.728441 0.364221 0.931313i \(-0.381335\pi\)
0.364221 + 0.931313i \(0.381335\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 4582.00 0.604191
\(387\) −3897.00 −0.511875
\(388\) −1276.00 −0.166956
\(389\) −13884.0 −1.80963 −0.904816 0.425803i \(-0.859992\pi\)
−0.904816 + 0.425803i \(0.859992\pi\)
\(390\) 0 0
\(391\) 11700.0 1.51328
\(392\) 1488.00 0.191723
\(393\) −1440.00 −0.184831
\(394\) 4284.00 0.547779
\(395\) 0 0
\(396\) −1080.00 −0.137051
\(397\) −3781.00 −0.477992 −0.238996 0.971021i \(-0.576818\pi\)
−0.238996 + 0.971021i \(0.576818\pi\)
\(398\) −9806.00 −1.23500
\(399\) −10281.0 −1.28996
\(400\) 0 0
\(401\) 9024.00 1.12378 0.561892 0.827211i \(-0.310074\pi\)
0.561892 + 0.827211i \(0.310074\pi\)
\(402\) −4818.00 −0.597761
\(403\) −6293.00 −0.777858
\(404\) −3168.00 −0.390133
\(405\) 0 0
\(406\) −10764.0 −1.31578
\(407\) −4380.00 −0.533436
\(408\) −1872.00 −0.227151
\(409\) 14789.0 1.78794 0.893972 0.448123i \(-0.147907\pi\)
0.893972 + 0.448123i \(0.147907\pi\)
\(410\) 0 0
\(411\) 846.000 0.101533
\(412\) 3248.00 0.388392
\(413\) −6210.00 −0.739889
\(414\) 2700.00 0.320526
\(415\) 0 0
\(416\) 928.000 0.109372
\(417\) −4812.00 −0.565095
\(418\) −8940.00 −1.04610
\(419\) 9840.00 1.14729 0.573646 0.819103i \(-0.305528\pi\)
0.573646 + 0.819103i \(0.305528\pi\)
\(420\) 0 0
\(421\) 5510.00 0.637865 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(422\) 1210.00 0.139578
\(423\) 270.000 0.0310351
\(424\) −4416.00 −0.505802
\(425\) 0 0
\(426\) −3960.00 −0.450382
\(427\) 6325.00 0.716834
\(428\) −5664.00 −0.639672
\(429\) 2610.00 0.293734
\(430\) 0 0
\(431\) 11070.0 1.23718 0.618588 0.785715i \(-0.287705\pi\)
0.618588 + 0.785715i \(0.287705\pi\)
\(432\) −432.000 −0.0481125
\(433\) −12133.0 −1.34659 −0.673297 0.739373i \(-0.735122\pi\)
−0.673297 + 0.739373i \(0.735122\pi\)
\(434\) −9982.00 −1.10404
\(435\) 0 0
\(436\) −220.000 −0.0241653
\(437\) 22350.0 2.44656
\(438\) 3876.00 0.422837
\(439\) −1873.00 −0.203630 −0.101815 0.994803i \(-0.532465\pi\)
−0.101815 + 0.994803i \(0.532465\pi\)
\(440\) 0 0
\(441\) 1674.00 0.180758
\(442\) 4524.00 0.486843
\(443\) −576.000 −0.0617756 −0.0308878 0.999523i \(-0.509833\pi\)
−0.0308878 + 0.999523i \(0.509833\pi\)
\(444\) −1752.00 −0.187266
\(445\) 0 0
\(446\) −290.000 −0.0307890
\(447\) 2322.00 0.245698
\(448\) 1472.00 0.155235
\(449\) −4884.00 −0.513341 −0.256671 0.966499i \(-0.582626\pi\)
−0.256671 + 0.966499i \(0.582626\pi\)
\(450\) 0 0
\(451\) 4680.00 0.488631
\(452\) 5616.00 0.584412
\(453\) −879.000 −0.0911678
\(454\) 5928.00 0.612808
\(455\) 0 0
\(456\) −3576.00 −0.367240
\(457\) −15802.0 −1.61748 −0.808738 0.588169i \(-0.799849\pi\)
−0.808738 + 0.588169i \(0.799849\pi\)
\(458\) −11270.0 −1.14981
\(459\) −2106.00 −0.214160
\(460\) 0 0
\(461\) −15360.0 −1.55181 −0.775907 0.630847i \(-0.782708\pi\)
−0.775907 + 0.630847i \(0.782708\pi\)
\(462\) 4140.00 0.416905
\(463\) 1712.00 0.171843 0.0859216 0.996302i \(-0.472617\pi\)
0.0859216 + 0.996302i \(0.472617\pi\)
\(464\) −3744.00 −0.374592
\(465\) 0 0
\(466\) 8328.00 0.827869
\(467\) −16278.0 −1.61297 −0.806484 0.591256i \(-0.798632\pi\)
−0.806484 + 0.591256i \(0.798632\pi\)
\(468\) 1044.00 0.103117
\(469\) 18469.0 1.81838
\(470\) 0 0
\(471\) 5187.00 0.507440
\(472\) −2160.00 −0.210640
\(473\) 12990.0 1.26275
\(474\) −5952.00 −0.576760
\(475\) 0 0
\(476\) 7176.00 0.690990
\(477\) −4968.00 −0.476874
\(478\) −3888.00 −0.372036
\(479\) −14766.0 −1.40851 −0.704254 0.709948i \(-0.748719\pi\)
−0.704254 + 0.709948i \(0.748719\pi\)
\(480\) 0 0
\(481\) 4234.00 0.401359
\(482\) 1714.00 0.161972
\(483\) −10350.0 −0.975034
\(484\) −1724.00 −0.161908
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) −3319.00 −0.308826 −0.154413 0.988006i \(-0.549349\pi\)
−0.154413 + 0.988006i \(0.549349\pi\)
\(488\) 2200.00 0.204076
\(489\) 3369.00 0.311557
\(490\) 0 0
\(491\) 11064.0 1.01693 0.508464 0.861083i \(-0.330214\pi\)
0.508464 + 0.861083i \(0.330214\pi\)
\(492\) 1872.00 0.171537
\(493\) −18252.0 −1.66740
\(494\) 8642.00 0.787089
\(495\) 0 0
\(496\) −3472.00 −0.314309
\(497\) 15180.0 1.37005
\(498\) 5076.00 0.456749
\(499\) −14131.0 −1.26772 −0.633858 0.773449i \(-0.718530\pi\)
−0.633858 + 0.773449i \(0.718530\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) −7848.00 −0.697756
\(503\) 11988.0 1.06266 0.531331 0.847165i \(-0.321692\pi\)
0.531331 + 0.847165i \(0.321692\pi\)
\(504\) 1656.00 0.146357
\(505\) 0 0
\(506\) −9000.00 −0.790709
\(507\) 4068.00 0.356344
\(508\) 5120.00 0.447172
\(509\) 10806.0 0.940997 0.470499 0.882401i \(-0.344074\pi\)
0.470499 + 0.882401i \(0.344074\pi\)
\(510\) 0 0
\(511\) −14858.0 −1.28626
\(512\) 512.000 0.0441942
\(513\) −4023.00 −0.346237
\(514\) −5688.00 −0.488107
\(515\) 0 0
\(516\) 5196.00 0.443297
\(517\) −900.000 −0.0765608
\(518\) 6716.00 0.569660
\(519\) 5202.00 0.439966
\(520\) 0 0
\(521\) 22578.0 1.89858 0.949290 0.314402i \(-0.101804\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(522\) −4212.00 −0.353169
\(523\) 12065.0 1.00873 0.504365 0.863491i \(-0.331727\pi\)
0.504365 + 0.863491i \(0.331727\pi\)
\(524\) 1920.00 0.160068
\(525\) 0 0
\(526\) −12120.0 −1.00467
\(527\) −16926.0 −1.39907
\(528\) 1440.00 0.118689
\(529\) 10333.0 0.849264
\(530\) 0 0
\(531\) −2430.00 −0.198593
\(532\) 13708.0 1.11714
\(533\) −4524.00 −0.367648
\(534\) 8928.00 0.723506
\(535\) 0 0
\(536\) 6424.00 0.517676
\(537\) −7758.00 −0.623431
\(538\) 7812.00 0.626021
\(539\) −5580.00 −0.445914
\(540\) 0 0
\(541\) −12055.0 −0.958013 −0.479006 0.877811i \(-0.659003\pi\)
−0.479006 + 0.877811i \(0.659003\pi\)
\(542\) 4288.00 0.339825
\(543\) 11793.0 0.932019
\(544\) 2496.00 0.196719
\(545\) 0 0
\(546\) −4002.00 −0.313681
\(547\) 6176.00 0.482754 0.241377 0.970431i \(-0.422401\pi\)
0.241377 + 0.970431i \(0.422401\pi\)
\(548\) −1128.00 −0.0879302
\(549\) 2475.00 0.192405
\(550\) 0 0
\(551\) −34866.0 −2.69572
\(552\) −3600.00 −0.277584
\(553\) 22816.0 1.75449
\(554\) 4642.00 0.355992
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) 8274.00 0.629409 0.314704 0.949190i \(-0.398095\pi\)
0.314704 + 0.949190i \(0.398095\pi\)
\(558\) −3906.00 −0.296334
\(559\) −12557.0 −0.950098
\(560\) 0 0
\(561\) 7020.00 0.528315
\(562\) −13644.0 −1.02409
\(563\) 966.000 0.0723127 0.0361563 0.999346i \(-0.488489\pi\)
0.0361563 + 0.999346i \(0.488489\pi\)
\(564\) −360.000 −0.0268772
\(565\) 0 0
\(566\) 8098.00 0.601386
\(567\) 1863.00 0.137987
\(568\) 5280.00 0.390042
\(569\) 19002.0 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(570\) 0 0
\(571\) 8645.00 0.633594 0.316797 0.948493i \(-0.397393\pi\)
0.316797 + 0.948493i \(0.397393\pi\)
\(572\) −3480.00 −0.254381
\(573\) −4698.00 −0.342516
\(574\) −7176.00 −0.521813
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) 10931.0 0.788672 0.394336 0.918966i \(-0.370975\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(578\) 2342.00 0.168537
\(579\) −6873.00 −0.493320
\(580\) 0 0
\(581\) −19458.0 −1.38942
\(582\) 1914.00 0.136319
\(583\) 16560.0 1.17641
\(584\) −5168.00 −0.366187
\(585\) 0 0
\(586\) 4476.00 0.315532
\(587\) 8904.00 0.626077 0.313039 0.949740i \(-0.398653\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(588\) −2232.00 −0.156541
\(589\) −32333.0 −2.26190
\(590\) 0 0
\(591\) −6426.00 −0.447259
\(592\) 2336.00 0.162177
\(593\) 8820.00 0.610782 0.305391 0.952227i \(-0.401213\pi\)
0.305391 + 0.952227i \(0.401213\pi\)
\(594\) 1620.00 0.111901
\(595\) 0 0
\(596\) −3096.00 −0.212780
\(597\) 14709.0 1.00837
\(598\) 8700.00 0.594932
\(599\) 9804.00 0.668749 0.334374 0.942440i \(-0.391475\pi\)
0.334374 + 0.942440i \(0.391475\pi\)
\(600\) 0 0
\(601\) −23437.0 −1.59071 −0.795354 0.606146i \(-0.792715\pi\)
−0.795354 + 0.606146i \(0.792715\pi\)
\(602\) −19918.0 −1.34850
\(603\) 7227.00 0.488070
\(604\) 1172.00 0.0789536
\(605\) 0 0
\(606\) 4752.00 0.318543
\(607\) 2648.00 0.177066 0.0885330 0.996073i \(-0.471782\pi\)
0.0885330 + 0.996073i \(0.471782\pi\)
\(608\) 4768.00 0.318039
\(609\) 16146.0 1.07433
\(610\) 0 0
\(611\) 870.000 0.0576046
\(612\) 2808.00 0.185468
\(613\) 794.000 0.0523154 0.0261577 0.999658i \(-0.491673\pi\)
0.0261577 + 0.999658i \(0.491673\pi\)
\(614\) 2770.00 0.182065
\(615\) 0 0
\(616\) −5520.00 −0.361051
\(617\) 18720.0 1.22146 0.610728 0.791840i \(-0.290877\pi\)
0.610728 + 0.791840i \(0.290877\pi\)
\(618\) −4872.00 −0.317121
\(619\) −8959.00 −0.581733 −0.290866 0.956764i \(-0.593944\pi\)
−0.290866 + 0.956764i \(0.593944\pi\)
\(620\) 0 0
\(621\) −4050.00 −0.261708
\(622\) −11340.0 −0.731017
\(623\) −34224.0 −2.20089
\(624\) −1392.00 −0.0893022
\(625\) 0 0
\(626\) −842.000 −0.0537589
\(627\) 13410.0 0.854137
\(628\) −6916.00 −0.439456
\(629\) 11388.0 0.721891
\(630\) 0 0
\(631\) −12373.0 −0.780604 −0.390302 0.920687i \(-0.627629\pi\)
−0.390302 + 0.920687i \(0.627629\pi\)
\(632\) 7936.00 0.499489
\(633\) −1815.00 −0.113965
\(634\) 19968.0 1.25084
\(635\) 0 0
\(636\) 6624.00 0.412985
\(637\) 5394.00 0.335507
\(638\) 14040.0 0.871237
\(639\) 5940.00 0.367735
\(640\) 0 0
\(641\) 24900.0 1.53431 0.767154 0.641463i \(-0.221672\pi\)
0.767154 + 0.641463i \(0.221672\pi\)
\(642\) 8496.00 0.522290
\(643\) −14668.0 −0.899610 −0.449805 0.893127i \(-0.648507\pi\)
−0.449805 + 0.893127i \(0.648507\pi\)
\(644\) 13800.0 0.844404
\(645\) 0 0
\(646\) 23244.0 1.41567
\(647\) −10788.0 −0.655518 −0.327759 0.944761i \(-0.606293\pi\)
−0.327759 + 0.944761i \(0.606293\pi\)
\(648\) 648.000 0.0392837
\(649\) 8100.00 0.489912
\(650\) 0 0
\(651\) 14973.0 0.901441
\(652\) −4492.00 −0.269816
\(653\) −14214.0 −0.851817 −0.425909 0.904766i \(-0.640046\pi\)
−0.425909 + 0.904766i \(0.640046\pi\)
\(654\) 330.000 0.0197309
\(655\) 0 0
\(656\) −2496.00 −0.148556
\(657\) −5814.00 −0.345245
\(658\) 1380.00 0.0817599
\(659\) −588.000 −0.0347576 −0.0173788 0.999849i \(-0.505532\pi\)
−0.0173788 + 0.999849i \(0.505532\pi\)
\(660\) 0 0
\(661\) −3166.00 −0.186298 −0.0931491 0.995652i \(-0.529693\pi\)
−0.0931491 + 0.995652i \(0.529693\pi\)
\(662\) −8456.00 −0.496453
\(663\) −6786.00 −0.397506
\(664\) −6768.00 −0.395556
\(665\) 0 0
\(666\) 2628.00 0.152902
\(667\) −35100.0 −2.03760
\(668\) 4800.00 0.278020
\(669\) 435.000 0.0251391
\(670\) 0 0
\(671\) −8250.00 −0.474646
\(672\) −2208.00 −0.126749
\(673\) 9182.00 0.525914 0.262957 0.964808i \(-0.415302\pi\)
0.262957 + 0.964808i \(0.415302\pi\)
\(674\) 10786.0 0.616411
\(675\) 0 0
\(676\) −5424.00 −0.308603
\(677\) 11742.0 0.666590 0.333295 0.942823i \(-0.391839\pi\)
0.333295 + 0.942823i \(0.391839\pi\)
\(678\) −8424.00 −0.477171
\(679\) −7337.00 −0.414681
\(680\) 0 0
\(681\) −8892.00 −0.500356
\(682\) 13020.0 0.731029
\(683\) −6024.00 −0.337485 −0.168742 0.985660i \(-0.553971\pi\)
−0.168742 + 0.985660i \(0.553971\pi\)
\(684\) 5364.00 0.299850
\(685\) 0 0
\(686\) −7222.00 −0.401949
\(687\) 16905.0 0.938815
\(688\) −6928.00 −0.383906
\(689\) −16008.0 −0.885132
\(690\) 0 0
\(691\) 9344.00 0.514418 0.257209 0.966356i \(-0.417197\pi\)
0.257209 + 0.966356i \(0.417197\pi\)
\(692\) −6936.00 −0.381022
\(693\) −6210.00 −0.340402
\(694\) −15828.0 −0.865739
\(695\) 0 0
\(696\) 5616.00 0.305853
\(697\) −12168.0 −0.661257
\(698\) 2020.00 0.109539
\(699\) −12492.0 −0.675953
\(700\) 0 0
\(701\) 21234.0 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(702\) −1566.00 −0.0841950
\(703\) 21754.0 1.16709
\(704\) −1920.00 −0.102788
\(705\) 0 0
\(706\) 9444.00 0.503441
\(707\) −18216.0 −0.969000
\(708\) 3240.00 0.171987
\(709\) −1723.00 −0.0912675 −0.0456337 0.998958i \(-0.514531\pi\)
−0.0456337 + 0.998958i \(0.514531\pi\)
\(710\) 0 0
\(711\) 8928.00 0.470923
\(712\) −11904.0 −0.626575
\(713\) −32550.0 −1.70969
\(714\) −10764.0 −0.564191
\(715\) 0 0
\(716\) 10344.0 0.539907
\(717\) 5832.00 0.303766
\(718\) 12408.0 0.644934
\(719\) 18510.0 0.960093 0.480046 0.877243i \(-0.340620\pi\)
0.480046 + 0.877243i \(0.340620\pi\)
\(720\) 0 0
\(721\) 18676.0 0.964675
\(722\) 30684.0 1.58163
\(723\) −2571.00 −0.132250
\(724\) −15724.0 −0.807152
\(725\) 0 0
\(726\) 2586.00 0.132198
\(727\) −1009.00 −0.0514742 −0.0257371 0.999669i \(-0.508193\pi\)
−0.0257371 + 0.999669i \(0.508193\pi\)
\(728\) 5336.00 0.271656
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −33774.0 −1.70886
\(732\) −3300.00 −0.166628
\(733\) −21994.0 −1.10828 −0.554138 0.832425i \(-0.686952\pi\)
−0.554138 + 0.832425i \(0.686952\pi\)
\(734\) 2722.00 0.136881
\(735\) 0 0
\(736\) 4800.00 0.240394
\(737\) −24090.0 −1.20403
\(738\) −2808.00 −0.140059
\(739\) −13948.0 −0.694297 −0.347148 0.937810i \(-0.612850\pi\)
−0.347148 + 0.937810i \(0.612850\pi\)
\(740\) 0 0
\(741\) −12963.0 −0.642655
\(742\) −25392.0 −1.25629
\(743\) −26508.0 −1.30886 −0.654431 0.756122i \(-0.727092\pi\)
−0.654431 + 0.756122i \(0.727092\pi\)
\(744\) 5208.00 0.256632
\(745\) 0 0
\(746\) −1826.00 −0.0896174
\(747\) −7614.00 −0.372934
\(748\) −9360.00 −0.457534
\(749\) −32568.0 −1.58880
\(750\) 0 0
\(751\) −1600.00 −0.0777428 −0.0388714 0.999244i \(-0.512376\pi\)
−0.0388714 + 0.999244i \(0.512376\pi\)
\(752\) 480.000 0.0232763
\(753\) 11772.0 0.569715
\(754\) −13572.0 −0.655521
\(755\) 0 0
\(756\) −2484.00 −0.119500
\(757\) 30101.0 1.44523 0.722615 0.691250i \(-0.242940\pi\)
0.722615 + 0.691250i \(0.242940\pi\)
\(758\) −17762.0 −0.851115
\(759\) 13500.0 0.645611
\(760\) 0 0
\(761\) 35628.0 1.69713 0.848564 0.529093i \(-0.177468\pi\)
0.848564 + 0.529093i \(0.177468\pi\)
\(762\) −7680.00 −0.365114
\(763\) −1265.00 −0.0600211
\(764\) 6264.00 0.296628
\(765\) 0 0
\(766\) 10920.0 0.515086
\(767\) −7830.00 −0.368611
\(768\) −768.000 −0.0360844
\(769\) −12517.0 −0.586963 −0.293482 0.955965i \(-0.594814\pi\)
−0.293482 + 0.955965i \(0.594814\pi\)
\(770\) 0 0
\(771\) 8532.00 0.398538
\(772\) 9164.00 0.427227
\(773\) 14124.0 0.657186 0.328593 0.944472i \(-0.393426\pi\)
0.328593 + 0.944472i \(0.393426\pi\)
\(774\) −7794.00 −0.361950
\(775\) 0 0
\(776\) −2552.00 −0.118056
\(777\) −10074.0 −0.465126
\(778\) −27768.0 −1.27960
\(779\) −23244.0 −1.06907
\(780\) 0 0
\(781\) −19800.0 −0.907170
\(782\) 23400.0 1.07005
\(783\) 6318.00 0.288361
\(784\) 2976.00 0.135569
\(785\) 0 0
\(786\) −2880.00 −0.130695
\(787\) 40433.0 1.83136 0.915680 0.401907i \(-0.131653\pi\)
0.915680 + 0.401907i \(0.131653\pi\)
\(788\) 8568.00 0.387338
\(789\) 18180.0 0.820311
\(790\) 0 0
\(791\) 32292.0 1.45154
\(792\) −2160.00 −0.0969094
\(793\) 7975.00 0.357126
\(794\) −7562.00 −0.337992
\(795\) 0 0
\(796\) −19612.0 −0.873278
\(797\) −27300.0 −1.21332 −0.606660 0.794962i \(-0.707491\pi\)
−0.606660 + 0.794962i \(0.707491\pi\)
\(798\) −20562.0 −0.912139
\(799\) 2340.00 0.103609
\(800\) 0 0
\(801\) −13392.0 −0.590740
\(802\) 18048.0 0.794635
\(803\) 19380.0 0.851688
\(804\) −9636.00 −0.422681
\(805\) 0 0
\(806\) −12586.0 −0.550028
\(807\) −11718.0 −0.511144
\(808\) −6336.00 −0.275866
\(809\) −2856.00 −0.124118 −0.0620591 0.998072i \(-0.519767\pi\)
−0.0620591 + 0.998072i \(0.519767\pi\)
\(810\) 0 0
\(811\) −12619.0 −0.546379 −0.273189 0.961960i \(-0.588079\pi\)
−0.273189 + 0.961960i \(0.588079\pi\)
\(812\) −21528.0 −0.930400
\(813\) −6432.00 −0.277466
\(814\) −8760.00 −0.377196
\(815\) 0 0
\(816\) −3744.00 −0.160620
\(817\) −64517.0 −2.76275
\(818\) 29578.0 1.26427
\(819\) 6003.00 0.256119
\(820\) 0 0
\(821\) −29082.0 −1.23626 −0.618130 0.786076i \(-0.712109\pi\)
−0.618130 + 0.786076i \(0.712109\pi\)
\(822\) 1692.00 0.0717947
\(823\) 10235.0 0.433499 0.216749 0.976227i \(-0.430455\pi\)
0.216749 + 0.976227i \(0.430455\pi\)
\(824\) 6496.00 0.274635
\(825\) 0 0
\(826\) −12420.0 −0.523180
\(827\) 26976.0 1.13428 0.567139 0.823622i \(-0.308050\pi\)
0.567139 + 0.823622i \(0.308050\pi\)
\(828\) 5400.00 0.226646
\(829\) 37802.0 1.58374 0.791868 0.610692i \(-0.209109\pi\)
0.791868 + 0.610692i \(0.209109\pi\)
\(830\) 0 0
\(831\) −6963.00 −0.290666
\(832\) 1856.00 0.0773380
\(833\) 14508.0 0.603448
\(834\) −9624.00 −0.399583
\(835\) 0 0
\(836\) −17880.0 −0.739704
\(837\) 5859.00 0.241955
\(838\) 19680.0 0.811258
\(839\) −16974.0 −0.698460 −0.349230 0.937037i \(-0.613557\pi\)
−0.349230 + 0.937037i \(0.613557\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 11020.0 0.451038
\(843\) 20466.0 0.836164
\(844\) 2420.00 0.0986965
\(845\) 0 0
\(846\) 540.000 0.0219451
\(847\) −9913.00 −0.402143
\(848\) −8832.00 −0.357656
\(849\) −12147.0 −0.491029
\(850\) 0 0
\(851\) 21900.0 0.882165
\(852\) −7920.00 −0.318468
\(853\) −24937.0 −1.00097 −0.500485 0.865745i \(-0.666845\pi\)
−0.500485 + 0.865745i \(0.666845\pi\)
\(854\) 12650.0 0.506878
\(855\) 0 0
\(856\) −11328.0 −0.452317
\(857\) 15756.0 0.628022 0.314011 0.949419i \(-0.398327\pi\)
0.314011 + 0.949419i \(0.398327\pi\)
\(858\) 5220.00 0.207701
\(859\) 38144.0 1.51508 0.757542 0.652787i \(-0.226400\pi\)
0.757542 + 0.652787i \(0.226400\pi\)
\(860\) 0 0
\(861\) 10764.0 0.426058
\(862\) 22140.0 0.874816
\(863\) 5448.00 0.214892 0.107446 0.994211i \(-0.465733\pi\)
0.107446 + 0.994211i \(0.465733\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) −24266.0 −0.952185
\(867\) −3513.00 −0.137610
\(868\) −19964.0 −0.780671
\(869\) −29760.0 −1.16172
\(870\) 0 0
\(871\) 23287.0 0.905913
\(872\) −440.000 −0.0170875
\(873\) −2871.00 −0.111304
\(874\) 44700.0 1.72998
\(875\) 0 0
\(876\) 7752.00 0.298991
\(877\) 21191.0 0.815928 0.407964 0.912998i \(-0.366239\pi\)
0.407964 + 0.912998i \(0.366239\pi\)
\(878\) −3746.00 −0.143988
\(879\) −6714.00 −0.257631
\(880\) 0 0
\(881\) 18216.0 0.696609 0.348305 0.937381i \(-0.386758\pi\)
0.348305 + 0.937381i \(0.386758\pi\)
\(882\) 3348.00 0.127815
\(883\) 12767.0 0.486573 0.243286 0.969955i \(-0.421775\pi\)
0.243286 + 0.969955i \(0.421775\pi\)
\(884\) 9048.00 0.344250
\(885\) 0 0
\(886\) −1152.00 −0.0436819
\(887\) 11010.0 0.416775 0.208388 0.978046i \(-0.433178\pi\)
0.208388 + 0.978046i \(0.433178\pi\)
\(888\) −3504.00 −0.132417
\(889\) 29440.0 1.11067
\(890\) 0 0
\(891\) −2430.00 −0.0913671
\(892\) −580.000 −0.0217711
\(893\) 4470.00 0.167506
\(894\) 4644.00 0.173734
\(895\) 0 0
\(896\) 2944.00 0.109768
\(897\) −13050.0 −0.485760
\(898\) −9768.00 −0.362987
\(899\) 50778.0 1.88381
\(900\) 0 0
\(901\) −43056.0 −1.59201
\(902\) 9360.00 0.345514
\(903\) 29877.0 1.10105
\(904\) 11232.0 0.413242
\(905\) 0 0
\(906\) −1758.00 −0.0644654
\(907\) 22772.0 0.833662 0.416831 0.908984i \(-0.363141\pi\)
0.416831 + 0.908984i \(0.363141\pi\)
\(908\) 11856.0 0.433321
\(909\) −7128.00 −0.260089
\(910\) 0 0
\(911\) 29802.0 1.08385 0.541923 0.840428i \(-0.317696\pi\)
0.541923 + 0.840428i \(0.317696\pi\)
\(912\) −7152.00 −0.259678
\(913\) 25380.0 0.919995
\(914\) −31604.0 −1.14373
\(915\) 0 0
\(916\) −22540.0 −0.813038
\(917\) 11040.0 0.397571
\(918\) −4212.00 −0.151434
\(919\) 48941.0 1.75671 0.878354 0.478011i \(-0.158642\pi\)
0.878354 + 0.478011i \(0.158642\pi\)
\(920\) 0 0
\(921\) −4155.00 −0.148656
\(922\) −30720.0 −1.09730
\(923\) 19140.0 0.682558
\(924\) 8280.00 0.294797
\(925\) 0 0
\(926\) 3424.00 0.121511
\(927\) 7308.00 0.258928
\(928\) −7488.00 −0.264877
\(929\) 31026.0 1.09573 0.547863 0.836568i \(-0.315441\pi\)
0.547863 + 0.836568i \(0.315441\pi\)
\(930\) 0 0
\(931\) 27714.0 0.975607
\(932\) 16656.0 0.585392
\(933\) 17010.0 0.596873
\(934\) −32556.0 −1.14054
\(935\) 0 0
\(936\) 2088.00 0.0729150
\(937\) 11183.0 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(938\) 36938.0 1.28579
\(939\) 1263.00 0.0438940
\(940\) 0 0
\(941\) −2562.00 −0.0887554 −0.0443777 0.999015i \(-0.514130\pi\)
−0.0443777 + 0.999015i \(0.514130\pi\)
\(942\) 10374.0 0.358814
\(943\) −23400.0 −0.808069
\(944\) −4320.00 −0.148945
\(945\) 0 0
\(946\) 25980.0 0.892899
\(947\) 7638.00 0.262093 0.131046 0.991376i \(-0.458166\pi\)
0.131046 + 0.991376i \(0.458166\pi\)
\(948\) −11904.0 −0.407831
\(949\) −18734.0 −0.640813
\(950\) 0 0
\(951\) −29952.0 −1.02130
\(952\) 14352.0 0.488604
\(953\) 51432.0 1.74821 0.874106 0.485735i \(-0.161448\pi\)
0.874106 + 0.485735i \(0.161448\pi\)
\(954\) −9936.00 −0.337201
\(955\) 0 0
\(956\) −7776.00 −0.263069
\(957\) −21060.0 −0.711362
\(958\) −29532.0 −0.995966
\(959\) −6486.00 −0.218398
\(960\) 0 0
\(961\) 17298.0 0.580645
\(962\) 8468.00 0.283804
\(963\) −12744.0 −0.426448
\(964\) 3428.00 0.114532
\(965\) 0 0
\(966\) −20700.0 −0.689453
\(967\) 39728.0 1.32116 0.660582 0.750754i \(-0.270309\pi\)
0.660582 + 0.750754i \(0.270309\pi\)
\(968\) −3448.00 −0.114486
\(969\) −34866.0 −1.15589
\(970\) 0 0
\(971\) −47946.0 −1.58461 −0.792307 0.610123i \(-0.791120\pi\)
−0.792307 + 0.610123i \(0.791120\pi\)
\(972\) −972.000 −0.0320750
\(973\) 36892.0 1.21552
\(974\) −6638.00 −0.218373
\(975\) 0 0
\(976\) 4400.00 0.144304
\(977\) −22326.0 −0.731087 −0.365544 0.930794i \(-0.619117\pi\)
−0.365544 + 0.930794i \(0.619117\pi\)
\(978\) 6738.00 0.220304
\(979\) 44640.0 1.45730
\(980\) 0 0
\(981\) −495.000 −0.0161102
\(982\) 22128.0 0.719076
\(983\) −48468.0 −1.57262 −0.786312 0.617830i \(-0.788012\pi\)
−0.786312 + 0.617830i \(0.788012\pi\)
\(984\) 3744.00 0.121295
\(985\) 0 0
\(986\) −36504.0 −1.17903
\(987\) −2070.00 −0.0667567
\(988\) 17284.0 0.556556
\(989\) −64950.0 −2.08826
\(990\) 0 0
\(991\) −25141.0 −0.805883 −0.402942 0.915226i \(-0.632012\pi\)
−0.402942 + 0.915226i \(0.632012\pi\)
\(992\) −6944.00 −0.222250
\(993\) 12684.0 0.405352
\(994\) 30360.0 0.968773
\(995\) 0 0
\(996\) 10152.0 0.322970
\(997\) −35422.0 −1.12520 −0.562601 0.826729i \(-0.690199\pi\)
−0.562601 + 0.826729i \(0.690199\pi\)
\(998\) −28262.0 −0.896411
\(999\) −3942.00 −0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.4.a.g.1.1 yes 1
3.2 odd 2 450.4.a.i.1.1 1
4.3 odd 2 1200.4.a.v.1.1 1
5.2 odd 4 150.4.c.b.49.2 2
5.3 odd 4 150.4.c.b.49.1 2
5.4 even 2 150.4.a.c.1.1 1
15.2 even 4 450.4.c.h.199.1 2
15.8 even 4 450.4.c.h.199.2 2
15.14 odd 2 450.4.a.l.1.1 1
20.3 even 4 1200.4.f.q.49.2 2
20.7 even 4 1200.4.f.q.49.1 2
20.19 odd 2 1200.4.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.c.1.1 1 5.4 even 2
150.4.a.g.1.1 yes 1 1.1 even 1 trivial
150.4.c.b.49.1 2 5.3 odd 4
150.4.c.b.49.2 2 5.2 odd 4
450.4.a.i.1.1 1 3.2 odd 2
450.4.a.l.1.1 1 15.14 odd 2
450.4.c.h.199.1 2 15.2 even 4
450.4.c.h.199.2 2 15.8 even 4
1200.4.a.r.1.1 1 20.19 odd 2
1200.4.a.v.1.1 1 4.3 odd 2
1200.4.f.q.49.1 2 20.7 even 4
1200.4.f.q.49.2 2 20.3 even 4