Properties

Label 150.4.g.b
Level $150$
Weight $4$
Character orbit 150.g
Analytic conductor $8.850$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(31,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85028650086\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 66 x^{14} + 116 x^{13} - 15174 x^{12} + 66830 x^{11} - 253085 x^{10} + \cdots + 48733788520125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{6} q^{2} + (3 \beta_{6} + 3 \beta_{5} + 3 \beta_{4} - 3) q^{3} + (4 \beta_{6} + 4 \beta_{5} + 4 \beta_{4} - 4) q^{4} + ( - \beta_{10} + \beta_{6} + \beta_{5} + \cdots + 1) q^{5} - 6 \beta_{5} q^{6}+ \cdots + (9 \beta_{15} + 9 \beta_{14} + \cdots + 54) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 12 q^{3} - 16 q^{4} + 15 q^{5} - 24 q^{6} + 46 q^{7} - 32 q^{8} - 36 q^{9} + 50 q^{10} - 83 q^{11} - 48 q^{12} + 22 q^{13} + 2 q^{14} - 60 q^{15} - 64 q^{16} - 79 q^{17} + 288 q^{18} - 15 q^{19}+ \cdots + 1368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4 x^{15} + 66 x^{14} + 116 x^{13} - 15174 x^{12} + 66830 x^{11} - 253085 x^{10} + \cdots + 48733788520125 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 10\!\cdots\!81 \nu^{15} + \cdots + 20\!\cdots\!75 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 30\!\cdots\!41 \nu^{15} + \cdots - 10\!\cdots\!25 ) / 61\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 40\!\cdots\!01 \nu^{15} + \cdots + 10\!\cdots\!25 ) / 61\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 85\!\cdots\!44 \nu^{15} + \cdots + 34\!\cdots\!75 ) / 91\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 26\!\cdots\!35 \nu^{15} + \cdots - 90\!\cdots\!25 ) / 18\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 15\!\cdots\!92 \nu^{15} + \cdots + 10\!\cdots\!75 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 16\!\cdots\!93 \nu^{15} + \cdots + 77\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 13\!\cdots\!90 \nu^{15} + \cdots + 82\!\cdots\!25 ) / 38\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 45\!\cdots\!16 \nu^{15} + \cdots - 14\!\cdots\!75 ) / 11\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 41\!\cdots\!47 \nu^{15} + \cdots - 46\!\cdots\!00 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 17\!\cdots\!39 \nu^{15} + \cdots + 27\!\cdots\!75 ) / 38\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 13\!\cdots\!89 \nu^{15} + \cdots + 45\!\cdots\!00 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 26\!\cdots\!32 \nu^{15} + \cdots - 41\!\cdots\!75 ) / 25\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 45\!\cdots\!47 \nu^{15} + \cdots + 18\!\cdots\!00 ) / 22\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 13\!\cdots\!85 \nu^{15} + \cdots - 10\!\cdots\!25 ) / 63\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{10} + 3\beta_{7} - 2\beta_{3} - \beta_{2} ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 15 \beta_{15} + 5 \beta_{14} - 15 \beta_{13} + 5 \beta_{11} - 9 \beta_{10} - 5 \beta_{9} + 5 \beta_{8} + \cdots - 35 ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 10 \beta_{15} - 15 \beta_{14} + 100 \beta_{13} - 10 \beta_{12} + 110 \beta_{11} + \beta_{10} + \cdots - 675 ) / 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 280 \beta_{15} - 200 \beta_{14} + 315 \beta_{13} + 10 \beta_{12} + 45 \beta_{11} + 1481 \beta_{10} + \cdots + 26610 ) / 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 4195 \beta_{15} - 7460 \beta_{14} - 3100 \beta_{13} - 4270 \beta_{12} - 9275 \beta_{11} + \cdots + 35730 ) / 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 75565 \beta_{15} + 38305 \beta_{14} - 165060 \beta_{13} - 5550 \beta_{12} + 8160 \beta_{11} + \cdots - 1795475 ) / 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 207025 \beta_{15} + 248870 \beta_{14} + 475385 \beta_{13} + 101970 \beta_{12} + 1206100 \beta_{11} + \cdots - 15405855 ) / 5 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 7835715 \beta_{15} - 3778065 \beta_{14} + 11920060 \beta_{13} + 893340 \beta_{12} + 2169895 \beta_{11} + \cdots + 236792440 ) / 5 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 69454905 \beta_{15} - 111437175 \beta_{14} - 38429235 \beta_{13} - 67390690 \beta_{12} + \cdots + 1391163585 ) / 5 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 697760905 \beta_{15} + 252311815 \beta_{14} - 2151958150 \beta_{13} - 173187820 \beta_{12} + \cdots - 32088989220 ) / 5 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 6597997540 \beta_{15} + 9611569455 \beta_{14} + 2383843690 \beta_{13} + 5476132900 \beta_{12} + \cdots - 259224447650 ) / 5 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 118247695100 \beta_{15} - 38886251005 \beta_{14} + 253469004735 \beta_{13} + 33670782470 \beta_{12} + \cdots + 3281798731670 ) / 5 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 1094068646715 \beta_{15} - 1557206583190 \beta_{14} - 226950738890 \beta_{13} - 878491189660 \beta_{12} + \cdots + 33433860439940 ) / 5 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 10728765764470 \beta_{15} + 2132910564075 \beta_{14} - 33182869647685 \beta_{13} + \cdots - 470812076760790 ) / 5 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 146259104445530 \beta_{15} + 197726667011940 \beta_{14} - 11684313381100 \beta_{13} + \cdots - 47\!\cdots\!95 ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1 + \beta_{4} + \beta_{5} + \beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
0.387580 11.4048i
8.63398 + 2.08603i
0.763576 + 7.57775i
−8.78513 + 1.74100i
5.06301 + 1.81025i
0.147988 7.05156i
1.36008 + 4.54276i
−5.57107 + 0.698546i
5.06301 1.81025i
0.147988 + 7.05156i
1.36008 4.54276i
−5.57107 0.698546i
0.387580 + 11.4048i
8.63398 2.08603i
0.763576 7.57775i
−8.78513 1.74100i
0.618034 + 1.90211i −2.42705 + 1.76336i −3.23607 + 2.35114i −9.30538 + 6.19757i −4.85410 3.52671i −2.27951 −6.47214 4.70228i 2.78115 8.55951i −17.5395 13.8696i
31.2 0.618034 + 1.90211i −2.42705 + 1.76336i −3.23607 + 2.35114i −2.17298 10.9671i −4.85410 3.52671i 31.0680 −6.47214 4.70228i 2.78115 8.55951i 19.5178 10.9113i
31.3 0.618034 + 1.90211i −2.42705 + 1.76336i −3.23607 + 2.35114i 8.48827 7.27663i −4.85410 3.52671i −25.3959 −6.47214 4.70228i 2.78115 8.55951i 19.0870 + 11.6484i
31.4 0.618034 + 1.90211i −2.42705 + 1.76336i −3.23607 + 2.35114i 9.53518 + 5.83783i −4.85410 3.52671i 13.6975 −6.47214 4.70228i 2.78115 8.55951i −5.21115 + 21.7450i
61.1 −1.61803 + 1.17557i 0.927051 2.85317i 1.23607 3.80423i −7.40404 8.37736i 1.85410 + 5.70634i 24.2141 2.47214 + 7.60845i −7.28115 5.29007i 21.8282 + 4.85088i
61.2 −1.61803 + 1.17557i 0.927051 2.85317i 1.23607 3.80423i −3.72153 + 10.5428i 1.85410 + 5.70634i 7.73387 2.47214 + 7.60845i −7.28115 5.29007i −6.37221 21.4335i
61.3 −1.61803 + 1.17557i 0.927051 2.85317i 1.23607 3.80423i 0.900748 11.1440i 1.85410 + 5.70634i −31.6588 2.47214 + 7.60845i −7.28115 5.29007i 11.6431 + 19.0903i
61.4 −1.61803 + 1.17557i 0.927051 2.85317i 1.23607 3.80423i 11.1797 0.115716i 1.85410 + 5.70634i 5.62070 2.47214 + 7.60845i −7.28115 5.29007i −17.9532 + 13.3298i
91.1 −1.61803 1.17557i 0.927051 + 2.85317i 1.23607 + 3.80423i −7.40404 + 8.37736i 1.85410 5.70634i 24.2141 2.47214 7.60845i −7.28115 + 5.29007i 21.8282 4.85088i
91.2 −1.61803 1.17557i 0.927051 + 2.85317i 1.23607 + 3.80423i −3.72153 10.5428i 1.85410 5.70634i 7.73387 2.47214 7.60845i −7.28115 + 5.29007i −6.37221 + 21.4335i
91.3 −1.61803 1.17557i 0.927051 + 2.85317i 1.23607 + 3.80423i 0.900748 + 11.1440i 1.85410 5.70634i −31.6588 2.47214 7.60845i −7.28115 + 5.29007i 11.6431 19.0903i
91.4 −1.61803 1.17557i 0.927051 + 2.85317i 1.23607 + 3.80423i 11.1797 + 0.115716i 1.85410 5.70634i 5.62070 2.47214 7.60845i −7.28115 + 5.29007i −17.9532 13.3298i
121.1 0.618034 1.90211i −2.42705 1.76336i −3.23607 2.35114i −9.30538 6.19757i −4.85410 + 3.52671i −2.27951 −6.47214 + 4.70228i 2.78115 + 8.55951i −17.5395 + 13.8696i
121.2 0.618034 1.90211i −2.42705 1.76336i −3.23607 2.35114i −2.17298 + 10.9671i −4.85410 + 3.52671i 31.0680 −6.47214 + 4.70228i 2.78115 + 8.55951i 19.5178 + 10.9113i
121.3 0.618034 1.90211i −2.42705 1.76336i −3.23607 2.35114i 8.48827 + 7.27663i −4.85410 + 3.52671i −25.3959 −6.47214 + 4.70228i 2.78115 + 8.55951i 19.0870 11.6484i
121.4 0.618034 1.90211i −2.42705 1.76336i −3.23607 2.35114i 9.53518 5.83783i −4.85410 + 3.52671i 13.6975 −6.47214 + 4.70228i 2.78115 + 8.55951i −5.21115 21.7450i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.4.g.b 16
25.d even 5 1 inner 150.4.g.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.4.g.b 16 1.a even 1 1 trivial
150.4.g.b 16 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} - 23 T_{7}^{7} - 1477 T_{7}^{6} + 38269 T_{7}^{5} + 377930 T_{7}^{4} - 15110346 T_{7}^{3} + \cdots - 820937664 \) acting on \(S_{4}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 16)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + 3 T^{3} + 9 T^{2} + \cdots + 81)^{4} \) Copy content Toggle raw display
$5$ \( T^{16} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( (T^{8} - 23 T^{7} + \cdots - 820937664)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 58\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 43\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 35\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 16\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 37\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 33\!\cdots\!76)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 21\!\cdots\!21 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 47\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 70\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 39\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 76\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 53\!\cdots\!61 \) Copy content Toggle raw display
show more
show less