Properties

Label 450.4.c.h.199.2
Level $450$
Weight $4$
Character 450.199
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.4.c.h.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} -23.0000i q^{7} -8.00000i q^{8} +30.0000 q^{11} +29.0000i q^{13} +46.0000 q^{14} +16.0000 q^{16} +78.0000i q^{17} -149.000 q^{19} +60.0000i q^{22} -150.000i q^{23} -58.0000 q^{26} +92.0000i q^{28} -234.000 q^{29} -217.000 q^{31} +32.0000i q^{32} -156.000 q^{34} -146.000i q^{37} -298.000i q^{38} +156.000 q^{41} -433.000i q^{43} -120.000 q^{44} +300.000 q^{46} +30.0000i q^{47} -186.000 q^{49} -116.000i q^{52} +552.000i q^{53} -184.000 q^{56} -468.000i q^{58} -270.000 q^{59} +275.000 q^{61} -434.000i q^{62} -64.0000 q^{64} -803.000i q^{67} -312.000i q^{68} -660.000 q^{71} -646.000i q^{73} +292.000 q^{74} +596.000 q^{76} -690.000i q^{77} -992.000 q^{79} +312.000i q^{82} +846.000i q^{83} +866.000 q^{86} -240.000i q^{88} -1488.00 q^{89} +667.000 q^{91} +600.000i q^{92} -60.0000 q^{94} +319.000i q^{97} -372.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 60 q^{11} + 92 q^{14} + 32 q^{16} - 298 q^{19} - 116 q^{26} - 468 q^{29} - 434 q^{31} - 312 q^{34} + 312 q^{41} - 240 q^{44} + 600 q^{46} - 372 q^{49} - 368 q^{56} - 540 q^{59} + 550 q^{61}+ \cdots - 120 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 23.0000i − 1.24188i −0.783857 0.620942i \(-0.786750\pi\)
0.783857 0.620942i \(-0.213250\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 30.0000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) 29.0000i 0.618704i 0.950948 + 0.309352i \(0.100112\pi\)
−0.950948 + 0.309352i \(0.899888\pi\)
\(14\) 46.0000 0.878144
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 78.0000i 1.11281i 0.830911 + 0.556405i \(0.187820\pi\)
−0.830911 + 0.556405i \(0.812180\pi\)
\(18\) 0 0
\(19\) −149.000 −1.79910 −0.899551 0.436815i \(-0.856106\pi\)
−0.899551 + 0.436815i \(0.856106\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 60.0000i 0.581456i
\(23\) − 150.000i − 1.35988i −0.733269 0.679938i \(-0.762007\pi\)
0.733269 0.679938i \(-0.237993\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −58.0000 −0.437490
\(27\) 0 0
\(28\) 92.0000i 0.620942i
\(29\) −234.000 −1.49837 −0.749185 0.662361i \(-0.769554\pi\)
−0.749185 + 0.662361i \(0.769554\pi\)
\(30\) 0 0
\(31\) −217.000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −156.000 −0.786876
\(35\) 0 0
\(36\) 0 0
\(37\) − 146.000i − 0.648710i −0.945936 0.324355i \(-0.894853\pi\)
0.945936 0.324355i \(-0.105147\pi\)
\(38\) − 298.000i − 1.27216i
\(39\) 0 0
\(40\) 0 0
\(41\) 156.000 0.594222 0.297111 0.954843i \(-0.403977\pi\)
0.297111 + 0.954843i \(0.403977\pi\)
\(42\) 0 0
\(43\) − 433.000i − 1.53563i −0.640675 0.767813i \(-0.721345\pi\)
0.640675 0.767813i \(-0.278655\pi\)
\(44\) −120.000 −0.411152
\(45\) 0 0
\(46\) 300.000 0.961578
\(47\) 30.0000i 0.0931053i 0.998916 + 0.0465527i \(0.0148235\pi\)
−0.998916 + 0.0465527i \(0.985176\pi\)
\(48\) 0 0
\(49\) −186.000 −0.542274
\(50\) 0 0
\(51\) 0 0
\(52\) − 116.000i − 0.309352i
\(53\) 552.000i 1.43062i 0.698806 + 0.715312i \(0.253715\pi\)
−0.698806 + 0.715312i \(0.746285\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −184.000 −0.439072
\(57\) 0 0
\(58\) − 468.000i − 1.05951i
\(59\) −270.000 −0.595780 −0.297890 0.954600i \(-0.596283\pi\)
−0.297890 + 0.954600i \(0.596283\pi\)
\(60\) 0 0
\(61\) 275.000 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(62\) − 434.000i − 0.889001i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 803.000i − 1.46421i −0.681192 0.732105i \(-0.738538\pi\)
0.681192 0.732105i \(-0.261462\pi\)
\(68\) − 312.000i − 0.556405i
\(69\) 0 0
\(70\) 0 0
\(71\) −660.000 −1.10321 −0.551603 0.834107i \(-0.685984\pi\)
−0.551603 + 0.834107i \(0.685984\pi\)
\(72\) 0 0
\(73\) − 646.000i − 1.03573i −0.855461 0.517867i \(-0.826726\pi\)
0.855461 0.517867i \(-0.173274\pi\)
\(74\) 292.000 0.458707
\(75\) 0 0
\(76\) 596.000 0.899551
\(77\) − 690.000i − 1.02121i
\(78\) 0 0
\(79\) −992.000 −1.41277 −0.706384 0.707829i \(-0.749675\pi\)
−0.706384 + 0.707829i \(0.749675\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 312.000i 0.420178i
\(83\) 846.000i 1.11880i 0.828897 + 0.559401i \(0.188969\pi\)
−0.828897 + 0.559401i \(0.811031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 866.000 1.08585
\(87\) 0 0
\(88\) − 240.000i − 0.290728i
\(89\) −1488.00 −1.77222 −0.886111 0.463474i \(-0.846603\pi\)
−0.886111 + 0.463474i \(0.846603\pi\)
\(90\) 0 0
\(91\) 667.000 0.768358
\(92\) 600.000i 0.679938i
\(93\) 0 0
\(94\) −60.0000 −0.0658354
\(95\) 0 0
\(96\) 0 0
\(97\) 319.000i 0.333913i 0.985964 + 0.166956i \(0.0533939\pi\)
−0.985964 + 0.166956i \(0.946606\pi\)
\(98\) − 372.000i − 0.383446i
\(99\) 0 0
\(100\) 0 0
\(101\) 792.000 0.780267 0.390133 0.920758i \(-0.372429\pi\)
0.390133 + 0.920758i \(0.372429\pi\)
\(102\) 0 0
\(103\) 812.000i 0.776784i 0.921494 + 0.388392i \(0.126969\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(104\) 232.000 0.218745
\(105\) 0 0
\(106\) −1104.00 −1.01160
\(107\) − 1416.00i − 1.27934i −0.768648 0.639672i \(-0.779070\pi\)
0.768648 0.639672i \(-0.220930\pi\)
\(108\) 0 0
\(109\) 55.0000 0.0483307 0.0241653 0.999708i \(-0.492307\pi\)
0.0241653 + 0.999708i \(0.492307\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 368.000i − 0.310471i
\(113\) − 1404.00i − 1.16882i −0.811457 0.584412i \(-0.801325\pi\)
0.811457 0.584412i \(-0.198675\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 936.000 0.749185
\(117\) 0 0
\(118\) − 540.000i − 0.421280i
\(119\) 1794.00 1.38198
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 550.000i 0.408153i
\(123\) 0 0
\(124\) 868.000 0.628619
\(125\) 0 0
\(126\) 0 0
\(127\) − 1280.00i − 0.894344i −0.894448 0.447172i \(-0.852431\pi\)
0.894448 0.447172i \(-0.147569\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −480.000 −0.320136 −0.160068 0.987106i \(-0.551171\pi\)
−0.160068 + 0.987106i \(0.551171\pi\)
\(132\) 0 0
\(133\) 3427.00i 2.23428i
\(134\) 1606.00 1.03535
\(135\) 0 0
\(136\) 624.000 0.393438
\(137\) − 282.000i − 0.175860i −0.996127 0.0879302i \(-0.971975\pi\)
0.996127 0.0879302i \(-0.0280253\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 1320.00i − 0.780084i
\(143\) 870.000i 0.508763i
\(144\) 0 0
\(145\) 0 0
\(146\) 1292.00 0.732375
\(147\) 0 0
\(148\) 584.000i 0.324355i
\(149\) −774.000 −0.425561 −0.212780 0.977100i \(-0.568252\pi\)
−0.212780 + 0.977100i \(0.568252\pi\)
\(150\) 0 0
\(151\) 293.000 0.157907 0.0789536 0.996878i \(-0.474842\pi\)
0.0789536 + 0.996878i \(0.474842\pi\)
\(152\) 1192.00i 0.636079i
\(153\) 0 0
\(154\) 1380.00 0.722101
\(155\) 0 0
\(156\) 0 0
\(157\) 1729.00i 0.878912i 0.898264 + 0.439456i \(0.144829\pi\)
−0.898264 + 0.439456i \(0.855171\pi\)
\(158\) − 1984.00i − 0.998978i
\(159\) 0 0
\(160\) 0 0
\(161\) −3450.00 −1.68881
\(162\) 0 0
\(163\) − 1123.00i − 0.539633i −0.962912 0.269816i \(-0.913037\pi\)
0.962912 0.269816i \(-0.0869630\pi\)
\(164\) −624.000 −0.297111
\(165\) 0 0
\(166\) −1692.00 −0.791112
\(167\) 1200.00i 0.556041i 0.960575 + 0.278020i \(0.0896783\pi\)
−0.960575 + 0.278020i \(0.910322\pi\)
\(168\) 0 0
\(169\) 1356.00 0.617205
\(170\) 0 0
\(171\) 0 0
\(172\) 1732.00i 0.767813i
\(173\) 1734.00i 0.762044i 0.924566 + 0.381022i \(0.124428\pi\)
−0.924566 + 0.381022i \(0.875572\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 480.000 0.205576
\(177\) 0 0
\(178\) − 2976.00i − 1.25315i
\(179\) 2586.00 1.07981 0.539907 0.841725i \(-0.318459\pi\)
0.539907 + 0.841725i \(0.318459\pi\)
\(180\) 0 0
\(181\) −3931.00 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(182\) 1334.00i 0.543311i
\(183\) 0 0
\(184\) −1200.00 −0.480789
\(185\) 0 0
\(186\) 0 0
\(187\) 2340.00i 0.915068i
\(188\) − 120.000i − 0.0465527i
\(189\) 0 0
\(190\) 0 0
\(191\) −1566.00 −0.593255 −0.296628 0.954993i \(-0.595862\pi\)
−0.296628 + 0.954993i \(0.595862\pi\)
\(192\) 0 0
\(193\) 2291.00i 0.854455i 0.904144 + 0.427227i \(0.140510\pi\)
−0.904144 + 0.427227i \(0.859490\pi\)
\(194\) −638.000 −0.236112
\(195\) 0 0
\(196\) 744.000 0.271137
\(197\) 2142.00i 0.774676i 0.921938 + 0.387338i \(0.126605\pi\)
−0.921938 + 0.387338i \(0.873395\pi\)
\(198\) 0 0
\(199\) 4903.00 1.74656 0.873278 0.487223i \(-0.161990\pi\)
0.873278 + 0.487223i \(0.161990\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1584.00i 0.551732i
\(203\) 5382.00i 1.86080i
\(204\) 0 0
\(205\) 0 0
\(206\) −1624.00 −0.549269
\(207\) 0 0
\(208\) 464.000i 0.154676i
\(209\) −4470.00 −1.47941
\(210\) 0 0
\(211\) 605.000 0.197393 0.0986965 0.995118i \(-0.468533\pi\)
0.0986965 + 0.995118i \(0.468533\pi\)
\(212\) − 2208.00i − 0.715312i
\(213\) 0 0
\(214\) 2832.00 0.904633
\(215\) 0 0
\(216\) 0 0
\(217\) 4991.00i 1.56134i
\(218\) 110.000i 0.0341750i
\(219\) 0 0
\(220\) 0 0
\(221\) −2262.00 −0.688500
\(222\) 0 0
\(223\) − 145.000i − 0.0435422i −0.999763 0.0217711i \(-0.993069\pi\)
0.999763 0.0217711i \(-0.00693051\pi\)
\(224\) 736.000 0.219536
\(225\) 0 0
\(226\) 2808.00 0.826484
\(227\) 2964.00i 0.866641i 0.901240 + 0.433321i \(0.142658\pi\)
−0.901240 + 0.433321i \(0.857342\pi\)
\(228\) 0 0
\(229\) 5635.00 1.62608 0.813038 0.582211i \(-0.197812\pi\)
0.813038 + 0.582211i \(0.197812\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1872.00i 0.529754i
\(233\) − 4164.00i − 1.17078i −0.810750 0.585392i \(-0.800941\pi\)
0.810750 0.585392i \(-0.199059\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1080.00 0.297890
\(237\) 0 0
\(238\) 3588.00i 0.977208i
\(239\) −1944.00 −0.526138 −0.263069 0.964777i \(-0.584735\pi\)
−0.263069 + 0.964777i \(0.584735\pi\)
\(240\) 0 0
\(241\) 857.000 0.229063 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(242\) − 862.000i − 0.228973i
\(243\) 0 0
\(244\) −1100.00 −0.288608
\(245\) 0 0
\(246\) 0 0
\(247\) − 4321.00i − 1.11311i
\(248\) 1736.00i 0.444500i
\(249\) 0 0
\(250\) 0 0
\(251\) 3924.00 0.986776 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(252\) 0 0
\(253\) − 4500.00i − 1.11823i
\(254\) 2560.00 0.632396
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 2844.00i − 0.690287i −0.938550 0.345144i \(-0.887830\pi\)
0.938550 0.345144i \(-0.112170\pi\)
\(258\) 0 0
\(259\) −3358.00 −0.805621
\(260\) 0 0
\(261\) 0 0
\(262\) − 960.000i − 0.226370i
\(263\) 6060.00i 1.42082i 0.703788 + 0.710410i \(0.251490\pi\)
−0.703788 + 0.710410i \(0.748510\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6854.00 −1.57987
\(267\) 0 0
\(268\) 3212.00i 0.732105i
\(269\) 3906.00 0.885327 0.442664 0.896688i \(-0.354034\pi\)
0.442664 + 0.896688i \(0.354034\pi\)
\(270\) 0 0
\(271\) 2144.00 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(272\) 1248.00i 0.278203i
\(273\) 0 0
\(274\) 564.000 0.124352
\(275\) 0 0
\(276\) 0 0
\(277\) − 2321.00i − 0.503449i −0.967799 0.251725i \(-0.919002\pi\)
0.967799 0.251725i \(-0.0809977\pi\)
\(278\) − 3208.00i − 0.692097i
\(279\) 0 0
\(280\) 0 0
\(281\) 6822.00 1.44828 0.724140 0.689654i \(-0.242237\pi\)
0.724140 + 0.689654i \(0.242237\pi\)
\(282\) 0 0
\(283\) 4049.00i 0.850488i 0.905079 + 0.425244i \(0.139812\pi\)
−0.905079 + 0.425244i \(0.860188\pi\)
\(284\) 2640.00 0.551603
\(285\) 0 0
\(286\) −1740.00 −0.359749
\(287\) − 3588.00i − 0.737955i
\(288\) 0 0
\(289\) −1171.00 −0.238347
\(290\) 0 0
\(291\) 0 0
\(292\) 2584.00i 0.517867i
\(293\) − 2238.00i − 0.446230i −0.974792 0.223115i \(-0.928377\pi\)
0.974792 0.223115i \(-0.0716225\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1168.00 −0.229353
\(297\) 0 0
\(298\) − 1548.00i − 0.300917i
\(299\) 4350.00 0.841361
\(300\) 0 0
\(301\) −9959.00 −1.90707
\(302\) 586.000i 0.111657i
\(303\) 0 0
\(304\) −2384.00 −0.449776
\(305\) 0 0
\(306\) 0 0
\(307\) − 1385.00i − 0.257479i −0.991678 0.128740i \(-0.958907\pi\)
0.991678 0.128740i \(-0.0410931\pi\)
\(308\) 2760.00i 0.510603i
\(309\) 0 0
\(310\) 0 0
\(311\) 5670.00 1.03381 0.516907 0.856042i \(-0.327083\pi\)
0.516907 + 0.856042i \(0.327083\pi\)
\(312\) 0 0
\(313\) − 421.000i − 0.0760266i −0.999277 0.0380133i \(-0.987897\pi\)
0.999277 0.0380133i \(-0.0121029\pi\)
\(314\) −3458.00 −0.621485
\(315\) 0 0
\(316\) 3968.00 0.706384
\(317\) 9984.00i 1.76895i 0.466587 + 0.884475i \(0.345483\pi\)
−0.466587 + 0.884475i \(0.654517\pi\)
\(318\) 0 0
\(319\) −7020.00 −1.23211
\(320\) 0 0
\(321\) 0 0
\(322\) − 6900.00i − 1.19417i
\(323\) − 11622.0i − 2.00206i
\(324\) 0 0
\(325\) 0 0
\(326\) 2246.00 0.381578
\(327\) 0 0
\(328\) − 1248.00i − 0.210089i
\(329\) 690.000 0.115626
\(330\) 0 0
\(331\) −4228.00 −0.702090 −0.351045 0.936359i \(-0.614174\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(332\) − 3384.00i − 0.559401i
\(333\) 0 0
\(334\) −2400.00 −0.393180
\(335\) 0 0
\(336\) 0 0
\(337\) − 5393.00i − 0.871737i −0.900010 0.435869i \(-0.856441\pi\)
0.900010 0.435869i \(-0.143559\pi\)
\(338\) 2712.00i 0.436430i
\(339\) 0 0
\(340\) 0 0
\(341\) −6510.00 −1.03383
\(342\) 0 0
\(343\) − 3611.00i − 0.568442i
\(344\) −3464.00 −0.542925
\(345\) 0 0
\(346\) −3468.00 −0.538846
\(347\) − 7914.00i − 1.22434i −0.790726 0.612170i \(-0.790297\pi\)
0.790726 0.612170i \(-0.209703\pi\)
\(348\) 0 0
\(349\) −1010.00 −0.154911 −0.0774557 0.996996i \(-0.524680\pi\)
−0.0774557 + 0.996996i \(0.524680\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 960.000i 0.145364i
\(353\) − 4722.00i − 0.711974i −0.934491 0.355987i \(-0.884145\pi\)
0.934491 0.355987i \(-0.115855\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5952.00 0.886111
\(357\) 0 0
\(358\) 5172.00i 0.763544i
\(359\) 6204.00 0.912074 0.456037 0.889961i \(-0.349268\pi\)
0.456037 + 0.889961i \(0.349268\pi\)
\(360\) 0 0
\(361\) 15342.0 2.23677
\(362\) − 7862.00i − 1.14148i
\(363\) 0 0
\(364\) −2668.00 −0.384179
\(365\) 0 0
\(366\) 0 0
\(367\) − 1361.00i − 0.193579i −0.995305 0.0967897i \(-0.969143\pi\)
0.995305 0.0967897i \(-0.0308574\pi\)
\(368\) − 2400.00i − 0.339969i
\(369\) 0 0
\(370\) 0 0
\(371\) 12696.0 1.77667
\(372\) 0 0
\(373\) − 913.000i − 0.126738i −0.997990 0.0633691i \(-0.979815\pi\)
0.997990 0.0633691i \(-0.0201845\pi\)
\(374\) −4680.00 −0.647051
\(375\) 0 0
\(376\) 240.000 0.0329177
\(377\) − 6786.00i − 0.927047i
\(378\) 0 0
\(379\) 8881.00 1.20366 0.601829 0.798625i \(-0.294439\pi\)
0.601829 + 0.798625i \(0.294439\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 3132.00i − 0.419495i
\(383\) − 5460.00i − 0.728441i −0.931313 0.364221i \(-0.881335\pi\)
0.931313 0.364221i \(-0.118665\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4582.00 −0.604191
\(387\) 0 0
\(388\) − 1276.00i − 0.166956i
\(389\) −13884.0 −1.80963 −0.904816 0.425803i \(-0.859992\pi\)
−0.904816 + 0.425803i \(0.859992\pi\)
\(390\) 0 0
\(391\) 11700.0 1.51328
\(392\) 1488.00i 0.191723i
\(393\) 0 0
\(394\) −4284.00 −0.547779
\(395\) 0 0
\(396\) 0 0
\(397\) 3781.00i 0.477992i 0.971021 + 0.238996i \(0.0768183\pi\)
−0.971021 + 0.238996i \(0.923182\pi\)
\(398\) 9806.00i 1.23500i
\(399\) 0 0
\(400\) 0 0
\(401\) −9024.00 −1.12378 −0.561892 0.827211i \(-0.689926\pi\)
−0.561892 + 0.827211i \(0.689926\pi\)
\(402\) 0 0
\(403\) − 6293.00i − 0.777858i
\(404\) −3168.00 −0.390133
\(405\) 0 0
\(406\) −10764.0 −1.31578
\(407\) − 4380.00i − 0.533436i
\(408\) 0 0
\(409\) −14789.0 −1.78794 −0.893972 0.448123i \(-0.852093\pi\)
−0.893972 + 0.448123i \(0.852093\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 3248.00i − 0.388392i
\(413\) 6210.00i 0.739889i
\(414\) 0 0
\(415\) 0 0
\(416\) −928.000 −0.109372
\(417\) 0 0
\(418\) − 8940.00i − 1.04610i
\(419\) 9840.00 1.14729 0.573646 0.819103i \(-0.305528\pi\)
0.573646 + 0.819103i \(0.305528\pi\)
\(420\) 0 0
\(421\) 5510.00 0.637865 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(422\) 1210.00i 0.139578i
\(423\) 0 0
\(424\) 4416.00 0.505802
\(425\) 0 0
\(426\) 0 0
\(427\) − 6325.00i − 0.716834i
\(428\) 5664.00i 0.639672i
\(429\) 0 0
\(430\) 0 0
\(431\) −11070.0 −1.23718 −0.618588 0.785715i \(-0.712295\pi\)
−0.618588 + 0.785715i \(0.712295\pi\)
\(432\) 0 0
\(433\) − 12133.0i − 1.34659i −0.739373 0.673297i \(-0.764878\pi\)
0.739373 0.673297i \(-0.235122\pi\)
\(434\) −9982.00 −1.10404
\(435\) 0 0
\(436\) −220.000 −0.0241653
\(437\) 22350.0i 2.44656i
\(438\) 0 0
\(439\) 1873.00 0.203630 0.101815 0.994803i \(-0.467535\pi\)
0.101815 + 0.994803i \(0.467535\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 4524.00i − 0.486843i
\(443\) 576.000i 0.0617756i 0.999523 + 0.0308878i \(0.00983345\pi\)
−0.999523 + 0.0308878i \(0.990167\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 290.000 0.0307890
\(447\) 0 0
\(448\) 1472.00i 0.155235i
\(449\) −4884.00 −0.513341 −0.256671 0.966499i \(-0.582626\pi\)
−0.256671 + 0.966499i \(0.582626\pi\)
\(450\) 0 0
\(451\) 4680.00 0.488631
\(452\) 5616.00i 0.584412i
\(453\) 0 0
\(454\) −5928.00 −0.612808
\(455\) 0 0
\(456\) 0 0
\(457\) 15802.0i 1.61748i 0.588169 + 0.808738i \(0.299849\pi\)
−0.588169 + 0.808738i \(0.700151\pi\)
\(458\) 11270.0i 1.14981i
\(459\) 0 0
\(460\) 0 0
\(461\) 15360.0 1.55181 0.775907 0.630847i \(-0.217292\pi\)
0.775907 + 0.630847i \(0.217292\pi\)
\(462\) 0 0
\(463\) 1712.00i 0.171843i 0.996302 + 0.0859216i \(0.0273835\pi\)
−0.996302 + 0.0859216i \(0.972617\pi\)
\(464\) −3744.00 −0.374592
\(465\) 0 0
\(466\) 8328.00 0.827869
\(467\) − 16278.0i − 1.61297i −0.591256 0.806484i \(-0.701368\pi\)
0.591256 0.806484i \(-0.298632\pi\)
\(468\) 0 0
\(469\) −18469.0 −1.81838
\(470\) 0 0
\(471\) 0 0
\(472\) 2160.00i 0.210640i
\(473\) − 12990.0i − 1.26275i
\(474\) 0 0
\(475\) 0 0
\(476\) −7176.00 −0.690990
\(477\) 0 0
\(478\) − 3888.00i − 0.372036i
\(479\) −14766.0 −1.40851 −0.704254 0.709948i \(-0.748719\pi\)
−0.704254 + 0.709948i \(0.748719\pi\)
\(480\) 0 0
\(481\) 4234.00 0.401359
\(482\) 1714.00i 0.161972i
\(483\) 0 0
\(484\) 1724.00 0.161908
\(485\) 0 0
\(486\) 0 0
\(487\) 3319.00i 0.308826i 0.988006 + 0.154413i \(0.0493486\pi\)
−0.988006 + 0.154413i \(0.950651\pi\)
\(488\) − 2200.00i − 0.204076i
\(489\) 0 0
\(490\) 0 0
\(491\) −11064.0 −1.01693 −0.508464 0.861083i \(-0.669786\pi\)
−0.508464 + 0.861083i \(0.669786\pi\)
\(492\) 0 0
\(493\) − 18252.0i − 1.66740i
\(494\) 8642.00 0.787089
\(495\) 0 0
\(496\) −3472.00 −0.314309
\(497\) 15180.0i 1.37005i
\(498\) 0 0
\(499\) 14131.0 1.26772 0.633858 0.773449i \(-0.281470\pi\)
0.633858 + 0.773449i \(0.281470\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7848.00i 0.697756i
\(503\) − 11988.0i − 1.06266i −0.847165 0.531331i \(-0.821692\pi\)
0.847165 0.531331i \(-0.178308\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9000.00 0.790709
\(507\) 0 0
\(508\) 5120.00i 0.447172i
\(509\) 10806.0 0.940997 0.470499 0.882401i \(-0.344074\pi\)
0.470499 + 0.882401i \(0.344074\pi\)
\(510\) 0 0
\(511\) −14858.0 −1.28626
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) 5688.00 0.488107
\(515\) 0 0
\(516\) 0 0
\(517\) 900.000i 0.0765608i
\(518\) − 6716.00i − 0.569660i
\(519\) 0 0
\(520\) 0 0
\(521\) −22578.0 −1.89858 −0.949290 0.314402i \(-0.898196\pi\)
−0.949290 + 0.314402i \(0.898196\pi\)
\(522\) 0 0
\(523\) 12065.0i 1.00873i 0.863491 + 0.504365i \(0.168273\pi\)
−0.863491 + 0.504365i \(0.831727\pi\)
\(524\) 1920.00 0.160068
\(525\) 0 0
\(526\) −12120.0 −1.00467
\(527\) − 16926.0i − 1.39907i
\(528\) 0 0
\(529\) −10333.0 −0.849264
\(530\) 0 0
\(531\) 0 0
\(532\) − 13708.0i − 1.11714i
\(533\) 4524.00i 0.367648i
\(534\) 0 0
\(535\) 0 0
\(536\) −6424.00 −0.517676
\(537\) 0 0
\(538\) 7812.00i 0.626021i
\(539\) −5580.00 −0.445914
\(540\) 0 0
\(541\) −12055.0 −0.958013 −0.479006 0.877811i \(-0.659003\pi\)
−0.479006 + 0.877811i \(0.659003\pi\)
\(542\) 4288.00i 0.339825i
\(543\) 0 0
\(544\) −2496.00 −0.196719
\(545\) 0 0
\(546\) 0 0
\(547\) − 6176.00i − 0.482754i −0.970431 0.241377i \(-0.922401\pi\)
0.970431 0.241377i \(-0.0775991\pi\)
\(548\) 1128.00i 0.0879302i
\(549\) 0 0
\(550\) 0 0
\(551\) 34866.0 2.69572
\(552\) 0 0
\(553\) 22816.0i 1.75449i
\(554\) 4642.00 0.355992
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) 8274.00i 0.629409i 0.949190 + 0.314704i \(0.101905\pi\)
−0.949190 + 0.314704i \(0.898095\pi\)
\(558\) 0 0
\(559\) 12557.0 0.950098
\(560\) 0 0
\(561\) 0 0
\(562\) 13644.0i 1.02409i
\(563\) − 966.000i − 0.0723127i −0.999346 0.0361563i \(-0.988489\pi\)
0.999346 0.0361563i \(-0.0115114\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −8098.00 −0.601386
\(567\) 0 0
\(568\) 5280.00i 0.390042i
\(569\) 19002.0 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(570\) 0 0
\(571\) 8645.00 0.633594 0.316797 0.948493i \(-0.397393\pi\)
0.316797 + 0.948493i \(0.397393\pi\)
\(572\) − 3480.00i − 0.254381i
\(573\) 0 0
\(574\) 7176.00 0.521813
\(575\) 0 0
\(576\) 0 0
\(577\) − 10931.0i − 0.788672i −0.918966 0.394336i \(-0.870975\pi\)
0.918966 0.394336i \(-0.129025\pi\)
\(578\) − 2342.00i − 0.168537i
\(579\) 0 0
\(580\) 0 0
\(581\) 19458.0 1.38942
\(582\) 0 0
\(583\) 16560.0i 1.17641i
\(584\) −5168.00 −0.366187
\(585\) 0 0
\(586\) 4476.00 0.315532
\(587\) 8904.00i 0.626077i 0.949740 + 0.313039i \(0.101347\pi\)
−0.949740 + 0.313039i \(0.898653\pi\)
\(588\) 0 0
\(589\) 32333.0 2.26190
\(590\) 0 0
\(591\) 0 0
\(592\) − 2336.00i − 0.162177i
\(593\) − 8820.00i − 0.610782i −0.952227 0.305391i \(-0.901213\pi\)
0.952227 0.305391i \(-0.0987872\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3096.00 0.212780
\(597\) 0 0
\(598\) 8700.00i 0.594932i
\(599\) 9804.00 0.668749 0.334374 0.942440i \(-0.391475\pi\)
0.334374 + 0.942440i \(0.391475\pi\)
\(600\) 0 0
\(601\) −23437.0 −1.59071 −0.795354 0.606146i \(-0.792715\pi\)
−0.795354 + 0.606146i \(0.792715\pi\)
\(602\) − 19918.0i − 1.34850i
\(603\) 0 0
\(604\) −1172.00 −0.0789536
\(605\) 0 0
\(606\) 0 0
\(607\) − 2648.00i − 0.177066i −0.996073 0.0885330i \(-0.971782\pi\)
0.996073 0.0885330i \(-0.0282179\pi\)
\(608\) − 4768.00i − 0.318039i
\(609\) 0 0
\(610\) 0 0
\(611\) −870.000 −0.0576046
\(612\) 0 0
\(613\) 794.000i 0.0523154i 0.999658 + 0.0261577i \(0.00832721\pi\)
−0.999658 + 0.0261577i \(0.991673\pi\)
\(614\) 2770.00 0.182065
\(615\) 0 0
\(616\) −5520.00 −0.361051
\(617\) 18720.0i 1.22146i 0.791840 + 0.610728i \(0.209123\pi\)
−0.791840 + 0.610728i \(0.790877\pi\)
\(618\) 0 0
\(619\) 8959.00 0.581733 0.290866 0.956764i \(-0.406056\pi\)
0.290866 + 0.956764i \(0.406056\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 11340.0i 0.731017i
\(623\) 34224.0i 2.20089i
\(624\) 0 0
\(625\) 0 0
\(626\) 842.000 0.0537589
\(627\) 0 0
\(628\) − 6916.00i − 0.439456i
\(629\) 11388.0 0.721891
\(630\) 0 0
\(631\) −12373.0 −0.780604 −0.390302 0.920687i \(-0.627629\pi\)
−0.390302 + 0.920687i \(0.627629\pi\)
\(632\) 7936.00i 0.499489i
\(633\) 0 0
\(634\) −19968.0 −1.25084
\(635\) 0 0
\(636\) 0 0
\(637\) − 5394.00i − 0.335507i
\(638\) − 14040.0i − 0.871237i
\(639\) 0 0
\(640\) 0 0
\(641\) −24900.0 −1.53431 −0.767154 0.641463i \(-0.778328\pi\)
−0.767154 + 0.641463i \(0.778328\pi\)
\(642\) 0 0
\(643\) − 14668.0i − 0.899610i −0.893127 0.449805i \(-0.851493\pi\)
0.893127 0.449805i \(-0.148507\pi\)
\(644\) 13800.0 0.844404
\(645\) 0 0
\(646\) 23244.0 1.41567
\(647\) − 10788.0i − 0.655518i −0.944761 0.327759i \(-0.893707\pi\)
0.944761 0.327759i \(-0.106293\pi\)
\(648\) 0 0
\(649\) −8100.00 −0.489912
\(650\) 0 0
\(651\) 0 0
\(652\) 4492.00i 0.269816i
\(653\) 14214.0i 0.851817i 0.904766 + 0.425909i \(0.140046\pi\)
−0.904766 + 0.425909i \(0.859954\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2496.00 0.148556
\(657\) 0 0
\(658\) 1380.00i 0.0817599i
\(659\) −588.000 −0.0347576 −0.0173788 0.999849i \(-0.505532\pi\)
−0.0173788 + 0.999849i \(0.505532\pi\)
\(660\) 0 0
\(661\) −3166.00 −0.186298 −0.0931491 0.995652i \(-0.529693\pi\)
−0.0931491 + 0.995652i \(0.529693\pi\)
\(662\) − 8456.00i − 0.496453i
\(663\) 0 0
\(664\) 6768.00 0.395556
\(665\) 0 0
\(666\) 0 0
\(667\) 35100.0i 2.03760i
\(668\) − 4800.00i − 0.278020i
\(669\) 0 0
\(670\) 0 0
\(671\) 8250.00 0.474646
\(672\) 0 0
\(673\) 9182.00i 0.525914i 0.964808 + 0.262957i \(0.0846977\pi\)
−0.964808 + 0.262957i \(0.915302\pi\)
\(674\) 10786.0 0.616411
\(675\) 0 0
\(676\) −5424.00 −0.308603
\(677\) 11742.0i 0.666590i 0.942823 + 0.333295i \(0.108161\pi\)
−0.942823 + 0.333295i \(0.891839\pi\)
\(678\) 0 0
\(679\) 7337.00 0.414681
\(680\) 0 0
\(681\) 0 0
\(682\) − 13020.0i − 0.731029i
\(683\) 6024.00i 0.337485i 0.985660 + 0.168742i \(0.0539706\pi\)
−0.985660 + 0.168742i \(0.946029\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7222.00 0.401949
\(687\) 0 0
\(688\) − 6928.00i − 0.383906i
\(689\) −16008.0 −0.885132
\(690\) 0 0
\(691\) 9344.00 0.514418 0.257209 0.966356i \(-0.417197\pi\)
0.257209 + 0.966356i \(0.417197\pi\)
\(692\) − 6936.00i − 0.381022i
\(693\) 0 0
\(694\) 15828.0 0.865739
\(695\) 0 0
\(696\) 0 0
\(697\) 12168.0i 0.661257i
\(698\) − 2020.00i − 0.109539i
\(699\) 0 0
\(700\) 0 0
\(701\) −21234.0 −1.14408 −0.572038 0.820227i \(-0.693847\pi\)
−0.572038 + 0.820227i \(0.693847\pi\)
\(702\) 0 0
\(703\) 21754.0i 1.16709i
\(704\) −1920.00 −0.102788
\(705\) 0 0
\(706\) 9444.00 0.503441
\(707\) − 18216.0i − 0.969000i
\(708\) 0 0
\(709\) 1723.00 0.0912675 0.0456337 0.998958i \(-0.485469\pi\)
0.0456337 + 0.998958i \(0.485469\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11904.0i 0.626575i
\(713\) 32550.0i 1.70969i
\(714\) 0 0
\(715\) 0 0
\(716\) −10344.0 −0.539907
\(717\) 0 0
\(718\) 12408.0i 0.644934i
\(719\) 18510.0 0.960093 0.480046 0.877243i \(-0.340620\pi\)
0.480046 + 0.877243i \(0.340620\pi\)
\(720\) 0 0
\(721\) 18676.0 0.964675
\(722\) 30684.0i 1.58163i
\(723\) 0 0
\(724\) 15724.0 0.807152
\(725\) 0 0
\(726\) 0 0
\(727\) 1009.00i 0.0514742i 0.999669 + 0.0257371i \(0.00819328\pi\)
−0.999669 + 0.0257371i \(0.991807\pi\)
\(728\) − 5336.00i − 0.271656i
\(729\) 0 0
\(730\) 0 0
\(731\) 33774.0 1.70886
\(732\) 0 0
\(733\) − 21994.0i − 1.10828i −0.832425 0.554138i \(-0.813048\pi\)
0.832425 0.554138i \(-0.186952\pi\)
\(734\) 2722.00 0.136881
\(735\) 0 0
\(736\) 4800.00 0.240394
\(737\) − 24090.0i − 1.20403i
\(738\) 0 0
\(739\) 13948.0 0.694297 0.347148 0.937810i \(-0.387150\pi\)
0.347148 + 0.937810i \(0.387150\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 25392.0i 1.25629i
\(743\) 26508.0i 1.30886i 0.756122 + 0.654431i \(0.227092\pi\)
−0.756122 + 0.654431i \(0.772908\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1826.00 0.0896174
\(747\) 0 0
\(748\) − 9360.00i − 0.457534i
\(749\) −32568.0 −1.58880
\(750\) 0 0
\(751\) −1600.00 −0.0777428 −0.0388714 0.999244i \(-0.512376\pi\)
−0.0388714 + 0.999244i \(0.512376\pi\)
\(752\) 480.000i 0.0232763i
\(753\) 0 0
\(754\) 13572.0 0.655521
\(755\) 0 0
\(756\) 0 0
\(757\) − 30101.0i − 1.44523i −0.691250 0.722615i \(-0.742940\pi\)
0.691250 0.722615i \(-0.257060\pi\)
\(758\) 17762.0i 0.851115i
\(759\) 0 0
\(760\) 0 0
\(761\) −35628.0 −1.69713 −0.848564 0.529093i \(-0.822532\pi\)
−0.848564 + 0.529093i \(0.822532\pi\)
\(762\) 0 0
\(763\) − 1265.00i − 0.0600211i
\(764\) 6264.00 0.296628
\(765\) 0 0
\(766\) 10920.0 0.515086
\(767\) − 7830.00i − 0.368611i
\(768\) 0 0
\(769\) 12517.0 0.586963 0.293482 0.955965i \(-0.405186\pi\)
0.293482 + 0.955965i \(0.405186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 9164.00i − 0.427227i
\(773\) − 14124.0i − 0.657186i −0.944472 0.328593i \(-0.893426\pi\)
0.944472 0.328593i \(-0.106574\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2552.00 0.118056
\(777\) 0 0
\(778\) − 27768.0i − 1.27960i
\(779\) −23244.0 −1.06907
\(780\) 0 0
\(781\) −19800.0 −0.907170
\(782\) 23400.0i 1.07005i
\(783\) 0 0
\(784\) −2976.00 −0.135569
\(785\) 0 0
\(786\) 0 0
\(787\) − 40433.0i − 1.83136i −0.401907 0.915680i \(-0.631653\pi\)
0.401907 0.915680i \(-0.368347\pi\)
\(788\) − 8568.00i − 0.387338i
\(789\) 0 0
\(790\) 0 0
\(791\) −32292.0 −1.45154
\(792\) 0 0
\(793\) 7975.00i 0.357126i
\(794\) −7562.00 −0.337992
\(795\) 0 0
\(796\) −19612.0 −0.873278
\(797\) − 27300.0i − 1.21332i −0.794962 0.606660i \(-0.792509\pi\)
0.794962 0.606660i \(-0.207491\pi\)
\(798\) 0 0
\(799\) −2340.00 −0.103609
\(800\) 0 0
\(801\) 0 0
\(802\) − 18048.0i − 0.794635i
\(803\) − 19380.0i − 0.851688i
\(804\) 0 0
\(805\) 0 0
\(806\) 12586.0 0.550028
\(807\) 0 0
\(808\) − 6336.00i − 0.275866i
\(809\) −2856.00 −0.124118 −0.0620591 0.998072i \(-0.519767\pi\)
−0.0620591 + 0.998072i \(0.519767\pi\)
\(810\) 0 0
\(811\) −12619.0 −0.546379 −0.273189 0.961960i \(-0.588079\pi\)
−0.273189 + 0.961960i \(0.588079\pi\)
\(812\) − 21528.0i − 0.930400i
\(813\) 0 0
\(814\) 8760.00 0.377196
\(815\) 0 0
\(816\) 0 0
\(817\) 64517.0i 2.76275i
\(818\) − 29578.0i − 1.26427i
\(819\) 0 0
\(820\) 0 0
\(821\) 29082.0 1.23626 0.618130 0.786076i \(-0.287891\pi\)
0.618130 + 0.786076i \(0.287891\pi\)
\(822\) 0 0
\(823\) 10235.0i 0.433499i 0.976227 + 0.216749i \(0.0695455\pi\)
−0.976227 + 0.216749i \(0.930455\pi\)
\(824\) 6496.00 0.274635
\(825\) 0 0
\(826\) −12420.0 −0.523180
\(827\) 26976.0i 1.13428i 0.823622 + 0.567139i \(0.191950\pi\)
−0.823622 + 0.567139i \(0.808050\pi\)
\(828\) 0 0
\(829\) −37802.0 −1.58374 −0.791868 0.610692i \(-0.790891\pi\)
−0.791868 + 0.610692i \(0.790891\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1856.00i − 0.0773380i
\(833\) − 14508.0i − 0.603448i
\(834\) 0 0
\(835\) 0 0
\(836\) 17880.0 0.739704
\(837\) 0 0
\(838\) 19680.0i 0.811258i
\(839\) −16974.0 −0.698460 −0.349230 0.937037i \(-0.613557\pi\)
−0.349230 + 0.937037i \(0.613557\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 11020.0i 0.451038i
\(843\) 0 0
\(844\) −2420.00 −0.0986965
\(845\) 0 0
\(846\) 0 0
\(847\) 9913.00i 0.402143i
\(848\) 8832.00i 0.357656i
\(849\) 0 0
\(850\) 0 0
\(851\) −21900.0 −0.882165
\(852\) 0 0
\(853\) − 24937.0i − 1.00097i −0.865745 0.500485i \(-0.833155\pi\)
0.865745 0.500485i \(-0.166845\pi\)
\(854\) 12650.0 0.506878
\(855\) 0 0
\(856\) −11328.0 −0.452317
\(857\) 15756.0i 0.628022i 0.949419 + 0.314011i \(0.101673\pi\)
−0.949419 + 0.314011i \(0.898327\pi\)
\(858\) 0 0
\(859\) −38144.0 −1.51508 −0.757542 0.652787i \(-0.773600\pi\)
−0.757542 + 0.652787i \(0.773600\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 22140.0i − 0.874816i
\(863\) − 5448.00i − 0.214892i −0.994211 0.107446i \(-0.965733\pi\)
0.994211 0.107446i \(-0.0342673\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24266.0 0.952185
\(867\) 0 0
\(868\) − 19964.0i − 0.780671i
\(869\) −29760.0 −1.16172
\(870\) 0 0
\(871\) 23287.0 0.905913
\(872\) − 440.000i − 0.0170875i
\(873\) 0 0
\(874\) −44700.0 −1.72998
\(875\) 0 0
\(876\) 0 0
\(877\) − 21191.0i − 0.815928i −0.912998 0.407964i \(-0.866239\pi\)
0.912998 0.407964i \(-0.133761\pi\)
\(878\) 3746.00i 0.143988i
\(879\) 0 0
\(880\) 0 0
\(881\) −18216.0 −0.696609 −0.348305 0.937381i \(-0.613242\pi\)
−0.348305 + 0.937381i \(0.613242\pi\)
\(882\) 0 0
\(883\) 12767.0i 0.486573i 0.969955 + 0.243286i \(0.0782255\pi\)
−0.969955 + 0.243286i \(0.921775\pi\)
\(884\) 9048.00 0.344250
\(885\) 0 0
\(886\) −1152.00 −0.0436819
\(887\) 11010.0i 0.416775i 0.978046 + 0.208388i \(0.0668215\pi\)
−0.978046 + 0.208388i \(0.933178\pi\)
\(888\) 0 0
\(889\) −29440.0 −1.11067
\(890\) 0 0
\(891\) 0 0
\(892\) 580.000i 0.0217711i
\(893\) − 4470.00i − 0.167506i
\(894\) 0 0
\(895\) 0 0
\(896\) −2944.00 −0.109768
\(897\) 0 0
\(898\) − 9768.00i − 0.362987i
\(899\) 50778.0 1.88381
\(900\) 0 0
\(901\) −43056.0 −1.59201
\(902\) 9360.00i 0.345514i
\(903\) 0 0
\(904\) −11232.0 −0.413242
\(905\) 0 0
\(906\) 0 0
\(907\) − 22772.0i − 0.833662i −0.908984 0.416831i \(-0.863141\pi\)
0.908984 0.416831i \(-0.136859\pi\)
\(908\) − 11856.0i − 0.433321i
\(909\) 0 0
\(910\) 0 0
\(911\) −29802.0 −1.08385 −0.541923 0.840428i \(-0.682304\pi\)
−0.541923 + 0.840428i \(0.682304\pi\)
\(912\) 0 0
\(913\) 25380.0i 0.919995i
\(914\) −31604.0 −1.14373
\(915\) 0 0
\(916\) −22540.0 −0.813038
\(917\) 11040.0i 0.397571i
\(918\) 0 0
\(919\) −48941.0 −1.75671 −0.878354 0.478011i \(-0.841358\pi\)
−0.878354 + 0.478011i \(0.841358\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30720.0i 1.09730i
\(923\) − 19140.0i − 0.682558i
\(924\) 0 0
\(925\) 0 0
\(926\) −3424.00 −0.121511
\(927\) 0 0
\(928\) − 7488.00i − 0.264877i
\(929\) 31026.0 1.09573 0.547863 0.836568i \(-0.315441\pi\)
0.547863 + 0.836568i \(0.315441\pi\)
\(930\) 0 0
\(931\) 27714.0 0.975607
\(932\) 16656.0i 0.585392i
\(933\) 0 0
\(934\) 32556.0 1.14054
\(935\) 0 0
\(936\) 0 0
\(937\) − 11183.0i − 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(938\) − 36938.0i − 1.28579i
\(939\) 0 0
\(940\) 0 0
\(941\) 2562.00 0.0887554 0.0443777 0.999015i \(-0.485870\pi\)
0.0443777 + 0.999015i \(0.485870\pi\)
\(942\) 0 0
\(943\) − 23400.0i − 0.808069i
\(944\) −4320.00 −0.148945
\(945\) 0 0
\(946\) 25980.0 0.892899
\(947\) 7638.00i 0.262093i 0.991376 + 0.131046i \(0.0418336\pi\)
−0.991376 + 0.131046i \(0.958166\pi\)
\(948\) 0 0
\(949\) 18734.0 0.640813
\(950\) 0 0
\(951\) 0 0
\(952\) − 14352.0i − 0.488604i
\(953\) − 51432.0i − 1.74821i −0.485735 0.874106i \(-0.661448\pi\)
0.485735 0.874106i \(-0.338552\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7776.00 0.263069
\(957\) 0 0
\(958\) − 29532.0i − 0.995966i
\(959\) −6486.00 −0.218398
\(960\) 0 0
\(961\) 17298.0 0.580645
\(962\) 8468.00i 0.283804i
\(963\) 0 0
\(964\) −3428.00 −0.114532
\(965\) 0 0
\(966\) 0 0
\(967\) − 39728.0i − 1.32116i −0.750754 0.660582i \(-0.770309\pi\)
0.750754 0.660582i \(-0.229691\pi\)
\(968\) 3448.00i 0.114486i
\(969\) 0 0
\(970\) 0 0
\(971\) 47946.0 1.58461 0.792307 0.610123i \(-0.208880\pi\)
0.792307 + 0.610123i \(0.208880\pi\)
\(972\) 0 0
\(973\) 36892.0i 1.21552i
\(974\) −6638.00 −0.218373
\(975\) 0 0
\(976\) 4400.00 0.144304
\(977\) − 22326.0i − 0.731087i −0.930794 0.365544i \(-0.880883\pi\)
0.930794 0.365544i \(-0.119117\pi\)
\(978\) 0 0
\(979\) −44640.0 −1.45730
\(980\) 0 0
\(981\) 0 0
\(982\) − 22128.0i − 0.719076i
\(983\) 48468.0i 1.57262i 0.617830 + 0.786312i \(0.288012\pi\)
−0.617830 + 0.786312i \(0.711988\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 36504.0 1.17903
\(987\) 0 0
\(988\) 17284.0i 0.556556i
\(989\) −64950.0 −2.08826
\(990\) 0 0
\(991\) −25141.0 −0.805883 −0.402942 0.915226i \(-0.632012\pi\)
−0.402942 + 0.915226i \(0.632012\pi\)
\(992\) − 6944.00i − 0.222250i
\(993\) 0 0
\(994\) −30360.0 −0.968773
\(995\) 0 0
\(996\) 0 0
\(997\) 35422.0i 1.12520i 0.826729 + 0.562601i \(0.190199\pi\)
−0.826729 + 0.562601i \(0.809801\pi\)
\(998\) 28262.0i 0.896411i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.4.c.h.199.2 2
3.2 odd 2 150.4.c.b.49.1 2
5.2 odd 4 450.4.a.i.1.1 1
5.3 odd 4 450.4.a.l.1.1 1
5.4 even 2 inner 450.4.c.h.199.1 2
12.11 even 2 1200.4.f.q.49.2 2
15.2 even 4 150.4.a.g.1.1 yes 1
15.8 even 4 150.4.a.c.1.1 1
15.14 odd 2 150.4.c.b.49.2 2
60.23 odd 4 1200.4.a.r.1.1 1
60.47 odd 4 1200.4.a.v.1.1 1
60.59 even 2 1200.4.f.q.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.c.1.1 1 15.8 even 4
150.4.a.g.1.1 yes 1 15.2 even 4
150.4.c.b.49.1 2 3.2 odd 2
150.4.c.b.49.2 2 15.14 odd 2
450.4.a.i.1.1 1 5.2 odd 4
450.4.a.l.1.1 1 5.3 odd 4
450.4.c.h.199.1 2 5.4 even 2 inner
450.4.c.h.199.2 2 1.1 even 1 trivial
1200.4.a.r.1.1 1 60.23 odd 4
1200.4.a.v.1.1 1 60.47 odd 4
1200.4.f.q.49.1 2 60.59 even 2
1200.4.f.q.49.2 2 12.11 even 2