Properties

Label 150.8.a.s.1.2
Level $150$
Weight $8$
Character 150.1
Self dual yes
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2641}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 660 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-25.1953\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} -216.000 q^{6} +1309.81 q^{7} +512.000 q^{8} +729.000 q^{9} -5457.35 q^{11} -1728.00 q^{12} +5237.72 q^{13} +10478.5 q^{14} +4096.00 q^{16} +4870.92 q^{17} +5832.00 q^{18} +32781.2 q^{19} -35365.0 q^{21} -43658.8 q^{22} -83486.0 q^{23} -13824.0 q^{24} +41901.8 q^{26} -19683.0 q^{27} +83828.0 q^{28} -73409.7 q^{29} +244719. q^{31} +32768.0 q^{32} +147348. q^{33} +38967.3 q^{34} +46656.0 q^{36} +107537. q^{37} +262250. q^{38} -141418. q^{39} +396774. q^{41} -282920. q^{42} +725839. q^{43} -349270. q^{44} -667888. q^{46} +801478. q^{47} -110592. q^{48} +892068. q^{49} -131515. q^{51} +335214. q^{52} -1.22395e6 q^{53} -157464. q^{54} +670624. q^{56} -885092. q^{57} -587278. q^{58} +2.32931e6 q^{59} +2.63553e6 q^{61} +1.95775e6 q^{62} +954854. q^{63} +262144. q^{64} +1.17879e6 q^{66} -209887. q^{67} +311739. q^{68} +2.25412e6 q^{69} +3.76578e6 q^{71} +373248. q^{72} +2.81943e6 q^{73} +860298. q^{74} +2.09800e6 q^{76} -7.14810e6 q^{77} -1.13135e6 q^{78} -8.68583e6 q^{79} +531441. q^{81} +3.17419e6 q^{82} -5.77317e6 q^{83} -2.26336e6 q^{84} +5.80672e6 q^{86} +1.98206e6 q^{87} -2.79416e6 q^{88} +1.02714e7 q^{89} +6.86043e6 q^{91} -5.34310e6 q^{92} -6.60742e6 q^{93} +6.41183e6 q^{94} -884736. q^{96} -5.19683e6 q^{97} +7.13654e6 q^{98} -3.97841e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} - 54 q^{3} + 128 q^{4} - 432 q^{6} + 564 q^{7} + 1024 q^{8} + 1458 q^{9} - 3720 q^{11} - 3456 q^{12} + 7392 q^{13} + 4512 q^{14} + 8192 q^{16} - 24176 q^{17} + 11664 q^{18} + 34728 q^{19}+ \cdots - 2711880 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −27.0000 −0.577350
\(4\) 64.0000 0.500000
\(5\) 0 0
\(6\) −216.000 −0.408248
\(7\) 1309.81 1.44333 0.721666 0.692241i \(-0.243377\pi\)
0.721666 + 0.692241i \(0.243377\pi\)
\(8\) 512.000 0.353553
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) −5457.35 −1.23625 −0.618126 0.786079i \(-0.712108\pi\)
−0.618126 + 0.786079i \(0.712108\pi\)
\(12\) −1728.00 −0.288675
\(13\) 5237.72 0.661212 0.330606 0.943769i \(-0.392747\pi\)
0.330606 + 0.943769i \(0.392747\pi\)
\(14\) 10478.5 1.02059
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 4870.92 0.240458 0.120229 0.992746i \(-0.461637\pi\)
0.120229 + 0.992746i \(0.461637\pi\)
\(18\) 5832.00 0.235702
\(19\) 32781.2 1.09645 0.548223 0.836332i \(-0.315305\pi\)
0.548223 + 0.836332i \(0.315305\pi\)
\(20\) 0 0
\(21\) −35365.0 −0.833308
\(22\) −43658.8 −0.874162
\(23\) −83486.0 −1.43076 −0.715379 0.698737i \(-0.753746\pi\)
−0.715379 + 0.698737i \(0.753746\pi\)
\(24\) −13824.0 −0.204124
\(25\) 0 0
\(26\) 41901.8 0.467547
\(27\) −19683.0 −0.192450
\(28\) 83828.0 0.721666
\(29\) −73409.7 −0.558934 −0.279467 0.960155i \(-0.590158\pi\)
−0.279467 + 0.960155i \(0.590158\pi\)
\(30\) 0 0
\(31\) 244719. 1.47537 0.737687 0.675142i \(-0.235918\pi\)
0.737687 + 0.675142i \(0.235918\pi\)
\(32\) 32768.0 0.176777
\(33\) 147348. 0.713751
\(34\) 38967.3 0.170030
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) 107537. 0.349022 0.174511 0.984655i \(-0.444166\pi\)
0.174511 + 0.984655i \(0.444166\pi\)
\(38\) 262250. 0.775304
\(39\) −141418. −0.381751
\(40\) 0 0
\(41\) 396774. 0.899082 0.449541 0.893260i \(-0.351588\pi\)
0.449541 + 0.893260i \(0.351588\pi\)
\(42\) −282920. −0.589238
\(43\) 725839. 1.39220 0.696099 0.717946i \(-0.254918\pi\)
0.696099 + 0.717946i \(0.254918\pi\)
\(44\) −349270. −0.618126
\(45\) 0 0
\(46\) −667888. −1.01170
\(47\) 801478. 1.12603 0.563014 0.826447i \(-0.309642\pi\)
0.563014 + 0.826447i \(0.309642\pi\)
\(48\) −110592. −0.144338
\(49\) 892068. 1.08321
\(50\) 0 0
\(51\) −131515. −0.138829
\(52\) 335214. 0.330606
\(53\) −1.22395e6 −1.12927 −0.564636 0.825340i \(-0.690983\pi\)
−0.564636 + 0.825340i \(0.690983\pi\)
\(54\) −157464. −0.136083
\(55\) 0 0
\(56\) 670624. 0.510295
\(57\) −885092. −0.633033
\(58\) −587278. −0.395226
\(59\) 2.32931e6 1.47654 0.738270 0.674506i \(-0.235643\pi\)
0.738270 + 0.674506i \(0.235643\pi\)
\(60\) 0 0
\(61\) 2.63553e6 1.48667 0.743334 0.668921i \(-0.233244\pi\)
0.743334 + 0.668921i \(0.233244\pi\)
\(62\) 1.95775e6 1.04325
\(63\) 954854. 0.481111
\(64\) 262144. 0.125000
\(65\) 0 0
\(66\) 1.17879e6 0.504698
\(67\) −209887. −0.0852557 −0.0426279 0.999091i \(-0.513573\pi\)
−0.0426279 + 0.999091i \(0.513573\pi\)
\(68\) 311739. 0.120229
\(69\) 2.25412e6 0.826049
\(70\) 0 0
\(71\) 3.76578e6 1.24868 0.624339 0.781154i \(-0.285368\pi\)
0.624339 + 0.781154i \(0.285368\pi\)
\(72\) 373248. 0.117851
\(73\) 2.81943e6 0.848265 0.424132 0.905600i \(-0.360579\pi\)
0.424132 + 0.905600i \(0.360579\pi\)
\(74\) 860298. 0.246796
\(75\) 0 0
\(76\) 2.09800e6 0.548223
\(77\) −7.14810e6 −1.78432
\(78\) −1.13135e6 −0.269939
\(79\) −8.68583e6 −1.98206 −0.991030 0.133642i \(-0.957333\pi\)
−0.991030 + 0.133642i \(0.957333\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 3.17419e6 0.635747
\(83\) −5.77317e6 −1.10826 −0.554129 0.832431i \(-0.686949\pi\)
−0.554129 + 0.832431i \(0.686949\pi\)
\(84\) −2.26336e6 −0.416654
\(85\) 0 0
\(86\) 5.80672e6 0.984432
\(87\) 1.98206e6 0.322701
\(88\) −2.79416e6 −0.437081
\(89\) 1.02714e7 1.54441 0.772206 0.635373i \(-0.219154\pi\)
0.772206 + 0.635373i \(0.219154\pi\)
\(90\) 0 0
\(91\) 6.86043e6 0.954348
\(92\) −5.34310e6 −0.715379
\(93\) −6.60742e6 −0.851808
\(94\) 6.41183e6 0.796222
\(95\) 0 0
\(96\) −884736. −0.102062
\(97\) −5.19683e6 −0.578146 −0.289073 0.957307i \(-0.593347\pi\)
−0.289073 + 0.957307i \(0.593347\pi\)
\(98\) 7.13654e6 0.765943
\(99\) −3.97841e6 −0.412084
\(100\) 0 0
\(101\) 2.84866e6 0.275116 0.137558 0.990494i \(-0.456075\pi\)
0.137558 + 0.990494i \(0.456075\pi\)
\(102\) −1.05212e6 −0.0981666
\(103\) −1.49365e7 −1.34685 −0.673423 0.739257i \(-0.735177\pi\)
−0.673423 + 0.739257i \(0.735177\pi\)
\(104\) 2.68171e6 0.233774
\(105\) 0 0
\(106\) −9.79161e6 −0.798516
\(107\) −1.04317e6 −0.0823213 −0.0411606 0.999153i \(-0.513106\pi\)
−0.0411606 + 0.999153i \(0.513106\pi\)
\(108\) −1.25971e6 −0.0962250
\(109\) 5.23084e6 0.386882 0.193441 0.981112i \(-0.438035\pi\)
0.193441 + 0.981112i \(0.438035\pi\)
\(110\) 0 0
\(111\) −2.90351e6 −0.201508
\(112\) 5.36499e6 0.360833
\(113\) 1.58182e7 1.03130 0.515649 0.856800i \(-0.327551\pi\)
0.515649 + 0.856800i \(0.327551\pi\)
\(114\) −7.08074e6 −0.447622
\(115\) 0 0
\(116\) −4.69822e6 −0.279467
\(117\) 3.81830e6 0.220404
\(118\) 1.86345e7 1.04407
\(119\) 6.37999e6 0.347061
\(120\) 0 0
\(121\) 1.02955e7 0.528320
\(122\) 2.10842e7 1.05123
\(123\) −1.07129e7 −0.519085
\(124\) 1.56620e7 0.737687
\(125\) 0 0
\(126\) 7.63883e6 0.340197
\(127\) 4.24970e6 0.184096 0.0920481 0.995755i \(-0.470659\pi\)
0.0920481 + 0.995755i \(0.470659\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −1.95977e7 −0.803786
\(130\) 0 0
\(131\) 5.59155e6 0.217312 0.108656 0.994079i \(-0.465345\pi\)
0.108656 + 0.994079i \(0.465345\pi\)
\(132\) 9.43029e6 0.356875
\(133\) 4.29372e7 1.58254
\(134\) −1.67910e6 −0.0602849
\(135\) 0 0
\(136\) 2.49391e6 0.0850148
\(137\) −2.21174e7 −0.734874 −0.367437 0.930048i \(-0.619765\pi\)
−0.367437 + 0.930048i \(0.619765\pi\)
\(138\) 1.80330e7 0.584105
\(139\) −2.55140e7 −0.805799 −0.402900 0.915244i \(-0.631998\pi\)
−0.402900 + 0.915244i \(0.631998\pi\)
\(140\) 0 0
\(141\) −2.16399e7 −0.650113
\(142\) 3.01262e7 0.882948
\(143\) −2.85841e7 −0.817424
\(144\) 2.98598e6 0.0833333
\(145\) 0 0
\(146\) 2.25554e7 0.599814
\(147\) −2.40858e7 −0.625390
\(148\) 6.88238e6 0.174511
\(149\) −1.64001e6 −0.0406158 −0.0203079 0.999794i \(-0.506465\pi\)
−0.0203079 + 0.999794i \(0.506465\pi\)
\(150\) 0 0
\(151\) −4.65795e7 −1.10097 −0.550485 0.834845i \(-0.685557\pi\)
−0.550485 + 0.834845i \(0.685557\pi\)
\(152\) 1.67840e7 0.387652
\(153\) 3.55090e6 0.0801527
\(154\) −5.71848e7 −1.26171
\(155\) 0 0
\(156\) −9.05078e6 −0.190875
\(157\) −6.21860e7 −1.28246 −0.641230 0.767349i \(-0.721575\pi\)
−0.641230 + 0.767349i \(0.721575\pi\)
\(158\) −6.94867e7 −1.40153
\(159\) 3.30467e7 0.651985
\(160\) 0 0
\(161\) −1.09351e8 −2.06506
\(162\) 4.25153e6 0.0785674
\(163\) 5.86864e7 1.06140 0.530702 0.847558i \(-0.321928\pi\)
0.530702 + 0.847558i \(0.321928\pi\)
\(164\) 2.53935e7 0.449541
\(165\) 0 0
\(166\) −4.61854e7 −0.783657
\(167\) 2.74875e7 0.456696 0.228348 0.973580i \(-0.426668\pi\)
0.228348 + 0.973580i \(0.426668\pi\)
\(168\) −1.81069e7 −0.294619
\(169\) −3.53148e7 −0.562799
\(170\) 0 0
\(171\) 2.38975e7 0.365482
\(172\) 4.64537e7 0.696099
\(173\) −6.19491e7 −0.909649 −0.454825 0.890581i \(-0.650298\pi\)
−0.454825 + 0.890581i \(0.650298\pi\)
\(174\) 1.58565e7 0.228184
\(175\) 0 0
\(176\) −2.23533e7 −0.309063
\(177\) −6.28913e7 −0.852480
\(178\) 8.21709e7 1.09206
\(179\) 1.04816e7 0.136598 0.0682988 0.997665i \(-0.478243\pi\)
0.0682988 + 0.997665i \(0.478243\pi\)
\(180\) 0 0
\(181\) −9.64546e7 −1.20906 −0.604530 0.796582i \(-0.706639\pi\)
−0.604530 + 0.796582i \(0.706639\pi\)
\(182\) 5.48835e7 0.674826
\(183\) −7.11593e7 −0.858328
\(184\) −4.27448e7 −0.505849
\(185\) 0 0
\(186\) −5.28594e7 −0.602319
\(187\) −2.65823e7 −0.297267
\(188\) 5.12946e7 0.563014
\(189\) −2.57811e7 −0.277769
\(190\) 0 0
\(191\) 9.71449e7 1.00880 0.504398 0.863471i \(-0.331714\pi\)
0.504398 + 0.863471i \(0.331714\pi\)
\(192\) −7.07789e6 −0.0721688
\(193\) −5.17514e7 −0.518169 −0.259085 0.965855i \(-0.583421\pi\)
−0.259085 + 0.965855i \(0.583421\pi\)
\(194\) −4.15746e7 −0.408811
\(195\) 0 0
\(196\) 5.70923e7 0.541604
\(197\) −1.55737e8 −1.45131 −0.725657 0.688057i \(-0.758464\pi\)
−0.725657 + 0.688057i \(0.758464\pi\)
\(198\) −3.18272e7 −0.291387
\(199\) 1.49558e8 1.34532 0.672658 0.739954i \(-0.265153\pi\)
0.672658 + 0.739954i \(0.265153\pi\)
\(200\) 0 0
\(201\) 5.66695e6 0.0492224
\(202\) 2.27892e7 0.194536
\(203\) −9.61530e7 −0.806728
\(204\) −8.41695e6 −0.0694143
\(205\) 0 0
\(206\) −1.19492e8 −0.952364
\(207\) −6.08613e7 −0.476919
\(208\) 2.14537e7 0.165303
\(209\) −1.78898e8 −1.35548
\(210\) 0 0
\(211\) −4.83513e6 −0.0354340 −0.0177170 0.999843i \(-0.505640\pi\)
−0.0177170 + 0.999843i \(0.505640\pi\)
\(212\) −7.83329e7 −0.564636
\(213\) −1.01676e8 −0.720924
\(214\) −8.34536e6 −0.0582099
\(215\) 0 0
\(216\) −1.00777e7 −0.0680414
\(217\) 3.20537e8 2.12946
\(218\) 4.18467e7 0.273567
\(219\) −7.61246e7 −0.489746
\(220\) 0 0
\(221\) 2.55125e7 0.158994
\(222\) −2.32280e7 −0.142488
\(223\) 2.61843e8 1.58116 0.790578 0.612361i \(-0.209780\pi\)
0.790578 + 0.612361i \(0.209780\pi\)
\(224\) 4.29200e7 0.255147
\(225\) 0 0
\(226\) 1.26546e8 0.729237
\(227\) −1.28619e8 −0.729820 −0.364910 0.931043i \(-0.618900\pi\)
−0.364910 + 0.931043i \(0.618900\pi\)
\(228\) −5.66459e7 −0.316517
\(229\) 1.01465e8 0.558330 0.279165 0.960243i \(-0.409942\pi\)
0.279165 + 0.960243i \(0.409942\pi\)
\(230\) 0 0
\(231\) 1.92999e8 1.03018
\(232\) −3.75858e7 −0.197613
\(233\) −2.74718e8 −1.42279 −0.711397 0.702791i \(-0.751937\pi\)
−0.711397 + 0.702791i \(0.751937\pi\)
\(234\) 3.05464e7 0.155849
\(235\) 0 0
\(236\) 1.49076e8 0.738270
\(237\) 2.34518e8 1.14434
\(238\) 5.10399e7 0.245409
\(239\) −3.77861e7 −0.179035 −0.0895177 0.995985i \(-0.528533\pi\)
−0.0895177 + 0.995985i \(0.528533\pi\)
\(240\) 0 0
\(241\) 1.70494e8 0.784600 0.392300 0.919837i \(-0.371680\pi\)
0.392300 + 0.919837i \(0.371680\pi\)
\(242\) 8.23637e7 0.373578
\(243\) −1.43489e7 −0.0641500
\(244\) 1.68674e8 0.743334
\(245\) 0 0
\(246\) −8.57031e7 −0.367049
\(247\) 1.71699e8 0.724983
\(248\) 1.25296e8 0.521624
\(249\) 1.55876e8 0.639854
\(250\) 0 0
\(251\) −3.41080e8 −1.36144 −0.680719 0.732544i \(-0.738333\pi\)
−0.680719 + 0.732544i \(0.738333\pi\)
\(252\) 6.11106e7 0.240555
\(253\) 4.55612e8 1.76878
\(254\) 3.39976e7 0.130176
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −1.94713e8 −0.715530 −0.357765 0.933812i \(-0.616461\pi\)
−0.357765 + 0.933812i \(0.616461\pi\)
\(258\) −1.56781e8 −0.568362
\(259\) 1.40854e8 0.503755
\(260\) 0 0
\(261\) −5.35157e7 −0.186311
\(262\) 4.47324e7 0.153663
\(263\) 4.85601e8 1.64602 0.823009 0.568029i \(-0.192294\pi\)
0.823009 + 0.568029i \(0.192294\pi\)
\(264\) 7.54424e7 0.252349
\(265\) 0 0
\(266\) 3.43498e8 1.11902
\(267\) −2.77327e8 −0.891666
\(268\) −1.34328e7 −0.0426279
\(269\) −2.89744e7 −0.0907572 −0.0453786 0.998970i \(-0.514449\pi\)
−0.0453786 + 0.998970i \(0.514449\pi\)
\(270\) 0 0
\(271\) 3.02460e8 0.923156 0.461578 0.887100i \(-0.347283\pi\)
0.461578 + 0.887100i \(0.347283\pi\)
\(272\) 1.99513e7 0.0601146
\(273\) −1.85232e8 −0.550993
\(274\) −1.76939e8 −0.519634
\(275\) 0 0
\(276\) 1.44264e8 0.413024
\(277\) −1.78252e8 −0.503912 −0.251956 0.967739i \(-0.581074\pi\)
−0.251956 + 0.967739i \(0.581074\pi\)
\(278\) −2.04112e8 −0.569786
\(279\) 1.78400e8 0.491792
\(280\) 0 0
\(281\) 2.21487e7 0.0595492 0.0297746 0.999557i \(-0.490521\pi\)
0.0297746 + 0.999557i \(0.490521\pi\)
\(282\) −1.73119e8 −0.459699
\(283\) 1.08099e8 0.283511 0.141756 0.989902i \(-0.454725\pi\)
0.141756 + 0.989902i \(0.454725\pi\)
\(284\) 2.41010e8 0.624339
\(285\) 0 0
\(286\) −2.28672e8 −0.578006
\(287\) 5.19699e8 1.29767
\(288\) 2.38879e7 0.0589256
\(289\) −3.86613e8 −0.942180
\(290\) 0 0
\(291\) 1.40314e8 0.333793
\(292\) 1.80444e8 0.424132
\(293\) −5.08345e8 −1.18065 −0.590326 0.807165i \(-0.701001\pi\)
−0.590326 + 0.807165i \(0.701001\pi\)
\(294\) −1.92687e8 −0.442217
\(295\) 0 0
\(296\) 5.50591e7 0.123398
\(297\) 1.07417e8 0.237917
\(298\) −1.31201e7 −0.0287197
\(299\) −4.37276e8 −0.946034
\(300\) 0 0
\(301\) 9.50714e8 2.00940
\(302\) −3.72636e8 −0.778503
\(303\) −7.69137e7 −0.158838
\(304\) 1.34272e8 0.274111
\(305\) 0 0
\(306\) 2.84072e7 0.0566765
\(307\) −4.60852e8 −0.909027 −0.454514 0.890740i \(-0.650187\pi\)
−0.454514 + 0.890740i \(0.650187\pi\)
\(308\) −4.57479e8 −0.892161
\(309\) 4.03285e8 0.777602
\(310\) 0 0
\(311\) 7.63906e8 1.44005 0.720027 0.693946i \(-0.244129\pi\)
0.720027 + 0.693946i \(0.244129\pi\)
\(312\) −7.24062e7 −0.134969
\(313\) 4.96971e8 0.916064 0.458032 0.888936i \(-0.348554\pi\)
0.458032 + 0.888936i \(0.348554\pi\)
\(314\) −4.97488e8 −0.906836
\(315\) 0 0
\(316\) −5.55893e8 −0.991030
\(317\) 4.18865e8 0.738528 0.369264 0.929325i \(-0.379610\pi\)
0.369264 + 0.929325i \(0.379610\pi\)
\(318\) 2.64373e8 0.461023
\(319\) 4.00622e8 0.690984
\(320\) 0 0
\(321\) 2.81656e7 0.0475282
\(322\) −8.74808e8 −1.46022
\(323\) 1.59675e8 0.263649
\(324\) 3.40122e7 0.0555556
\(325\) 0 0
\(326\) 4.69491e8 0.750527
\(327\) −1.41233e8 −0.223366
\(328\) 2.03148e8 0.317873
\(329\) 1.04979e9 1.62523
\(330\) 0 0
\(331\) −8.00262e8 −1.21293 −0.606463 0.795112i \(-0.707412\pi\)
−0.606463 + 0.795112i \(0.707412\pi\)
\(332\) −3.69483e8 −0.554129
\(333\) 7.83946e7 0.116341
\(334\) 2.19900e8 0.322933
\(335\) 0 0
\(336\) −1.44855e8 −0.208327
\(337\) 1.38535e9 1.97177 0.985883 0.167437i \(-0.0535491\pi\)
0.985883 + 0.167437i \(0.0535491\pi\)
\(338\) −2.82518e8 −0.397959
\(339\) −4.27093e8 −0.595420
\(340\) 0 0
\(341\) −1.33552e9 −1.82394
\(342\) 1.91180e8 0.258435
\(343\) 8.97545e7 0.120096
\(344\) 3.71630e8 0.492216
\(345\) 0 0
\(346\) −4.95593e8 −0.643219
\(347\) 9.62881e8 1.23714 0.618571 0.785729i \(-0.287712\pi\)
0.618571 + 0.785729i \(0.287712\pi\)
\(348\) 1.26852e8 0.161350
\(349\) −5.40052e8 −0.680058 −0.340029 0.940415i \(-0.610437\pi\)
−0.340029 + 0.940415i \(0.610437\pi\)
\(350\) 0 0
\(351\) −1.03094e8 −0.127250
\(352\) −1.78826e8 −0.218541
\(353\) −1.02599e9 −1.24145 −0.620727 0.784027i \(-0.713163\pi\)
−0.620727 + 0.784027i \(0.713163\pi\)
\(354\) −5.03131e8 −0.602795
\(355\) 0 0
\(356\) 6.57367e8 0.772206
\(357\) −1.72260e8 −0.200376
\(358\) 8.38530e7 0.0965891
\(359\) −7.47383e8 −0.852536 −0.426268 0.904597i \(-0.640172\pi\)
−0.426268 + 0.904597i \(0.640172\pi\)
\(360\) 0 0
\(361\) 1.80735e8 0.202194
\(362\) −7.71637e8 −0.854935
\(363\) −2.77977e8 −0.305026
\(364\) 4.39068e8 0.477174
\(365\) 0 0
\(366\) −5.69275e8 −0.606929
\(367\) 4.77968e8 0.504740 0.252370 0.967631i \(-0.418790\pi\)
0.252370 + 0.967631i \(0.418790\pi\)
\(368\) −3.41959e8 −0.357689
\(369\) 2.89248e8 0.299694
\(370\) 0 0
\(371\) −1.60315e9 −1.62991
\(372\) −4.22875e8 −0.425904
\(373\) −1.41621e9 −1.41302 −0.706509 0.707704i \(-0.749731\pi\)
−0.706509 + 0.707704i \(0.749731\pi\)
\(374\) −2.12658e8 −0.210200
\(375\) 0 0
\(376\) 4.10357e8 0.398111
\(377\) −3.84500e8 −0.369574
\(378\) −2.06248e8 −0.196413
\(379\) 4.23809e8 0.399883 0.199941 0.979808i \(-0.435925\pi\)
0.199941 + 0.979808i \(0.435925\pi\)
\(380\) 0 0
\(381\) −1.14742e8 −0.106288
\(382\) 7.77159e8 0.713327
\(383\) 8.56505e8 0.778994 0.389497 0.921028i \(-0.372649\pi\)
0.389497 + 0.921028i \(0.372649\pi\)
\(384\) −5.66231e7 −0.0510310
\(385\) 0 0
\(386\) −4.14011e8 −0.366401
\(387\) 5.29137e8 0.464066
\(388\) −3.32597e8 −0.289073
\(389\) −1.08932e8 −0.0938282 −0.0469141 0.998899i \(-0.514939\pi\)
−0.0469141 + 0.998899i \(0.514939\pi\)
\(390\) 0 0
\(391\) −4.06653e8 −0.344037
\(392\) 4.56739e8 0.382972
\(393\) −1.50972e8 −0.125465
\(394\) −1.24590e9 −1.02623
\(395\) 0 0
\(396\) −2.54618e8 −0.206042
\(397\) −2.13997e9 −1.71649 −0.858245 0.513239i \(-0.828445\pi\)
−0.858245 + 0.513239i \(0.828445\pi\)
\(398\) 1.19646e9 0.951281
\(399\) −1.15931e9 −0.913677
\(400\) 0 0
\(401\) −9.00462e8 −0.697365 −0.348682 0.937241i \(-0.613371\pi\)
−0.348682 + 0.937241i \(0.613371\pi\)
\(402\) 4.53356e7 0.0348055
\(403\) 1.28177e9 0.975535
\(404\) 1.82314e8 0.137558
\(405\) 0 0
\(406\) −7.69224e8 −0.570443
\(407\) −5.86868e8 −0.431479
\(408\) −6.73356e7 −0.0490833
\(409\) −2.15143e9 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(410\) 0 0
\(411\) 5.97171e8 0.424279
\(412\) −9.55935e8 −0.673423
\(413\) 3.05096e9 2.13114
\(414\) −4.86890e8 −0.337233
\(415\) 0 0
\(416\) 1.71630e8 0.116887
\(417\) 6.88878e8 0.465228
\(418\) −1.43119e9 −0.958472
\(419\) 7.96072e7 0.0528693 0.0264346 0.999651i \(-0.491585\pi\)
0.0264346 + 0.999651i \(0.491585\pi\)
\(420\) 0 0
\(421\) 3.29700e8 0.215344 0.107672 0.994186i \(-0.465660\pi\)
0.107672 + 0.994186i \(0.465660\pi\)
\(422\) −3.86810e7 −0.0250556
\(423\) 5.84278e8 0.375343
\(424\) −6.26663e8 −0.399258
\(425\) 0 0
\(426\) −8.13408e8 −0.509771
\(427\) 3.45205e9 2.14575
\(428\) −6.67629e7 −0.0411606
\(429\) 7.71769e8 0.471940
\(430\) 0 0
\(431\) 5.57393e8 0.335345 0.167672 0.985843i \(-0.446375\pi\)
0.167672 + 0.985843i \(0.446375\pi\)
\(432\) −8.06216e7 −0.0481125
\(433\) −1.00562e9 −0.595287 −0.297644 0.954677i \(-0.596201\pi\)
−0.297644 + 0.954677i \(0.596201\pi\)
\(434\) 2.56429e9 1.50575
\(435\) 0 0
\(436\) 3.34774e8 0.193441
\(437\) −2.73677e9 −1.56875
\(438\) −6.08997e8 −0.346303
\(439\) 2.43906e9 1.37593 0.687967 0.725742i \(-0.258504\pi\)
0.687967 + 0.725742i \(0.258504\pi\)
\(440\) 0 0
\(441\) 6.50317e8 0.361069
\(442\) 2.04100e8 0.112426
\(443\) 1.15960e9 0.633715 0.316858 0.948473i \(-0.397372\pi\)
0.316858 + 0.948473i \(0.397372\pi\)
\(444\) −1.85824e8 −0.100754
\(445\) 0 0
\(446\) 2.09475e9 1.11805
\(447\) 4.42804e7 0.0234496
\(448\) 3.43360e8 0.180416
\(449\) 6.32037e8 0.329519 0.164759 0.986334i \(-0.447315\pi\)
0.164759 + 0.986334i \(0.447315\pi\)
\(450\) 0 0
\(451\) −2.16533e9 −1.11149
\(452\) 1.01237e9 0.515649
\(453\) 1.25765e9 0.635645
\(454\) −1.02895e9 −0.516061
\(455\) 0 0
\(456\) −4.53167e8 −0.223811
\(457\) −1.78534e9 −0.875015 −0.437507 0.899215i \(-0.644139\pi\)
−0.437507 + 0.899215i \(0.644139\pi\)
\(458\) 8.11718e8 0.394799
\(459\) −9.58743e7 −0.0462762
\(460\) 0 0
\(461\) −1.23239e9 −0.585862 −0.292931 0.956134i \(-0.594631\pi\)
−0.292931 + 0.956134i \(0.594631\pi\)
\(462\) 1.54399e9 0.728447
\(463\) −3.27184e9 −1.53200 −0.766000 0.642841i \(-0.777756\pi\)
−0.766000 + 0.642841i \(0.777756\pi\)
\(464\) −3.00686e8 −0.139734
\(465\) 0 0
\(466\) −2.19775e9 −1.00607
\(467\) 4.20893e8 0.191233 0.0956165 0.995418i \(-0.469518\pi\)
0.0956165 + 0.995418i \(0.469518\pi\)
\(468\) 2.44371e8 0.110202
\(469\) −2.74913e8 −0.123052
\(470\) 0 0
\(471\) 1.67902e9 0.740428
\(472\) 1.19261e9 0.522036
\(473\) −3.96116e9 −1.72111
\(474\) 1.87614e9 0.809172
\(475\) 0 0
\(476\) 4.08320e8 0.173531
\(477\) −8.92260e8 −0.376424
\(478\) −3.02288e8 −0.126597
\(479\) −2.91500e7 −0.0121189 −0.00605946 0.999982i \(-0.501929\pi\)
−0.00605946 + 0.999982i \(0.501929\pi\)
\(480\) 0 0
\(481\) 5.63250e8 0.230777
\(482\) 1.36395e9 0.554796
\(483\) 2.95248e9 1.19226
\(484\) 6.58909e8 0.264160
\(485\) 0 0
\(486\) −1.14791e8 −0.0453609
\(487\) −2.58798e9 −1.01534 −0.507668 0.861553i \(-0.669492\pi\)
−0.507668 + 0.861553i \(0.669492\pi\)
\(488\) 1.34939e9 0.525616
\(489\) −1.58453e9 −0.612802
\(490\) 0 0
\(491\) −2.01157e9 −0.766918 −0.383459 0.923558i \(-0.625267\pi\)
−0.383459 + 0.923558i \(0.625267\pi\)
\(492\) −6.85625e8 −0.259543
\(493\) −3.57573e8 −0.134400
\(494\) 1.37359e9 0.512640
\(495\) 0 0
\(496\) 1.00237e9 0.368844
\(497\) 4.93246e9 1.80226
\(498\) 1.24701e9 0.452445
\(499\) −6.31261e8 −0.227435 −0.113717 0.993513i \(-0.536276\pi\)
−0.113717 + 0.993513i \(0.536276\pi\)
\(500\) 0 0
\(501\) −7.42162e8 −0.263674
\(502\) −2.72864e9 −0.962682
\(503\) −1.57252e9 −0.550944 −0.275472 0.961309i \(-0.588834\pi\)
−0.275472 + 0.961309i \(0.588834\pi\)
\(504\) 4.88885e8 0.170098
\(505\) 0 0
\(506\) 3.64490e9 1.25071
\(507\) 9.53500e8 0.324932
\(508\) 2.71981e8 0.0920481
\(509\) −2.18665e9 −0.734965 −0.367482 0.930031i \(-0.619780\pi\)
−0.367482 + 0.930031i \(0.619780\pi\)
\(510\) 0 0
\(511\) 3.69293e9 1.22433
\(512\) 1.34218e8 0.0441942
\(513\) −6.45232e8 −0.211011
\(514\) −1.55770e9 −0.505956
\(515\) 0 0
\(516\) −1.25425e9 −0.401893
\(517\) −4.37394e9 −1.39205
\(518\) 1.12683e9 0.356208
\(519\) 1.67263e9 0.525186
\(520\) 0 0
\(521\) 5.81389e9 1.80109 0.900543 0.434766i \(-0.143169\pi\)
0.900543 + 0.434766i \(0.143169\pi\)
\(522\) −4.28126e8 −0.131742
\(523\) −2.36475e9 −0.722819 −0.361409 0.932407i \(-0.617704\pi\)
−0.361409 + 0.932407i \(0.617704\pi\)
\(524\) 3.57859e8 0.108656
\(525\) 0 0
\(526\) 3.88481e9 1.16391
\(527\) 1.19201e9 0.354766
\(528\) 6.03539e8 0.178438
\(529\) 3.56509e9 1.04707
\(530\) 0 0
\(531\) 1.69807e9 0.492180
\(532\) 2.74798e9 0.791268
\(533\) 2.07819e9 0.594483
\(534\) −2.21861e9 −0.630503
\(535\) 0 0
\(536\) −1.07462e8 −0.0301425
\(537\) −2.83004e8 −0.0788647
\(538\) −2.31795e8 −0.0641751
\(539\) −4.86832e9 −1.33912
\(540\) 0 0
\(541\) 5.64040e9 1.53151 0.765754 0.643134i \(-0.222366\pi\)
0.765754 + 0.643134i \(0.222366\pi\)
\(542\) 2.41968e9 0.652770
\(543\) 2.60428e9 0.698051
\(544\) 1.59610e8 0.0425074
\(545\) 0 0
\(546\) −1.48185e9 −0.389611
\(547\) −1.78063e9 −0.465177 −0.232589 0.972575i \(-0.574720\pi\)
−0.232589 + 0.972575i \(0.574720\pi\)
\(548\) −1.41552e9 −0.367437
\(549\) 1.92130e9 0.495556
\(550\) 0 0
\(551\) −2.40646e9 −0.612841
\(552\) 1.15411e9 0.292052
\(553\) −1.13768e10 −2.86077
\(554\) −1.42602e9 −0.356320
\(555\) 0 0
\(556\) −1.63290e9 −0.402900
\(557\) −1.56532e9 −0.383805 −0.191902 0.981414i \(-0.561466\pi\)
−0.191902 + 0.981414i \(0.561466\pi\)
\(558\) 1.42720e9 0.347749
\(559\) 3.80174e9 0.920537
\(560\) 0 0
\(561\) 7.17722e8 0.171627
\(562\) 1.77190e8 0.0421077
\(563\) 2.73932e9 0.646939 0.323470 0.946239i \(-0.395151\pi\)
0.323470 + 0.946239i \(0.395151\pi\)
\(564\) −1.38495e9 −0.325056
\(565\) 0 0
\(566\) 8.64794e8 0.200473
\(567\) 6.96088e8 0.160370
\(568\) 1.92808e9 0.441474
\(569\) 7.38630e8 0.168087 0.0840435 0.996462i \(-0.473217\pi\)
0.0840435 + 0.996462i \(0.473217\pi\)
\(570\) 0 0
\(571\) 3.23235e9 0.726594 0.363297 0.931673i \(-0.381651\pi\)
0.363297 + 0.931673i \(0.381651\pi\)
\(572\) −1.82938e9 −0.408712
\(573\) −2.62291e9 −0.582429
\(574\) 4.15759e9 0.917594
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) −2.65831e9 −0.576090 −0.288045 0.957617i \(-0.593005\pi\)
−0.288045 + 0.957617i \(0.593005\pi\)
\(578\) −3.09290e9 −0.666222
\(579\) 1.39729e9 0.299165
\(580\) 0 0
\(581\) −7.56178e9 −1.59959
\(582\) 1.12252e9 0.236027
\(583\) 6.67952e9 1.39606
\(584\) 1.44355e9 0.299907
\(585\) 0 0
\(586\) −4.06676e9 −0.834848
\(587\) −9.42375e9 −1.92305 −0.961524 0.274720i \(-0.911415\pi\)
−0.961524 + 0.274720i \(0.911415\pi\)
\(588\) −1.54149e9 −0.312695
\(589\) 8.02219e9 1.61767
\(590\) 0 0
\(591\) 4.20491e9 0.837916
\(592\) 4.40472e8 0.0872555
\(593\) −2.34902e9 −0.462589 −0.231294 0.972884i \(-0.574296\pi\)
−0.231294 + 0.972884i \(0.574296\pi\)
\(594\) 8.59336e8 0.168233
\(595\) 0 0
\(596\) −1.04961e8 −0.0203079
\(597\) −4.03807e9 −0.776718
\(598\) −3.49821e9 −0.668947
\(599\) 2.66914e9 0.507431 0.253715 0.967279i \(-0.418347\pi\)
0.253715 + 0.967279i \(0.418347\pi\)
\(600\) 0 0
\(601\) −1.24294e9 −0.233555 −0.116777 0.993158i \(-0.537256\pi\)
−0.116777 + 0.993158i \(0.537256\pi\)
\(602\) 7.60571e9 1.42086
\(603\) −1.53008e8 −0.0284186
\(604\) −2.98109e9 −0.550485
\(605\) 0 0
\(606\) −6.15310e8 −0.112315
\(607\) −1.29515e9 −0.235050 −0.117525 0.993070i \(-0.537496\pi\)
−0.117525 + 0.993070i \(0.537496\pi\)
\(608\) 1.07417e9 0.193826
\(609\) 2.59613e9 0.465764
\(610\) 0 0
\(611\) 4.19792e9 0.744543
\(612\) 2.27258e8 0.0400764
\(613\) −5.13495e9 −0.900377 −0.450188 0.892934i \(-0.648643\pi\)
−0.450188 + 0.892934i \(0.648643\pi\)
\(614\) −3.68681e9 −0.642779
\(615\) 0 0
\(616\) −3.65983e9 −0.630853
\(617\) 1.20368e9 0.206306 0.103153 0.994665i \(-0.467107\pi\)
0.103153 + 0.994665i \(0.467107\pi\)
\(618\) 3.22628e9 0.549848
\(619\) −9.74534e9 −1.65150 −0.825752 0.564034i \(-0.809249\pi\)
−0.825752 + 0.564034i \(0.809249\pi\)
\(620\) 0 0
\(621\) 1.64325e9 0.275350
\(622\) 6.11125e9 1.01827
\(623\) 1.34536e10 2.22910
\(624\) −5.79250e8 −0.0954377
\(625\) 0 0
\(626\) 3.97577e9 0.647755
\(627\) 4.83026e9 0.782589
\(628\) −3.97990e9 −0.641230
\(629\) 5.23805e8 0.0839252
\(630\) 0 0
\(631\) −9.82029e9 −1.55604 −0.778021 0.628238i \(-0.783776\pi\)
−0.778021 + 0.628238i \(0.783776\pi\)
\(632\) −4.44715e9 −0.700764
\(633\) 1.30549e8 0.0204578
\(634\) 3.35092e9 0.522218
\(635\) 0 0
\(636\) 2.11499e9 0.325993
\(637\) 4.67240e9 0.716229
\(638\) 3.20498e9 0.488599
\(639\) 2.74525e9 0.416226
\(640\) 0 0
\(641\) −5.05603e9 −0.758240 −0.379120 0.925347i \(-0.623773\pi\)
−0.379120 + 0.925347i \(0.623773\pi\)
\(642\) 2.25325e8 0.0336075
\(643\) 1.13650e10 1.68590 0.842951 0.537990i \(-0.180816\pi\)
0.842951 + 0.537990i \(0.180816\pi\)
\(644\) −6.99847e9 −1.03253
\(645\) 0 0
\(646\) 1.27740e9 0.186428
\(647\) −1.08126e8 −0.0156952 −0.00784758 0.999969i \(-0.502498\pi\)
−0.00784758 + 0.999969i \(0.502498\pi\)
\(648\) 2.72098e8 0.0392837
\(649\) −1.27118e10 −1.82538
\(650\) 0 0
\(651\) −8.65449e9 −1.22944
\(652\) 3.75593e9 0.530702
\(653\) −3.37806e9 −0.474757 −0.237378 0.971417i \(-0.576288\pi\)
−0.237378 + 0.971417i \(0.576288\pi\)
\(654\) −1.12986e9 −0.157944
\(655\) 0 0
\(656\) 1.62518e9 0.224770
\(657\) 2.05536e9 0.282755
\(658\) 8.39829e9 1.14921
\(659\) −2.43494e9 −0.331428 −0.165714 0.986174i \(-0.552993\pi\)
−0.165714 + 0.986174i \(0.552993\pi\)
\(660\) 0 0
\(661\) 6.61695e9 0.891154 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)
\(662\) −6.40210e9 −0.857668
\(663\) −6.88838e8 −0.0917951
\(664\) −2.95586e9 −0.391829
\(665\) 0 0
\(666\) 6.27157e8 0.0822653
\(667\) 6.12868e9 0.799700
\(668\) 1.75920e9 0.228348
\(669\) −7.06977e9 −0.912881
\(670\) 0 0
\(671\) −1.43830e10 −1.83790
\(672\) −1.15884e9 −0.147309
\(673\) −4.76258e9 −0.602267 −0.301134 0.953582i \(-0.597365\pi\)
−0.301134 + 0.953582i \(0.597365\pi\)
\(674\) 1.10828e10 1.39425
\(675\) 0 0
\(676\) −2.26015e9 −0.281400
\(677\) 2.85988e9 0.354232 0.177116 0.984190i \(-0.443323\pi\)
0.177116 + 0.984190i \(0.443323\pi\)
\(678\) −3.41674e9 −0.421025
\(679\) −6.80688e9 −0.834456
\(680\) 0 0
\(681\) 3.47272e9 0.421362
\(682\) −1.06841e10 −1.28972
\(683\) 5.11045e9 0.613744 0.306872 0.951751i \(-0.400718\pi\)
0.306872 + 0.951751i \(0.400718\pi\)
\(684\) 1.52944e9 0.182741
\(685\) 0 0
\(686\) 7.18036e8 0.0849204
\(687\) −2.73955e9 −0.322352
\(688\) 2.97304e9 0.348049
\(689\) −6.41071e9 −0.746688
\(690\) 0 0
\(691\) 9.23300e9 1.06456 0.532279 0.846569i \(-0.321336\pi\)
0.532279 + 0.846569i \(0.321336\pi\)
\(692\) −3.96475e9 −0.454825
\(693\) −5.21097e9 −0.594774
\(694\) 7.70304e9 0.874791
\(695\) 0 0
\(696\) 1.01482e9 0.114092
\(697\) 1.93265e9 0.216192
\(698\) −4.32041e9 −0.480874
\(699\) 7.41739e9 0.821450
\(700\) 0 0
\(701\) −4.27775e9 −0.469031 −0.234516 0.972112i \(-0.575350\pi\)
−0.234516 + 0.972112i \(0.575350\pi\)
\(702\) −8.24752e8 −0.0899795
\(703\) 3.52520e9 0.382684
\(704\) −1.43061e9 −0.154532
\(705\) 0 0
\(706\) −8.20790e9 −0.877841
\(707\) 3.73121e9 0.397083
\(708\) −4.02505e9 −0.426240
\(709\) 6.00248e9 0.632512 0.316256 0.948674i \(-0.397574\pi\)
0.316256 + 0.948674i \(0.397574\pi\)
\(710\) 0 0
\(711\) −6.33197e9 −0.660686
\(712\) 5.25894e9 0.546032
\(713\) −2.04306e10 −2.11090
\(714\) −1.37808e9 −0.141687
\(715\) 0 0
\(716\) 6.70824e8 0.0682988
\(717\) 1.02022e9 0.103366
\(718\) −5.97907e9 −0.602834
\(719\) 1.01189e9 0.101527 0.0507634 0.998711i \(-0.483835\pi\)
0.0507634 + 0.998711i \(0.483835\pi\)
\(720\) 0 0
\(721\) −1.95640e10 −1.94395
\(722\) 1.44588e9 0.142973
\(723\) −4.60333e9 −0.452989
\(724\) −6.17310e9 −0.604530
\(725\) 0 0
\(726\) −2.22382e9 −0.215686
\(727\) 1.27391e10 1.22961 0.614807 0.788678i \(-0.289234\pi\)
0.614807 + 0.788678i \(0.289234\pi\)
\(728\) 3.51254e9 0.337413
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 3.53550e9 0.334765
\(732\) −4.55420e9 −0.429164
\(733\) 1.02714e10 0.963314 0.481657 0.876360i \(-0.340035\pi\)
0.481657 + 0.876360i \(0.340035\pi\)
\(734\) 3.82374e9 0.356905
\(735\) 0 0
\(736\) −2.73567e9 −0.252925
\(737\) 1.14543e9 0.105398
\(738\) 2.31398e9 0.211916
\(739\) 7.46828e9 0.680714 0.340357 0.940296i \(-0.389452\pi\)
0.340357 + 0.940296i \(0.389452\pi\)
\(740\) 0 0
\(741\) −4.63587e9 −0.418569
\(742\) −1.28252e10 −1.15252
\(743\) −1.13615e10 −1.01619 −0.508093 0.861302i \(-0.669649\pi\)
−0.508093 + 0.861302i \(0.669649\pi\)
\(744\) −3.38300e9 −0.301160
\(745\) 0 0
\(746\) −1.13297e10 −0.999155
\(747\) −4.20864e9 −0.369420
\(748\) −1.70127e9 −0.148634
\(749\) −1.36636e9 −0.118817
\(750\) 0 0
\(751\) 9.08552e9 0.782726 0.391363 0.920236i \(-0.372004\pi\)
0.391363 + 0.920236i \(0.372004\pi\)
\(752\) 3.28285e9 0.281507
\(753\) 9.20916e9 0.786027
\(754\) −3.07600e9 −0.261328
\(755\) 0 0
\(756\) −1.64999e9 −0.138885
\(757\) −1.00537e10 −0.842348 −0.421174 0.906980i \(-0.638382\pi\)
−0.421174 + 0.906980i \(0.638382\pi\)
\(758\) 3.39047e9 0.282760
\(759\) −1.23015e10 −1.02120
\(760\) 0 0
\(761\) 1.04527e9 0.0859768 0.0429884 0.999076i \(-0.486312\pi\)
0.0429884 + 0.999076i \(0.486312\pi\)
\(762\) −9.17934e8 −0.0751570
\(763\) 6.85142e9 0.558399
\(764\) 6.21728e9 0.504398
\(765\) 0 0
\(766\) 6.85204e9 0.550832
\(767\) 1.22003e10 0.976305
\(768\) −4.52985e8 −0.0360844
\(769\) 1.24461e10 0.986939 0.493470 0.869763i \(-0.335728\pi\)
0.493470 + 0.869763i \(0.335728\pi\)
\(770\) 0 0
\(771\) 5.25724e9 0.413112
\(772\) −3.31209e9 −0.259085
\(773\) −2.86975e9 −0.223469 −0.111734 0.993738i \(-0.535641\pi\)
−0.111734 + 0.993738i \(0.535641\pi\)
\(774\) 4.23310e9 0.328144
\(775\) 0 0
\(776\) −2.66078e9 −0.204405
\(777\) −3.80305e9 −0.290843
\(778\) −8.71459e8 −0.0663465
\(779\) 1.30067e10 0.985795
\(780\) 0 0
\(781\) −2.05511e10 −1.54368
\(782\) −3.25323e9 −0.243271
\(783\) 1.44492e9 0.107567
\(784\) 3.65391e9 0.270802
\(785\) 0 0
\(786\) −1.20778e9 −0.0887171
\(787\) −1.10693e10 −0.809487 −0.404743 0.914430i \(-0.632639\pi\)
−0.404743 + 0.914430i \(0.632639\pi\)
\(788\) −9.96719e9 −0.725657
\(789\) −1.31112e10 −0.950329
\(790\) 0 0
\(791\) 2.07189e10 1.48850
\(792\) −2.03694e9 −0.145694
\(793\) 1.38042e10 0.983002
\(794\) −1.71198e10 −1.21374
\(795\) 0 0
\(796\) 9.57172e9 0.672658
\(797\) −9.16190e9 −0.641034 −0.320517 0.947243i \(-0.603857\pi\)
−0.320517 + 0.947243i \(0.603857\pi\)
\(798\) −9.27445e9 −0.646067
\(799\) 3.90393e9 0.270763
\(800\) 0 0
\(801\) 7.48782e9 0.514804
\(802\) −7.20369e9 −0.493111
\(803\) −1.53866e10 −1.04867
\(804\) 3.62685e8 0.0246112
\(805\) 0 0
\(806\) 1.02542e10 0.689807
\(807\) 7.82308e8 0.0523987
\(808\) 1.45851e9 0.0972681
\(809\) −7.65555e9 −0.508343 −0.254171 0.967159i \(-0.581803\pi\)
−0.254171 + 0.967159i \(0.581803\pi\)
\(810\) 0 0
\(811\) 1.37797e10 0.907121 0.453561 0.891225i \(-0.350154\pi\)
0.453561 + 0.891225i \(0.350154\pi\)
\(812\) −6.15380e9 −0.403364
\(813\) −8.16641e9 −0.532984
\(814\) −4.69494e9 −0.305102
\(815\) 0 0
\(816\) −5.38685e8 −0.0347072
\(817\) 2.37939e10 1.52647
\(818\) −1.72114e10 −1.09946
\(819\) 5.00126e9 0.318116
\(820\) 0 0
\(821\) 3.07675e10 1.94040 0.970200 0.242304i \(-0.0779032\pi\)
0.970200 + 0.242304i \(0.0779032\pi\)
\(822\) 4.77736e9 0.300011
\(823\) 2.78795e10 1.74335 0.871677 0.490081i \(-0.163033\pi\)
0.871677 + 0.490081i \(0.163033\pi\)
\(824\) −7.64748e9 −0.476182
\(825\) 0 0
\(826\) 2.44077e10 1.50694
\(827\) 1.30484e10 0.802211 0.401105 0.916032i \(-0.368626\pi\)
0.401105 + 0.916032i \(0.368626\pi\)
\(828\) −3.89512e9 −0.238460
\(829\) −2.37741e10 −1.44932 −0.724659 0.689108i \(-0.758003\pi\)
−0.724659 + 0.689108i \(0.758003\pi\)
\(830\) 0 0
\(831\) 4.81280e9 0.290934
\(832\) 1.37304e9 0.0826515
\(833\) 4.34519e9 0.260466
\(834\) 5.51103e9 0.328966
\(835\) 0 0
\(836\) −1.14495e10 −0.677742
\(837\) −4.81681e9 −0.283936
\(838\) 6.36858e8 0.0373842
\(839\) 1.02523e10 0.599315 0.299658 0.954047i \(-0.403128\pi\)
0.299658 + 0.954047i \(0.403128\pi\)
\(840\) 0 0
\(841\) −1.18609e10 −0.687593
\(842\) 2.63760e9 0.152271
\(843\) −5.98015e8 −0.0343808
\(844\) −3.09448e8 −0.0177170
\(845\) 0 0
\(846\) 4.67422e9 0.265407
\(847\) 1.34851e10 0.762541
\(848\) −5.01330e9 −0.282318
\(849\) −2.91868e9 −0.163685
\(850\) 0 0
\(851\) −8.97785e9 −0.499366
\(852\) −6.50726e9 −0.360462
\(853\) −1.30152e10 −0.718008 −0.359004 0.933336i \(-0.616884\pi\)
−0.359004 + 0.933336i \(0.616884\pi\)
\(854\) 2.76164e10 1.51728
\(855\) 0 0
\(856\) −5.34103e8 −0.0291050
\(857\) −3.47955e10 −1.88838 −0.944192 0.329396i \(-0.893155\pi\)
−0.944192 + 0.329396i \(0.893155\pi\)
\(858\) 6.17415e9 0.333712
\(859\) −2.22903e9 −0.119989 −0.0599943 0.998199i \(-0.519108\pi\)
−0.0599943 + 0.998199i \(0.519108\pi\)
\(860\) 0 0
\(861\) −1.40319e10 −0.749212
\(862\) 4.45915e9 0.237124
\(863\) 2.28044e10 1.20776 0.603880 0.797075i \(-0.293621\pi\)
0.603880 + 0.797075i \(0.293621\pi\)
\(864\) −6.44973e8 −0.0340207
\(865\) 0 0
\(866\) −8.04497e9 −0.420932
\(867\) 1.04385e10 0.543968
\(868\) 2.05143e10 1.06473
\(869\) 4.74016e10 2.45033
\(870\) 0 0
\(871\) −1.09933e9 −0.0563721
\(872\) 2.67819e9 0.136783
\(873\) −3.78849e9 −0.192715
\(874\) −2.18942e10 −1.10927
\(875\) 0 0
\(876\) −4.87198e9 −0.244873
\(877\) 4.21151e9 0.210833 0.105417 0.994428i \(-0.466382\pi\)
0.105417 + 0.994428i \(0.466382\pi\)
\(878\) 1.95125e10 0.972932
\(879\) 1.37253e10 0.681650
\(880\) 0 0
\(881\) 2.60856e10 1.28524 0.642622 0.766184i \(-0.277847\pi\)
0.642622 + 0.766184i \(0.277847\pi\)
\(882\) 5.20254e9 0.255314
\(883\) 1.24090e9 0.0606560 0.0303280 0.999540i \(-0.490345\pi\)
0.0303280 + 0.999540i \(0.490345\pi\)
\(884\) 1.63280e9 0.0794969
\(885\) 0 0
\(886\) 9.27678e9 0.448104
\(887\) 2.74043e10 1.31852 0.659260 0.751915i \(-0.270870\pi\)
0.659260 + 0.751915i \(0.270870\pi\)
\(888\) −1.48659e9 −0.0712438
\(889\) 5.56631e9 0.265712
\(890\) 0 0
\(891\) −2.90026e9 −0.137361
\(892\) 1.67580e10 0.790578
\(893\) 2.62734e10 1.23463
\(894\) 3.54243e8 0.0165813
\(895\) 0 0
\(896\) 2.74688e9 0.127574
\(897\) 1.18065e10 0.546193
\(898\) 5.05629e9 0.233005
\(899\) −1.79648e10 −0.824637
\(900\) 0 0
\(901\) −5.96176e9 −0.271543
\(902\) −1.73226e10 −0.785943
\(903\) −2.56693e10 −1.16013
\(904\) 8.09894e9 0.364619
\(905\) 0 0
\(906\) 1.00612e10 0.449469
\(907\) 1.54071e10 0.685638 0.342819 0.939402i \(-0.388618\pi\)
0.342819 + 0.939402i \(0.388618\pi\)
\(908\) −8.23163e9 −0.364910
\(909\) 2.07667e9 0.0917052
\(910\) 0 0
\(911\) 1.20985e9 0.0530171 0.0265085 0.999649i \(-0.491561\pi\)
0.0265085 + 0.999649i \(0.491561\pi\)
\(912\) −3.62534e9 −0.158258
\(913\) 3.15062e10 1.37009
\(914\) −1.42828e10 −0.618729
\(915\) 0 0
\(916\) 6.49374e9 0.279165
\(917\) 7.32389e9 0.313653
\(918\) −7.66994e8 −0.0327222
\(919\) 1.95758e10 0.831986 0.415993 0.909368i \(-0.363434\pi\)
0.415993 + 0.909368i \(0.363434\pi\)
\(920\) 0 0
\(921\) 1.24430e10 0.524827
\(922\) −9.85913e9 −0.414267
\(923\) 1.97241e10 0.825640
\(924\) 1.23519e10 0.515090
\(925\) 0 0
\(926\) −2.61747e10 −1.08329
\(927\) −1.08887e10 −0.448949
\(928\) −2.40549e9 −0.0988065
\(929\) 2.43152e10 0.994999 0.497500 0.867464i \(-0.334252\pi\)
0.497500 + 0.867464i \(0.334252\pi\)
\(930\) 0 0
\(931\) 2.92430e10 1.18768
\(932\) −1.75820e10 −0.711397
\(933\) −2.06255e10 −0.831416
\(934\) 3.36714e9 0.135222
\(935\) 0 0
\(936\) 1.95497e9 0.0779245
\(937\) 2.87271e9 0.114078 0.0570391 0.998372i \(-0.481834\pi\)
0.0570391 + 0.998372i \(0.481834\pi\)
\(938\) −2.19930e9 −0.0870111
\(939\) −1.34182e10 −0.528890
\(940\) 0 0
\(941\) 3.33166e10 1.30346 0.651729 0.758452i \(-0.274044\pi\)
0.651729 + 0.758452i \(0.274044\pi\)
\(942\) 1.34322e10 0.523562
\(943\) −3.31250e10 −1.28637
\(944\) 9.54085e9 0.369135
\(945\) 0 0
\(946\) −3.16893e10 −1.21701
\(947\) −5.07496e9 −0.194182 −0.0970908 0.995276i \(-0.530954\pi\)
−0.0970908 + 0.995276i \(0.530954\pi\)
\(948\) 1.50091e10 0.572171
\(949\) 1.47674e10 0.560882
\(950\) 0 0
\(951\) −1.13094e10 −0.426389
\(952\) 3.26656e9 0.122705
\(953\) −2.69161e10 −1.00737 −0.503683 0.863889i \(-0.668022\pi\)
−0.503683 + 0.863889i \(0.668022\pi\)
\(954\) −7.13808e9 −0.266172
\(955\) 0 0
\(956\) −2.41831e9 −0.0895177
\(957\) −1.08168e10 −0.398940
\(958\) −2.33200e8 −0.00856937
\(959\) −2.89697e10 −1.06067
\(960\) 0 0
\(961\) 3.23749e10 1.17673
\(962\) 4.50600e9 0.163184
\(963\) −7.60471e8 −0.0274404
\(964\) 1.09116e10 0.392300
\(965\) 0 0
\(966\) 2.36198e10 0.843057
\(967\) −1.62053e10 −0.576320 −0.288160 0.957582i \(-0.593043\pi\)
−0.288160 + 0.957582i \(0.593043\pi\)
\(968\) 5.27127e9 0.186789
\(969\) −4.31121e9 −0.152218
\(970\) 0 0
\(971\) −1.58919e10 −0.557068 −0.278534 0.960426i \(-0.589848\pi\)
−0.278534 + 0.960426i \(0.589848\pi\)
\(972\) −9.18330e8 −0.0320750
\(973\) −3.34186e10 −1.16304
\(974\) −2.07039e10 −0.717951
\(975\) 0 0
\(976\) 1.07951e10 0.371667
\(977\) −2.98228e10 −1.02310 −0.511549 0.859254i \(-0.670928\pi\)
−0.511549 + 0.859254i \(0.670928\pi\)
\(978\) −1.26763e10 −0.433317
\(979\) −5.60544e10 −1.90928
\(980\) 0 0
\(981\) 3.81328e9 0.128961
\(982\) −1.60925e10 −0.542293
\(983\) −3.04567e10 −1.02270 −0.511348 0.859374i \(-0.670854\pi\)
−0.511348 + 0.859374i \(0.670854\pi\)
\(984\) −5.48500e9 −0.183524
\(985\) 0 0
\(986\) −2.86058e9 −0.0950354
\(987\) −2.83442e10 −0.938328
\(988\) 1.09887e10 0.362491
\(989\) −6.05974e10 −1.99190
\(990\) 0 0
\(991\) −4.03364e10 −1.31656 −0.658278 0.752775i \(-0.728715\pi\)
−0.658278 + 0.752775i \(0.728715\pi\)
\(992\) 8.01896e9 0.260812
\(993\) 2.16071e10 0.700283
\(994\) 3.94597e10 1.27439
\(995\) 0 0
\(996\) 9.97604e9 0.319927
\(997\) 1.00858e10 0.322312 0.161156 0.986929i \(-0.448478\pi\)
0.161156 + 0.986929i \(0.448478\pi\)
\(998\) −5.05009e9 −0.160821
\(999\) −2.11666e9 −0.0671693
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.a.s.1.2 2
3.2 odd 2 450.8.a.be.1.2 2
5.2 odd 4 30.8.c.b.19.4 yes 4
5.3 odd 4 30.8.c.b.19.2 4
5.4 even 2 150.8.a.r.1.1 2
15.2 even 4 90.8.c.b.19.1 4
15.8 even 4 90.8.c.b.19.3 4
15.14 odd 2 450.8.a.bh.1.1 2
20.3 even 4 240.8.f.d.49.4 4
20.7 even 4 240.8.f.d.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.c.b.19.2 4 5.3 odd 4
30.8.c.b.19.4 yes 4 5.2 odd 4
90.8.c.b.19.1 4 15.2 even 4
90.8.c.b.19.3 4 15.8 even 4
150.8.a.r.1.1 2 5.4 even 2
150.8.a.s.1.2 2 1.1 even 1 trivial
240.8.f.d.49.2 4 20.7 even 4
240.8.f.d.49.4 4 20.3 even 4
450.8.a.be.1.2 2 3.2 odd 2
450.8.a.bh.1.1 2 15.14 odd 2