Properties

Label 30.8.c.b.19.2
Level $30$
Weight $8$
Character 30.19
Analytic conductor $9.372$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,8,Mod(19,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.37155076452\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2641})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1321x^{2} + 435600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(25.1953i\) of defining polynomial
Character \(\chi\) \(=\) 30.19
Dual form 30.8.c.b.19.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -27.0000i q^{3} -64.0000 q^{4} +(271.563 - 66.1720i) q^{5} -216.000 q^{6} -1309.81i q^{7} +512.000i q^{8} -729.000 q^{9} +(-529.376 - 2172.50i) q^{10} -5457.35 q^{11} +1728.00i q^{12} +5237.72i q^{13} -10478.5 q^{14} +(-1786.64 - 7332.19i) q^{15} +4096.00 q^{16} -4870.92i q^{17} +5832.00i q^{18} -32781.2 q^{19} +(-17380.0 + 4235.01i) q^{20} -35365.0 q^{21} +43658.8i q^{22} -83486.0i q^{23} +13824.0 q^{24} +(69367.5 - 35939.7i) q^{25} +41901.8 q^{26} +19683.0i q^{27} +83828.0i q^{28} +73409.7 q^{29} +(-58657.5 + 14293.1i) q^{30} +244719. q^{31} -32768.0i q^{32} +147348. i q^{33} -38967.3 q^{34} +(-86672.9 - 355696. i) q^{35} +46656.0 q^{36} -107537. i q^{37} +262250. i q^{38} +141418. q^{39} +(33880.1 + 139040. i) q^{40} +396774. q^{41} +282920. i q^{42} +725839. i q^{43} +349270. q^{44} +(-197969. + 48239.4i) q^{45} -667888. q^{46} -801478. i q^{47} -110592. i q^{48} -892068. q^{49} +(-287517. - 554940. i) q^{50} -131515. q^{51} -335214. i q^{52} -1.22395e6i q^{53} +157464. q^{54} +(-1.48201e6 + 361123. i) q^{55} +670624. q^{56} +885092. i q^{57} -587278. i q^{58} -2.32931e6 q^{59} +(114345. + 469260. i) q^{60} +2.63553e6 q^{61} -1.95775e6i q^{62} +954854. i q^{63} -262144. q^{64} +(346590. + 1.42237e6i) q^{65} +1.17879e6 q^{66} +209887. i q^{67} +311739. i q^{68} -2.25412e6 q^{69} +(-2.84557e6 + 693383. i) q^{70} +3.76578e6 q^{71} -373248. i q^{72} +2.81943e6i q^{73} -860298. q^{74} +(-970371. - 1.87292e6i) q^{75} +2.09800e6 q^{76} +7.14810e6i q^{77} -1.13135e6i q^{78} +8.68583e6 q^{79} +(1.11232e6 - 271040. i) q^{80} +531441. q^{81} -3.17419e6i q^{82} -5.77317e6i q^{83} +2.26336e6 q^{84} +(-322318. - 1.32276e6i) q^{85} +5.80672e6 q^{86} -1.98206e6i q^{87} -2.79416e6i q^{88} -1.02714e7 q^{89} +(385915. + 1.58375e6i) q^{90} +6.86043e6 q^{91} +5.34310e6i q^{92} -6.60742e6i q^{93} -6.41183e6 q^{94} +(-8.90215e6 + 2.16920e6i) q^{95} -884736. q^{96} +5.19683e6i q^{97} +7.13654e6i q^{98} +3.97841e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 256 q^{4} + 264 q^{5} - 864 q^{6} - 2916 q^{9} + 2816 q^{10} - 7440 q^{11} - 9024 q^{14} + 9504 q^{15} + 16384 q^{16} - 69456 q^{19} - 16896 q^{20} - 30456 q^{21} + 55296 q^{24} + 60396 q^{25} + 118272 q^{26}+ \cdots + 5423760 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 27.0000i 0.577350i
\(4\) −64.0000 −0.500000
\(5\) 271.563 66.1720i 0.971572 0.236744i
\(6\) −216.000 −0.408248
\(7\) 1309.81i 1.44333i −0.692241 0.721666i \(-0.743377\pi\)
0.692241 0.721666i \(-0.256623\pi\)
\(8\) 512.000i 0.353553i
\(9\) −729.000 −0.333333
\(10\) −529.376 2172.50i −0.167403 0.687005i
\(11\) −5457.35 −1.23625 −0.618126 0.786079i \(-0.712108\pi\)
−0.618126 + 0.786079i \(0.712108\pi\)
\(12\) 1728.00i 0.288675i
\(13\) 5237.72i 0.661212i 0.943769 + 0.330606i \(0.107253\pi\)
−0.943769 + 0.330606i \(0.892747\pi\)
\(14\) −10478.5 −1.02059
\(15\) −1786.64 7332.19i −0.136684 0.560937i
\(16\) 4096.00 0.250000
\(17\) 4870.92i 0.240458i −0.992746 0.120229i \(-0.961637\pi\)
0.992746 0.120229i \(-0.0383629\pi\)
\(18\) 5832.00i 0.235702i
\(19\) −32781.2 −1.09645 −0.548223 0.836332i \(-0.684695\pi\)
−0.548223 + 0.836332i \(0.684695\pi\)
\(20\) −17380.0 + 4235.01i −0.485786 + 0.118372i
\(21\) −35365.0 −0.833308
\(22\) 43658.8i 0.874162i
\(23\) 83486.0i 1.43076i −0.698737 0.715379i \(-0.746254\pi\)
0.698737 0.715379i \(-0.253746\pi\)
\(24\) 13824.0 0.204124
\(25\) 69367.5 35939.7i 0.887904 0.460028i
\(26\) 41901.8 0.467547
\(27\) 19683.0i 0.192450i
\(28\) 83828.0i 0.721666i
\(29\) 73409.7 0.558934 0.279467 0.960155i \(-0.409842\pi\)
0.279467 + 0.960155i \(0.409842\pi\)
\(30\) −58657.5 + 14293.1i −0.396643 + 0.0966504i
\(31\) 244719. 1.47537 0.737687 0.675142i \(-0.235918\pi\)
0.737687 + 0.675142i \(0.235918\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 147348.i 0.713751i
\(34\) −38967.3 −0.170030
\(35\) −86672.9 355696.i −0.341700 1.40230i
\(36\) 46656.0 0.166667
\(37\) 107537.i 0.349022i −0.984655 0.174511i \(-0.944166\pi\)
0.984655 0.174511i \(-0.0558345\pi\)
\(38\) 262250.i 0.775304i
\(39\) 141418. 0.381751
\(40\) 33880.1 + 139040.i 0.0837017 + 0.343503i
\(41\) 396774. 0.899082 0.449541 0.893260i \(-0.351588\pi\)
0.449541 + 0.893260i \(0.351588\pi\)
\(42\) 282920.i 0.589238i
\(43\) 725839.i 1.39220i 0.717946 + 0.696099i \(0.245082\pi\)
−0.717946 + 0.696099i \(0.754918\pi\)
\(44\) 349270. 0.618126
\(45\) −197969. + 48239.4i −0.323857 + 0.0789147i
\(46\) −667888. −1.01170
\(47\) 801478.i 1.12603i −0.826447 0.563014i \(-0.809642\pi\)
0.826447 0.563014i \(-0.190358\pi\)
\(48\) 110592.i 0.144338i
\(49\) −892068. −1.08321
\(50\) −287517. 554940.i −0.325289 0.627843i
\(51\) −131515. −0.138829
\(52\) 335214.i 0.330606i
\(53\) 1.22395e6i 1.12927i −0.825340 0.564636i \(-0.809017\pi\)
0.825340 0.564636i \(-0.190983\pi\)
\(54\) 157464. 0.136083
\(55\) −1.48201e6 + 361123.i −1.20111 + 0.292675i
\(56\) 670624. 0.510295
\(57\) 885092.i 0.633033i
\(58\) 587278.i 0.395226i
\(59\) −2.32931e6 −1.47654 −0.738270 0.674506i \(-0.764357\pi\)
−0.738270 + 0.674506i \(0.764357\pi\)
\(60\) 114345. + 469260.i 0.0683421 + 0.280469i
\(61\) 2.63553e6 1.48667 0.743334 0.668921i \(-0.233244\pi\)
0.743334 + 0.668921i \(0.233244\pi\)
\(62\) 1.95775e6i 1.04325i
\(63\) 954854.i 0.481111i
\(64\) −262144. −0.125000
\(65\) 346590. + 1.42237e6i 0.156538 + 0.642415i
\(66\) 1.17879e6 0.504698
\(67\) 209887.i 0.0852557i 0.999091 + 0.0426279i \(0.0135730\pi\)
−0.999091 + 0.0426279i \(0.986427\pi\)
\(68\) 311739.i 0.120229i
\(69\) −2.25412e6 −0.826049
\(70\) −2.84557e6 + 693383.i −0.991577 + 0.241619i
\(71\) 3.76578e6 1.24868 0.624339 0.781154i \(-0.285368\pi\)
0.624339 + 0.781154i \(0.285368\pi\)
\(72\) 373248.i 0.117851i
\(73\) 2.81943e6i 0.848265i 0.905600 + 0.424132i \(0.139421\pi\)
−0.905600 + 0.424132i \(0.860579\pi\)
\(74\) −860298. −0.246796
\(75\) −970371. 1.87292e6i −0.265597 0.512632i
\(76\) 2.09800e6 0.548223
\(77\) 7.14810e6i 1.78432i
\(78\) 1.13135e6i 0.269939i
\(79\) 8.68583e6 1.98206 0.991030 0.133642i \(-0.0426671\pi\)
0.991030 + 0.133642i \(0.0426671\pi\)
\(80\) 1.11232e6 271040.i 0.242893 0.0591860i
\(81\) 531441. 0.111111
\(82\) 3.17419e6i 0.635747i
\(83\) 5.77317e6i 1.10826i −0.832431 0.554129i \(-0.813051\pi\)
0.832431 0.554129i \(-0.186949\pi\)
\(84\) 2.26336e6 0.416654
\(85\) −322318. 1.32276e6i −0.0569271 0.233622i
\(86\) 5.80672e6 0.984432
\(87\) 1.98206e6i 0.322701i
\(88\) 2.79416e6i 0.437081i
\(89\) −1.02714e7 −1.54441 −0.772206 0.635373i \(-0.780846\pi\)
−0.772206 + 0.635373i \(0.780846\pi\)
\(90\) 385915. + 1.58375e6i 0.0558011 + 0.229002i
\(91\) 6.86043e6 0.954348
\(92\) 5.34310e6i 0.715379i
\(93\) 6.60742e6i 0.851808i
\(94\) −6.41183e6 −0.796222
\(95\) −8.90215e6 + 2.16920e6i −1.06528 + 0.259577i
\(96\) −884736. −0.102062
\(97\) 5.19683e6i 0.578146i 0.957307 + 0.289073i \(0.0933470\pi\)
−0.957307 + 0.289073i \(0.906653\pi\)
\(98\) 7.13654e6i 0.765943i
\(99\) 3.97841e6 0.412084
\(100\) −4.43952e6 + 2.30014e6i −0.443952 + 0.230014i
\(101\) 2.84866e6 0.275116 0.137558 0.990494i \(-0.456075\pi\)
0.137558 + 0.990494i \(0.456075\pi\)
\(102\) 1.05212e6i 0.0981666i
\(103\) 1.49365e7i 1.34685i −0.739257 0.673423i \(-0.764823\pi\)
0.739257 0.673423i \(-0.235177\pi\)
\(104\) −2.68171e6 −0.233774
\(105\) −9.60380e6 + 2.34017e6i −0.809619 + 0.197281i
\(106\) −9.79161e6 −0.798516
\(107\) 1.04317e6i 0.0823213i 0.999153 + 0.0411606i \(0.0131055\pi\)
−0.999153 + 0.0411606i \(0.986894\pi\)
\(108\) 1.25971e6i 0.0962250i
\(109\) −5.23084e6 −0.386882 −0.193441 0.981112i \(-0.561965\pi\)
−0.193441 + 0.981112i \(0.561965\pi\)
\(110\) 2.88899e6 + 1.18561e7i 0.206953 + 0.849312i
\(111\) −2.90351e6 −0.201508
\(112\) 5.36499e6i 0.360833i
\(113\) 1.58182e7i 1.03130i 0.856800 + 0.515649i \(0.172449\pi\)
−0.856800 + 0.515649i \(0.827551\pi\)
\(114\) 7.08074e6 0.447622
\(115\) −5.52443e6 2.26717e7i −0.338723 1.39008i
\(116\) −4.69822e6 −0.279467
\(117\) 3.81830e6i 0.220404i
\(118\) 1.86345e7i 1.04407i
\(119\) −6.37999e6 −0.347061
\(120\) 3.75408e6 914761.i 0.198321 0.0483252i
\(121\) 1.02955e7 0.528320
\(122\) 2.10842e7i 1.05123i
\(123\) 1.07129e7i 0.519085i
\(124\) −1.56620e7 −0.737687
\(125\) 1.64594e7 1.43501e7i 0.753754 0.657156i
\(126\) 7.63883e6 0.340197
\(127\) 4.24970e6i 0.184096i −0.995755 0.0920481i \(-0.970659\pi\)
0.995755 0.0920481i \(-0.0293414\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 1.95977e7 0.803786
\(130\) 1.13790e7 2.77272e6i 0.454256 0.110689i
\(131\) 5.59155e6 0.217312 0.108656 0.994079i \(-0.465345\pi\)
0.108656 + 0.994079i \(0.465345\pi\)
\(132\) 9.43029e6i 0.356875i
\(133\) 4.29372e7i 1.58254i
\(134\) 1.67910e6 0.0602849
\(135\) 1.30246e6 + 5.34517e6i 0.0455614 + 0.186979i
\(136\) 2.49391e6 0.0850148
\(137\) 2.21174e7i 0.734874i 0.930048 + 0.367437i \(0.119765\pi\)
−0.930048 + 0.367437i \(0.880235\pi\)
\(138\) 1.80330e7i 0.584105i
\(139\) 2.55140e7 0.805799 0.402900 0.915244i \(-0.368002\pi\)
0.402900 + 0.915244i \(0.368002\pi\)
\(140\) 5.54707e6 + 2.27646e7i 0.170850 + 0.701150i
\(141\) −2.16399e7 −0.650113
\(142\) 3.01262e7i 0.882948i
\(143\) 2.85841e7i 0.817424i
\(144\) −2.98598e6 −0.0833333
\(145\) 1.99353e7 4.85767e6i 0.543045 0.132324i
\(146\) 2.25554e7 0.599814
\(147\) 2.40858e7i 0.625390i
\(148\) 6.88238e6i 0.174511i
\(149\) 1.64001e6 0.0406158 0.0203079 0.999794i \(-0.493535\pi\)
0.0203079 + 0.999794i \(0.493535\pi\)
\(150\) −1.49834e7 + 7.76297e6i −0.362485 + 0.187806i
\(151\) −4.65795e7 −1.10097 −0.550485 0.834845i \(-0.685557\pi\)
−0.550485 + 0.834845i \(0.685557\pi\)
\(152\) 1.67840e7i 0.387652i
\(153\) 3.55090e6i 0.0801527i
\(154\) 5.71848e7 1.26171
\(155\) 6.64566e7 1.61936e7i 1.43343 0.349286i
\(156\) −9.05078e6 −0.190875
\(157\) 6.21860e7i 1.28246i 0.767349 + 0.641230i \(0.221575\pi\)
−0.767349 + 0.641230i \(0.778425\pi\)
\(158\) 6.94867e7i 1.40153i
\(159\) −3.30467e7 −0.651985
\(160\) −2.16832e6 8.89856e6i −0.0418508 0.171751i
\(161\) −1.09351e8 −2.06506
\(162\) 4.25153e6i 0.0785674i
\(163\) 5.86864e7i 1.06140i 0.847558 + 0.530702i \(0.178072\pi\)
−0.847558 + 0.530702i \(0.821928\pi\)
\(164\) −2.53935e7 −0.449541
\(165\) 9.75033e6 + 4.00143e7i 0.168976 + 0.693460i
\(166\) −4.61854e7 −0.783657
\(167\) 2.74875e7i 0.456696i −0.973580 0.228348i \(-0.926668\pi\)
0.973580 0.228348i \(-0.0733325\pi\)
\(168\) 1.81069e7i 0.294619i
\(169\) 3.53148e7 0.562799
\(170\) −1.05821e7 + 2.57855e6i −0.165196 + 0.0402535i
\(171\) 2.38975e7 0.365482
\(172\) 4.64537e7i 0.696099i
\(173\) 6.19491e7i 0.909649i −0.890581 0.454825i \(-0.849702\pi\)
0.890581 0.454825i \(-0.150298\pi\)
\(174\) −1.58565e7 −0.228184
\(175\) −4.70743e7 9.08585e7i −0.663973 1.28154i
\(176\) −2.23533e7 −0.309063
\(177\) 6.28913e7i 0.852480i
\(178\) 8.21709e7i 1.09206i
\(179\) −1.04816e7 −0.136598 −0.0682988 0.997665i \(-0.521757\pi\)
−0.0682988 + 0.997665i \(0.521757\pi\)
\(180\) 1.26700e7 3.08732e6i 0.161929 0.0394573i
\(181\) −9.64546e7 −1.20906 −0.604530 0.796582i \(-0.706639\pi\)
−0.604530 + 0.796582i \(0.706639\pi\)
\(182\) 5.48835e7i 0.674826i
\(183\) 7.11593e7i 0.858328i
\(184\) 4.27448e7 0.505849
\(185\) −7.11595e6 2.92031e7i −0.0826289 0.339100i
\(186\) −5.28594e7 −0.602319
\(187\) 2.65823e7i 0.297267i
\(188\) 5.12946e7i 0.563014i
\(189\) 2.57811e7 0.277769
\(190\) 1.73536e7 + 7.12172e7i 0.183549 + 0.753264i
\(191\) 9.71449e7 1.00880 0.504398 0.863471i \(-0.331714\pi\)
0.504398 + 0.863471i \(0.331714\pi\)
\(192\) 7.07789e6i 0.0721688i
\(193\) 5.17514e7i 0.518169i −0.965855 0.259085i \(-0.916579\pi\)
0.965855 0.259085i \(-0.0834208\pi\)
\(194\) 4.15746e7 0.408811
\(195\) 3.84040e7 9.35794e6i 0.370898 0.0903772i
\(196\) 5.70923e7 0.541604
\(197\) 1.55737e8i 1.45131i 0.688057 + 0.725657i \(0.258464\pi\)
−0.688057 + 0.725657i \(0.741536\pi\)
\(198\) 3.18272e7i 0.291387i
\(199\) −1.49558e8 −1.34532 −0.672658 0.739954i \(-0.734847\pi\)
−0.672658 + 0.739954i \(0.734847\pi\)
\(200\) 1.84011e7 + 3.55162e7i 0.162644 + 0.313922i
\(201\) 5.66695e6 0.0492224
\(202\) 2.27892e7i 0.194536i
\(203\) 9.61530e7i 0.806728i
\(204\) 8.41695e6 0.0694143
\(205\) 1.07749e8 2.62553e7i 0.873523 0.212852i
\(206\) −1.19492e8 −0.952364
\(207\) 6.08613e7i 0.476919i
\(208\) 2.14537e7i 0.165303i
\(209\) 1.78898e8 1.35548
\(210\) 1.87214e7 + 7.68304e7i 0.139499 + 0.572487i
\(211\) −4.83513e6 −0.0354340 −0.0177170 0.999843i \(-0.505640\pi\)
−0.0177170 + 0.999843i \(0.505640\pi\)
\(212\) 7.83329e7i 0.564636i
\(213\) 1.01676e8i 0.720924i
\(214\) 8.34536e6 0.0582099
\(215\) 4.80302e7 + 1.97111e8i 0.329595 + 1.35262i
\(216\) −1.00777e7 −0.0680414
\(217\) 3.20537e8i 2.12946i
\(218\) 4.18467e7i 0.273567i
\(219\) 7.61246e7 0.489746
\(220\) 9.48487e7 2.31119e7i 0.600554 0.146338i
\(221\) 2.55125e7 0.158994
\(222\) 2.32280e7i 0.142488i
\(223\) 2.61843e8i 1.58116i 0.612361 + 0.790578i \(0.290220\pi\)
−0.612361 + 0.790578i \(0.709780\pi\)
\(224\) −4.29200e7 −0.255147
\(225\) −5.05689e7 + 2.62000e7i −0.295968 + 0.153343i
\(226\) 1.26546e8 0.729237
\(227\) 1.28619e8i 0.729820i 0.931043 + 0.364910i \(0.118900\pi\)
−0.931043 + 0.364910i \(0.881100\pi\)
\(228\) 5.66459e7i 0.316517i
\(229\) −1.01465e8 −0.558330 −0.279165 0.960243i \(-0.590058\pi\)
−0.279165 + 0.960243i \(0.590058\pi\)
\(230\) −1.81373e8 + 4.41955e7i −0.982938 + 0.239514i
\(231\) 1.92999e8 1.03018
\(232\) 3.75858e7i 0.197613i
\(233\) 2.74718e8i 1.42279i −0.702791 0.711397i \(-0.748063\pi\)
0.702791 0.711397i \(-0.251937\pi\)
\(234\) −3.05464e7 −0.155849
\(235\) −5.30354e7 2.17652e8i −0.266580 1.09402i
\(236\) 1.49076e8 0.738270
\(237\) 2.34518e8i 1.14434i
\(238\) 5.10399e7i 0.245409i
\(239\) 3.77861e7 0.179035 0.0895177 0.995985i \(-0.471467\pi\)
0.0895177 + 0.995985i \(0.471467\pi\)
\(240\) −7.31809e6 3.00327e7i −0.0341711 0.140234i
\(241\) 1.70494e8 0.784600 0.392300 0.919837i \(-0.371680\pi\)
0.392300 + 0.919837i \(0.371680\pi\)
\(242\) 8.23637e7i 0.373578i
\(243\) 1.43489e7i 0.0641500i
\(244\) −1.68674e8 −0.743334
\(245\) −2.42252e8 + 5.90299e7i −1.05241 + 0.256443i
\(246\) −8.57031e7 −0.367049
\(247\) 1.71699e8i 0.724983i
\(248\) 1.25296e8i 0.521624i
\(249\) −1.55876e8 −0.639854
\(250\) −1.14800e8 1.31675e8i −0.464680 0.532985i
\(251\) −3.41080e8 −1.36144 −0.680719 0.732544i \(-0.738333\pi\)
−0.680719 + 0.732544i \(0.738333\pi\)
\(252\) 6.11106e7i 0.240555i
\(253\) 4.55612e8i 1.76878i
\(254\) −3.39976e7 −0.130176
\(255\) −3.57145e7 + 8.70259e6i −0.134882 + 0.0328669i
\(256\) 1.67772e7 0.0625000
\(257\) 1.94713e8i 0.715530i 0.933812 + 0.357765i \(0.116461\pi\)
−0.933812 + 0.357765i \(0.883539\pi\)
\(258\) 1.56781e8i 0.568362i
\(259\) −1.40854e8 −0.503755
\(260\) −2.21818e7 9.10316e7i −0.0782690 0.321207i
\(261\) −5.35157e7 −0.186311
\(262\) 4.47324e7i 0.153663i
\(263\) 4.85601e8i 1.64602i 0.568029 + 0.823009i \(0.307706\pi\)
−0.568029 + 0.823009i \(0.692294\pi\)
\(264\) −7.54424e7 −0.252349
\(265\) −8.09913e7 3.32379e8i −0.267348 1.09717i
\(266\) 3.43498e8 1.11902
\(267\) 2.77327e8i 0.891666i
\(268\) 1.34328e7i 0.0426279i
\(269\) 2.89744e7 0.0907572 0.0453786 0.998970i \(-0.485551\pi\)
0.0453786 + 0.998970i \(0.485551\pi\)
\(270\) 4.27613e7 1.04197e7i 0.132214 0.0322168i
\(271\) 3.02460e8 0.923156 0.461578 0.887100i \(-0.347283\pi\)
0.461578 + 0.887100i \(0.347283\pi\)
\(272\) 1.99513e7i 0.0601146i
\(273\) 1.85232e8i 0.550993i
\(274\) 1.76939e8 0.519634
\(275\) −3.78563e8 + 1.96135e8i −1.09767 + 0.568710i
\(276\) 1.44264e8 0.413024
\(277\) 1.78252e8i 0.503912i 0.967739 + 0.251956i \(0.0810739\pi\)
−0.967739 + 0.251956i \(0.918926\pi\)
\(278\) 2.04112e8i 0.569786i
\(279\) −1.78400e8 −0.491792
\(280\) 1.82117e8 4.43765e7i 0.495788 0.120809i
\(281\) 2.21487e7 0.0595492 0.0297746 0.999557i \(-0.490521\pi\)
0.0297746 + 0.999557i \(0.490521\pi\)
\(282\) 1.73119e8i 0.459699i
\(283\) 1.08099e8i 0.283511i 0.989902 + 0.141756i \(0.0452747\pi\)
−0.989902 + 0.141756i \(0.954725\pi\)
\(284\) −2.41010e8 −0.624339
\(285\) 5.85683e7 + 2.40358e8i 0.149867 + 0.615038i
\(286\) −2.28672e8 −0.578006
\(287\) 5.19699e8i 1.29767i
\(288\) 2.38879e7i 0.0589256i
\(289\) 3.86613e8 0.942180
\(290\) −3.88613e7 1.59483e8i −0.0935675 0.383991i
\(291\) 1.40314e8 0.333793
\(292\) 1.80444e8i 0.424132i
\(293\) 5.08345e8i 1.18065i −0.807165 0.590326i \(-0.798999\pi\)
0.807165 0.590326i \(-0.201001\pi\)
\(294\) 1.92687e8 0.442217
\(295\) −6.32553e8 + 1.54135e8i −1.43456 + 0.349562i
\(296\) 5.50591e7 0.123398
\(297\) 1.07417e8i 0.237917i
\(298\) 1.31201e7i 0.0287197i
\(299\) 4.37276e8 0.946034
\(300\) 6.21038e7 + 1.19867e8i 0.132799 + 0.256316i
\(301\) 9.50714e8 2.00940
\(302\) 3.72636e8i 0.778503i
\(303\) 7.69137e7i 0.158838i
\(304\) −1.34272e8 −0.274111
\(305\) 7.15712e8 1.74398e8i 1.44440 0.351960i
\(306\) 2.84072e7 0.0566765
\(307\) 4.60852e8i 0.909027i 0.890740 + 0.454514i \(0.150187\pi\)
−0.890740 + 0.454514i \(0.849813\pi\)
\(308\) 4.57479e8i 0.892161i
\(309\) −4.03285e8 −0.777602
\(310\) −1.29549e8 5.31653e8i −0.246983 1.01359i
\(311\) 7.63906e8 1.44005 0.720027 0.693946i \(-0.244129\pi\)
0.720027 + 0.693946i \(0.244129\pi\)
\(312\) 7.24062e7i 0.134969i
\(313\) 4.96971e8i 0.916064i 0.888936 + 0.458032i \(0.151446\pi\)
−0.888936 + 0.458032i \(0.848554\pi\)
\(314\) 4.97488e8 0.906836
\(315\) 6.31846e7 + 2.59303e8i 0.113900 + 0.467434i
\(316\) −5.55893e8 −0.991030
\(317\) 4.18865e8i 0.738528i −0.929325 0.369264i \(-0.879610\pi\)
0.929325 0.369264i \(-0.120390\pi\)
\(318\) 2.64373e8i 0.461023i
\(319\) −4.00622e8 −0.690984
\(320\) −7.11885e7 + 1.73466e7i −0.121447 + 0.0295930i
\(321\) 2.81656e7 0.0475282
\(322\) 8.74808e8i 1.46022i
\(323\) 1.59675e8i 0.263649i
\(324\) −3.40122e7 −0.0555556
\(325\) 1.88242e8 + 3.63328e8i 0.304176 + 0.587093i
\(326\) 4.69491e8 0.750527
\(327\) 1.41233e8i 0.223366i
\(328\) 2.03148e8i 0.317873i
\(329\) −1.04979e9 −1.62523
\(330\) 3.20114e8 7.80027e7i 0.490350 0.119484i
\(331\) −8.00262e8 −1.21293 −0.606463 0.795112i \(-0.707412\pi\)
−0.606463 + 0.795112i \(0.707412\pi\)
\(332\) 3.69483e8i 0.554129i
\(333\) 7.83946e7i 0.116341i
\(334\) −2.19900e8 −0.322933
\(335\) 1.38886e7 + 5.69975e7i 0.0201838 + 0.0828321i
\(336\) −1.44855e8 −0.208327
\(337\) 1.38535e9i 1.97177i −0.167437 0.985883i \(-0.553549\pi\)
0.167437 0.985883i \(-0.446451\pi\)
\(338\) 2.82518e8i 0.397959i
\(339\) 4.27093e8 0.595420
\(340\) 2.06284e7 + 8.46566e7i 0.0284635 + 0.116811i
\(341\) −1.33552e9 −1.82394
\(342\) 1.91180e8i 0.258435i
\(343\) 8.97545e7i 0.120096i
\(344\) −3.71630e8 −0.492216
\(345\) −6.12135e8 + 1.49160e8i −0.802566 + 0.195562i
\(346\) −4.95593e8 −0.643219
\(347\) 9.62881e8i 1.23714i −0.785729 0.618571i \(-0.787712\pi\)
0.785729 0.618571i \(-0.212288\pi\)
\(348\) 1.26852e8i 0.161350i
\(349\) 5.40052e8 0.680058 0.340029 0.940415i \(-0.389563\pi\)
0.340029 + 0.940415i \(0.389563\pi\)
\(350\) −7.26868e8 + 3.76594e8i −0.906186 + 0.469500i
\(351\) −1.03094e8 −0.127250
\(352\) 1.78826e8i 0.218541i
\(353\) 1.02599e9i 1.24145i −0.784027 0.620727i \(-0.786837\pi\)
0.784027 0.620727i \(-0.213163\pi\)
\(354\) 5.03131e8 0.602795
\(355\) 1.02264e9 2.49189e8i 1.21318 0.295617i
\(356\) 6.57367e8 0.772206
\(357\) 1.72260e8i 0.200376i
\(358\) 8.38530e7i 0.0965891i
\(359\) 7.47383e8 0.852536 0.426268 0.904597i \(-0.359828\pi\)
0.426268 + 0.904597i \(0.359828\pi\)
\(360\) −2.46986e7 1.01360e8i −0.0279006 0.114501i
\(361\) 1.80735e8 0.202194
\(362\) 7.71637e8i 0.854935i
\(363\) 2.77977e8i 0.305026i
\(364\) −4.39068e8 −0.477174
\(365\) 1.86567e8 + 7.65652e8i 0.200822 + 0.824150i
\(366\) −5.69275e8 −0.606929
\(367\) 4.77968e8i 0.504740i −0.967631 0.252370i \(-0.918790\pi\)
0.967631 0.252370i \(-0.0812100\pi\)
\(368\) 3.41959e8i 0.357689i
\(369\) −2.89248e8 −0.299694
\(370\) −2.33625e8 + 5.69276e7i −0.239780 + 0.0584274i
\(371\) −1.60315e9 −1.62991
\(372\) 4.22875e8i 0.425904i
\(373\) 1.41621e9i 1.41302i −0.707704 0.706509i \(-0.750269\pi\)
0.707704 0.706509i \(-0.249731\pi\)
\(374\) 2.12658e8 0.210200
\(375\) −3.87452e8 4.44405e8i −0.379409 0.435180i
\(376\) 4.10357e8 0.398111
\(377\) 3.84500e8i 0.369574i
\(378\) 2.06248e8i 0.196413i
\(379\) −4.23809e8 −0.399883 −0.199941 0.979808i \(-0.564075\pi\)
−0.199941 + 0.979808i \(0.564075\pi\)
\(380\) 5.69738e8 1.38829e8i 0.532638 0.129789i
\(381\) −1.14742e8 −0.106288
\(382\) 7.77159e8i 0.713327i
\(383\) 8.56505e8i 0.778994i 0.921028 + 0.389497i \(0.127351\pi\)
−0.921028 + 0.389497i \(0.872649\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 4.73004e8 + 1.94116e9i 0.422428 + 1.73360i
\(386\) −4.14011e8 −0.366401
\(387\) 5.29137e8i 0.464066i
\(388\) 3.32597e8i 0.289073i
\(389\) 1.08932e8 0.0938282 0.0469141 0.998899i \(-0.485061\pi\)
0.0469141 + 0.998899i \(0.485061\pi\)
\(390\) −7.48635e7 3.07232e8i −0.0639064 0.262265i
\(391\) −4.06653e8 −0.344037
\(392\) 4.56739e8i 0.382972i
\(393\) 1.50972e8i 0.125465i
\(394\) 1.24590e9 1.02623
\(395\) 2.35875e9 5.74759e8i 1.92571 0.469241i
\(396\) −2.54618e8 −0.206042
\(397\) 2.13997e9i 1.71649i 0.513239 + 0.858245i \(0.328445\pi\)
−0.513239 + 0.858245i \(0.671555\pi\)
\(398\) 1.19646e9i 0.951281i
\(399\) 1.15931e9 0.913677
\(400\) 2.84129e8 1.47209e8i 0.221976 0.115007i
\(401\) −9.00462e8 −0.697365 −0.348682 0.937241i \(-0.613371\pi\)
−0.348682 + 0.937241i \(0.613371\pi\)
\(402\) 4.53356e7i 0.0348055i
\(403\) 1.28177e9i 0.975535i
\(404\) −1.82314e8 −0.137558
\(405\) 1.44320e8 3.51665e7i 0.107952 0.0263049i
\(406\) −7.69224e8 −0.570443
\(407\) 5.86868e8i 0.431479i
\(408\) 6.73356e7i 0.0490833i
\(409\) 2.15143e9 1.55487 0.777436 0.628962i \(-0.216520\pi\)
0.777436 + 0.628962i \(0.216520\pi\)
\(410\) −2.10042e8 8.61991e8i −0.150509 0.617674i
\(411\) 5.97171e8 0.424279
\(412\) 9.55935e8i 0.673423i
\(413\) 3.05096e9i 2.13114i
\(414\) 4.86890e8 0.337233
\(415\) −3.82022e8 1.56778e9i −0.262374 1.07675i
\(416\) 1.71630e8 0.116887
\(417\) 6.88878e8i 0.465228i
\(418\) 1.43119e9i 0.958472i
\(419\) −7.96072e7 −0.0528693 −0.0264346 0.999651i \(-0.508415\pi\)
−0.0264346 + 0.999651i \(0.508415\pi\)
\(420\) 6.14643e8 1.49771e8i 0.404809 0.0986404i
\(421\) 3.29700e8 0.215344 0.107672 0.994186i \(-0.465660\pi\)
0.107672 + 0.994186i \(0.465660\pi\)
\(422\) 3.86810e7i 0.0250556i
\(423\) 5.84278e8i 0.375343i
\(424\) 6.26663e8 0.399258
\(425\) −1.75059e8 3.37884e8i −0.110617 0.213504i
\(426\) −8.13408e8 −0.509771
\(427\) 3.45205e9i 2.14575i
\(428\) 6.67629e7i 0.0411606i
\(429\) −7.71769e8 −0.471940
\(430\) 1.57689e9 3.84242e8i 0.956447 0.233059i
\(431\) 5.57393e8 0.335345 0.167672 0.985843i \(-0.446375\pi\)
0.167672 + 0.985843i \(0.446375\pi\)
\(432\) 8.06216e7i 0.0481125i
\(433\) 1.00562e9i 0.595287i −0.954677 0.297644i \(-0.903799\pi\)
0.954677 0.297644i \(-0.0962007\pi\)
\(434\) −2.56429e9 −1.50575
\(435\) −1.31157e8 5.38254e8i −0.0763975 0.313527i
\(436\) 3.34774e8 0.193441
\(437\) 2.73677e9i 1.56875i
\(438\) 6.08997e8i 0.346303i
\(439\) −2.43906e9 −1.37593 −0.687967 0.725742i \(-0.741496\pi\)
−0.687967 + 0.725742i \(0.741496\pi\)
\(440\) −1.84895e8 7.58790e8i −0.103476 0.424656i
\(441\) 6.50317e8 0.361069
\(442\) 2.04100e8i 0.112426i
\(443\) 1.15960e9i 0.633715i 0.948473 + 0.316858i \(0.102628\pi\)
−0.948473 + 0.316858i \(0.897372\pi\)
\(444\) 1.85824e8 0.100754
\(445\) −2.78932e9 + 6.79676e8i −1.50051 + 0.365630i
\(446\) 2.09475e9 1.11805
\(447\) 4.42804e7i 0.0234496i
\(448\) 3.43360e8i 0.180416i
\(449\) −6.32037e8 −0.329519 −0.164759 0.986334i \(-0.552685\pi\)
−0.164759 + 0.986334i \(0.552685\pi\)
\(450\) 2.09600e8 + 4.04551e8i 0.108430 + 0.209281i
\(451\) −2.16533e9 −1.11149
\(452\) 1.01237e9i 0.515649i
\(453\) 1.25765e9i 0.635645i
\(454\) 1.02895e9 0.516061
\(455\) 1.86304e9 4.53969e8i 0.927218 0.225936i
\(456\) −4.53167e8 −0.223811
\(457\) 1.78534e9i 0.875015i 0.899215 + 0.437507i \(0.144139\pi\)
−0.899215 + 0.437507i \(0.855861\pi\)
\(458\) 8.11718e8i 0.394799i
\(459\) 9.58743e7 0.0462762
\(460\) 3.53564e8 + 1.45099e9i 0.169362 + 0.695042i
\(461\) −1.23239e9 −0.585862 −0.292931 0.956134i \(-0.594631\pi\)
−0.292931 + 0.956134i \(0.594631\pi\)
\(462\) 1.54399e9i 0.728447i
\(463\) 3.27184e9i 1.53200i −0.642841 0.766000i \(-0.722244\pi\)
0.642841 0.766000i \(-0.277756\pi\)
\(464\) 3.00686e8 0.139734
\(465\) −4.37226e8 1.79433e9i −0.201661 0.827593i
\(466\) −2.19775e9 −1.00607
\(467\) 4.20893e8i 0.191233i −0.995418 0.0956165i \(-0.969518\pi\)
0.995418 0.0956165i \(-0.0304822\pi\)
\(468\) 2.44371e8i 0.110202i
\(469\) 2.74913e8 0.123052
\(470\) −1.74121e9 + 4.24283e8i −0.773587 + 0.188501i
\(471\) 1.67902e9 0.740428
\(472\) 1.19261e9i 0.522036i
\(473\) 3.96116e9i 1.72111i
\(474\) −1.87614e9 −0.809172
\(475\) −2.27395e9 + 1.17815e9i −0.973539 + 0.504396i
\(476\) 4.08320e8 0.173531
\(477\) 8.92260e8i 0.376424i
\(478\) 3.02288e8i 0.126597i
\(479\) 2.91500e7 0.0121189 0.00605946 0.999982i \(-0.498071\pi\)
0.00605946 + 0.999982i \(0.498071\pi\)
\(480\) −2.40261e8 + 5.85447e7i −0.0991607 + 0.0241626i
\(481\) 5.63250e8 0.230777
\(482\) 1.36395e9i 0.554796i
\(483\) 2.95248e9i 1.19226i
\(484\) −6.58909e8 −0.264160
\(485\) 3.43885e8 + 1.41126e9i 0.136873 + 0.561710i
\(486\) −1.14791e8 −0.0453609
\(487\) 2.58798e9i 1.01534i 0.861553 + 0.507668i \(0.169492\pi\)
−0.861553 + 0.507668i \(0.830508\pi\)
\(488\) 1.34939e9i 0.525616i
\(489\) 1.58453e9 0.612802
\(490\) 4.72239e8 + 1.93802e9i 0.181332 + 0.744169i
\(491\) −2.01157e9 −0.766918 −0.383459 0.923558i \(-0.625267\pi\)
−0.383459 + 0.923558i \(0.625267\pi\)
\(492\) 6.85625e8i 0.259543i
\(493\) 3.57573e8i 0.134400i
\(494\) −1.37359e9 −0.512640
\(495\) 1.08039e9 2.63259e8i 0.400369 0.0975585i
\(496\) 1.00237e9 0.368844
\(497\) 4.93246e9i 1.80226i
\(498\) 1.24701e9i 0.452445i
\(499\) 6.31261e8 0.227435 0.113717 0.993513i \(-0.463724\pi\)
0.113717 + 0.993513i \(0.463724\pi\)
\(500\) −1.05340e9 + 9.18404e8i −0.376877 + 0.328578i
\(501\) −7.42162e8 −0.263674
\(502\) 2.72864e9i 0.962682i
\(503\) 1.57252e9i 0.550944i −0.961309 0.275472i \(-0.911166\pi\)
0.961309 0.275472i \(-0.0888342\pi\)
\(504\) −4.88885e8 −0.170098
\(505\) 7.73589e8 1.88501e8i 0.267295 0.0651320i
\(506\) 3.64490e9 1.25071
\(507\) 9.53500e8i 0.324932i
\(508\) 2.71981e8i 0.0920481i
\(509\) 2.18665e9 0.734965 0.367482 0.930031i \(-0.380220\pi\)
0.367482 + 0.930031i \(0.380220\pi\)
\(510\) 6.96208e7 + 2.85716e8i 0.0232404 + 0.0953760i
\(511\) 3.69293e9 1.22433
\(512\) 1.34218e8i 0.0441942i
\(513\) 6.45232e8i 0.211011i
\(514\) 1.55770e9 0.505956
\(515\) −9.88376e8 4.05619e9i −0.318858 1.30856i
\(516\) −1.25425e9 −0.401893
\(517\) 4.37394e9i 1.39205i
\(518\) 1.12683e9i 0.356208i
\(519\) −1.67263e9 −0.525186
\(520\) −7.28253e8 + 1.77454e8i −0.227128 + 0.0553445i
\(521\) 5.81389e9 1.80109 0.900543 0.434766i \(-0.143169\pi\)
0.900543 + 0.434766i \(0.143169\pi\)
\(522\) 4.28126e8i 0.131742i
\(523\) 2.36475e9i 0.722819i −0.932407 0.361409i \(-0.882296\pi\)
0.932407 0.361409i \(-0.117704\pi\)
\(524\) −3.57859e8 −0.108656
\(525\) −2.45318e9 + 1.27101e9i −0.739898 + 0.383345i
\(526\) 3.88481e9 1.16391
\(527\) 1.19201e9i 0.354766i
\(528\) 6.03539e8i 0.178438i
\(529\) −3.56509e9 −1.04707
\(530\) −2.65903e9 + 6.47930e8i −0.775816 + 0.189044i
\(531\) 1.69807e9 0.492180
\(532\) 2.74798e9i 0.791268i
\(533\) 2.07819e9i 0.594483i
\(534\) 2.21861e9 0.630503
\(535\) 6.90286e7 + 2.83286e8i 0.0194891 + 0.0799810i
\(536\) −1.07462e8 −0.0301425
\(537\) 2.83004e8i 0.0788647i
\(538\) 2.31795e8i 0.0641751i
\(539\) 4.86832e9 1.33912
\(540\) −8.33576e7 3.42091e8i −0.0227807 0.0934896i
\(541\) 5.64040e9 1.53151 0.765754 0.643134i \(-0.222366\pi\)
0.765754 + 0.643134i \(0.222366\pi\)
\(542\) 2.41968e9i 0.652770i
\(543\) 2.60428e9i 0.698051i
\(544\) −1.59610e8 −0.0425074
\(545\) −1.42050e9 + 3.46135e8i −0.375884 + 0.0915920i
\(546\) −1.48185e9 −0.389611
\(547\) 1.78063e9i 0.465177i 0.972575 + 0.232589i \(0.0747195\pi\)
−0.972575 + 0.232589i \(0.925280\pi\)
\(548\) 1.41552e9i 0.367437i
\(549\) −1.92130e9 −0.495556
\(550\) 1.56908e9 + 3.02850e9i 0.402139 + 0.776173i
\(551\) −2.40646e9 −0.612841
\(552\) 1.15411e9i 0.292052i
\(553\) 1.13768e10i 2.86077i
\(554\) 1.42602e9 0.356320
\(555\) −7.88483e8 + 1.92131e8i −0.195779 + 0.0477058i
\(556\) −1.63290e9 −0.402900
\(557\) 1.56532e9i 0.383805i 0.981414 + 0.191902i \(0.0614657\pi\)
−0.981414 + 0.191902i \(0.938534\pi\)
\(558\) 1.42720e9i 0.347749i
\(559\) −3.80174e9 −0.920537
\(560\) −3.55012e8 1.45693e9i −0.0854251 0.350575i
\(561\) 7.17722e8 0.171627
\(562\) 1.77190e8i 0.0421077i
\(563\) 2.73932e9i 0.646939i 0.946239 + 0.323470i \(0.104849\pi\)
−0.946239 + 0.323470i \(0.895151\pi\)
\(564\) 1.38495e9 0.325056
\(565\) 1.04672e9 + 4.29564e9i 0.244153 + 1.00198i
\(566\) 8.64794e8 0.200473
\(567\) 6.96088e8i 0.160370i
\(568\) 1.92808e9i 0.441474i
\(569\) −7.38630e8 −0.168087 −0.0840435 0.996462i \(-0.526783\pi\)
−0.0840435 + 0.996462i \(0.526783\pi\)
\(570\) 1.92286e9 4.68547e8i 0.434897 0.105972i
\(571\) 3.23235e9 0.726594 0.363297 0.931673i \(-0.381651\pi\)
0.363297 + 0.931673i \(0.381651\pi\)
\(572\) 1.82938e9i 0.408712i
\(573\) 2.62291e9i 0.582429i
\(574\) −4.15759e9 −0.917594
\(575\) −3.00046e9 5.79122e9i −0.658189 1.27038i
\(576\) 1.91103e8 0.0416667
\(577\) 2.65831e9i 0.576090i 0.957617 + 0.288045i \(0.0930053\pi\)
−0.957617 + 0.288045i \(0.906995\pi\)
\(578\) 3.09290e9i 0.666222i
\(579\) −1.39729e9 −0.299165
\(580\) −1.27586e9 + 3.10891e8i −0.271522 + 0.0661622i
\(581\) −7.56178e9 −1.59959
\(582\) 1.12252e9i 0.236027i
\(583\) 6.67952e9i 1.39606i
\(584\) −1.44355e9 −0.299907
\(585\) −2.52664e8 1.03691e9i −0.0521793 0.214138i
\(586\) −4.06676e9 −0.834848
\(587\) 9.42375e9i 1.92305i 0.274720 + 0.961524i \(0.411415\pi\)
−0.274720 + 0.961524i \(0.588585\pi\)
\(588\) 1.54149e9i 0.312695i
\(589\) −8.02219e9 −1.61767
\(590\) 1.23308e9 + 5.06043e9i 0.247178 + 1.01439i
\(591\) 4.20491e9 0.837916
\(592\) 4.40472e8i 0.0872555i
\(593\) 2.34902e9i 0.462589i −0.972884 0.231294i \(-0.925704\pi\)
0.972884 0.231294i \(-0.0742960\pi\)
\(594\) −8.59336e8 −0.168233
\(595\) −1.73257e9 + 4.22177e8i −0.337195 + 0.0821646i
\(596\) −1.04961e8 −0.0203079
\(597\) 4.03807e9i 0.776718i
\(598\) 3.49821e9i 0.668947i
\(599\) −2.66914e9 −0.507431 −0.253715 0.967279i \(-0.581653\pi\)
−0.253715 + 0.967279i \(0.581653\pi\)
\(600\) 9.58937e8 4.96830e8i 0.181243 0.0939028i
\(601\) −1.24294e9 −0.233555 −0.116777 0.993158i \(-0.537256\pi\)
−0.116777 + 0.993158i \(0.537256\pi\)
\(602\) 7.60571e9i 1.42086i
\(603\) 1.53008e8i 0.0284186i
\(604\) 2.98109e9 0.550485
\(605\) 2.79586e9 6.81271e8i 0.513301 0.125077i
\(606\) −6.15310e8 −0.112315
\(607\) 1.29515e9i 0.235050i 0.993070 + 0.117525i \(0.0374960\pi\)
−0.993070 + 0.117525i \(0.962504\pi\)
\(608\) 1.07417e9i 0.193826i
\(609\) −2.59613e9 −0.465764
\(610\) −1.39519e9 5.72569e9i −0.248873 1.02135i
\(611\) 4.19792e9 0.744543
\(612\) 2.27258e8i 0.0400764i
\(613\) 5.13495e9i 0.900377i −0.892934 0.450188i \(-0.851357\pi\)
0.892934 0.450188i \(-0.148643\pi\)
\(614\) 3.68681e9 0.642779
\(615\) −7.08893e8 2.90922e9i −0.122890 0.504329i
\(616\) −3.65983e9 −0.630853
\(617\) 1.20368e9i 0.206306i −0.994665 0.103153i \(-0.967107\pi\)
0.994665 0.103153i \(-0.0328932\pi\)
\(618\) 3.22628e9i 0.549848i
\(619\) 9.74534e9 1.65150 0.825752 0.564034i \(-0.190751\pi\)
0.825752 + 0.564034i \(0.190751\pi\)
\(620\) −4.25322e9 + 1.03639e9i −0.716716 + 0.174643i
\(621\) 1.64325e9 0.275350
\(622\) 6.11125e9i 1.01827i
\(623\) 1.34536e10i 2.22910i
\(624\) 5.79250e8 0.0954377
\(625\) 3.52019e9 4.98609e9i 0.576749 0.816922i
\(626\) 3.97577e9 0.647755
\(627\) 4.83026e9i 0.782589i
\(628\) 3.97990e9i 0.641230i
\(629\) −5.23805e8 −0.0839252
\(630\) 2.07442e9 5.05477e8i 0.330526 0.0805395i
\(631\) −9.82029e9 −1.55604 −0.778021 0.628238i \(-0.783776\pi\)
−0.778021 + 0.628238i \(0.783776\pi\)
\(632\) 4.44715e9i 0.700764i
\(633\) 1.30549e8i 0.0204578i
\(634\) −3.35092e9 −0.522218
\(635\) −2.81211e8 1.15406e9i −0.0435837 0.178863i
\(636\) 2.11499e9 0.325993
\(637\) 4.67240e9i 0.716229i
\(638\) 3.20498e9i 0.488599i
\(639\) −2.74525e9 −0.416226
\(640\) 1.38773e8 + 5.69508e8i 0.0209254 + 0.0858756i
\(641\) −5.05603e9 −0.758240 −0.379120 0.925347i \(-0.623773\pi\)
−0.379120 + 0.925347i \(0.623773\pi\)
\(642\) 2.25325e8i 0.0336075i
\(643\) 1.13650e10i 1.68590i 0.537990 + 0.842951i \(0.319184\pi\)
−0.537990 + 0.842951i \(0.680816\pi\)
\(644\) 6.99847e9 1.03253
\(645\) 5.32199e9 1.29682e9i 0.780936 0.190292i
\(646\) 1.27740e9 0.186428
\(647\) 1.08126e8i 0.0156952i 0.999969 + 0.00784758i \(0.00249799\pi\)
−0.999969 + 0.00784758i \(0.997502\pi\)
\(648\) 2.72098e8i 0.0392837i
\(649\) 1.27118e10 1.82538
\(650\) 2.90662e9 1.50594e9i 0.415137 0.215085i
\(651\) −8.65449e9 −1.22944
\(652\) 3.75593e9i 0.530702i
\(653\) 3.37806e9i 0.474757i −0.971417 0.237378i \(-0.923712\pi\)
0.971417 0.237378i \(-0.0762882\pi\)
\(654\) 1.12986e9 0.157944
\(655\) 1.51846e9 3.70004e8i 0.211134 0.0514472i
\(656\) 1.62518e9 0.224770
\(657\) 2.05536e9i 0.282755i
\(658\) 8.39829e9i 1.14921i
\(659\) 2.43494e9 0.331428 0.165714 0.986174i \(-0.447007\pi\)
0.165714 + 0.986174i \(0.447007\pi\)
\(660\) −6.24021e8 2.56092e9i −0.0844881 0.346730i
\(661\) 6.61695e9 0.891154 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)
\(662\) 6.40210e9i 0.857668i
\(663\) 6.88838e8i 0.0917951i
\(664\) 2.95586e9 0.391829
\(665\) 2.84124e9 + 1.16602e10i 0.374656 + 1.53755i
\(666\) 6.27157e8 0.0822653
\(667\) 6.12868e9i 0.799700i
\(668\) 1.75920e9i 0.228348i
\(669\) 7.06977e9 0.912881
\(670\) 4.55980e8 1.11109e8i 0.0585711 0.0142721i
\(671\) −1.43830e10 −1.83790
\(672\) 1.15884e9i 0.147309i
\(673\) 4.76258e9i 0.602267i −0.953582 0.301134i \(-0.902635\pi\)
0.953582 0.301134i \(-0.0973650\pi\)
\(674\) −1.10828e10 −1.39425
\(675\) 7.07401e8 + 1.36536e9i 0.0885324 + 0.170877i
\(676\) −2.26015e9 −0.281400
\(677\) 2.85988e9i 0.354232i −0.984190 0.177116i \(-0.943323\pi\)
0.984190 0.177116i \(-0.0566768\pi\)
\(678\) 3.41674e9i 0.421025i
\(679\) 6.80688e9 0.834456
\(680\) 6.77253e8 1.65027e8i 0.0825980 0.0201268i
\(681\) 3.47272e9 0.421362
\(682\) 1.06841e10i 1.28972i
\(683\) 5.11045e9i 0.613744i 0.951751 + 0.306872i \(0.0992823\pi\)
−0.951751 + 0.306872i \(0.900718\pi\)
\(684\) −1.52944e9 −0.182741
\(685\) 1.46355e9 + 6.00627e9i 0.173977 + 0.713983i
\(686\) 7.18036e8 0.0849204
\(687\) 2.73955e9i 0.322352i
\(688\) 2.97304e9i 0.348049i
\(689\) 6.41071e9 0.746688
\(690\) 1.19328e9 + 4.89708e9i 0.138283 + 0.567500i
\(691\) 9.23300e9 1.06456 0.532279 0.846569i \(-0.321336\pi\)
0.532279 + 0.846569i \(0.321336\pi\)
\(692\) 3.96475e9i 0.454825i
\(693\) 5.21097e9i 0.594774i
\(694\) −7.70304e9 −0.874791
\(695\) 6.92865e9 1.68831e9i 0.782892 0.190768i
\(696\) 1.01482e9 0.114092
\(697\) 1.93265e9i 0.216192i
\(698\) 4.32041e9i 0.480874i
\(699\) −7.41739e9 −0.821450
\(700\) 3.01275e9 + 5.81495e9i 0.331986 + 0.640770i
\(701\) −4.27775e9 −0.469031 −0.234516 0.972112i \(-0.575350\pi\)
−0.234516 + 0.972112i \(0.575350\pi\)
\(702\) 8.24752e8i 0.0899795i
\(703\) 3.52520e9i 0.382684i
\(704\) 1.43061e9 0.154532
\(705\) −5.87659e9 + 1.43196e9i −0.631631 + 0.153910i
\(706\) −8.20790e9 −0.877841
\(707\) 3.73121e9i 0.397083i
\(708\) 4.02505e9i 0.426240i
\(709\) −6.00248e9 −0.632512 −0.316256 0.948674i \(-0.602426\pi\)
−0.316256 + 0.948674i \(0.602426\pi\)
\(710\) −1.99351e9 8.18115e9i −0.209033 0.857848i
\(711\) −6.33197e9 −0.660686
\(712\) 5.25894e9i 0.546032i
\(713\) 2.04306e10i 2.11090i
\(714\) 1.37808e9 0.141687
\(715\) −1.89146e9 7.76236e9i −0.193520 0.794187i
\(716\) 6.70824e8 0.0682988
\(717\) 1.02022e9i 0.103366i
\(718\) 5.97907e9i 0.602834i
\(719\) −1.01189e9 −0.101527 −0.0507634 0.998711i \(-0.516165\pi\)
−0.0507634 + 0.998711i \(0.516165\pi\)
\(720\) −8.10882e8 + 1.97588e8i −0.0809643 + 0.0197287i
\(721\) −1.95640e10 −1.94395
\(722\) 1.44588e9i 0.142973i
\(723\) 4.60333e9i 0.452989i
\(724\) 6.17310e9 0.604530
\(725\) 5.09225e9 2.63832e9i 0.496280 0.257125i
\(726\) −2.22382e9 −0.215686
\(727\) 1.27391e10i 1.22961i −0.788678 0.614807i \(-0.789234\pi\)
0.788678 0.614807i \(-0.210766\pi\)
\(728\) 3.51254e9i 0.337413i
\(729\) −3.87420e8 −0.0370370
\(730\) 6.12521e9 1.49254e9i 0.582762 0.142002i
\(731\) 3.53550e9 0.334765
\(732\) 4.55420e9i 0.429164i
\(733\) 1.02714e10i 0.963314i 0.876360 + 0.481657i \(0.159965\pi\)
−0.876360 + 0.481657i \(0.840035\pi\)
\(734\) −3.82374e9 −0.356905
\(735\) 1.59381e9 + 6.54081e9i 0.148057 + 0.607611i
\(736\) −2.73567e9 −0.252925
\(737\) 1.14543e9i 0.105398i
\(738\) 2.31398e9i 0.211916i
\(739\) −7.46828e9 −0.680714 −0.340357 0.940296i \(-0.610548\pi\)
−0.340357 + 0.940296i \(0.610548\pi\)
\(740\) 4.55421e8 + 1.86900e9i 0.0413144 + 0.169550i
\(741\) −4.63587e9 −0.418569
\(742\) 1.28252e10i 1.15252i
\(743\) 1.13615e10i 1.01619i −0.861302 0.508093i \(-0.830351\pi\)
0.861302 0.508093i \(-0.169649\pi\)
\(744\) 3.38300e9 0.301160
\(745\) 4.45366e8 1.08523e8i 0.0394612 0.00961556i
\(746\) −1.13297e10 −0.999155
\(747\) 4.20864e9i 0.369420i
\(748\) 1.70127e9i 0.148634i
\(749\) 1.36636e9 0.118817
\(750\) −3.55524e9 + 3.09961e9i −0.307719 + 0.268283i
\(751\) 9.08552e9 0.782726 0.391363 0.920236i \(-0.372004\pi\)
0.391363 + 0.920236i \(0.372004\pi\)
\(752\) 3.28285e9i 0.281507i
\(753\) 9.20916e9i 0.786027i
\(754\) 3.07600e9 0.261328
\(755\) −1.26492e10 + 3.08226e9i −1.06967 + 0.260648i
\(756\) −1.64999e9 −0.138885
\(757\) 1.00537e10i 0.842348i 0.906980 + 0.421174i \(0.138382\pi\)
−0.906980 + 0.421174i \(0.861618\pi\)
\(758\) 3.39047e9i 0.282760i
\(759\) 1.23015e10 1.02120
\(760\) −1.11063e9 4.55790e9i −0.0917744 0.376632i
\(761\) 1.04527e9 0.0859768 0.0429884 0.999076i \(-0.486312\pi\)
0.0429884 + 0.999076i \(0.486312\pi\)
\(762\) 9.17934e8i 0.0751570i
\(763\) 6.85142e9i 0.558399i
\(764\) −6.21728e9 −0.504398
\(765\) 2.34970e8 + 9.64292e8i 0.0189757 + 0.0778742i
\(766\) 6.85204e9 0.550832
\(767\) 1.22003e10i 0.976305i
\(768\) 4.52985e8i 0.0360844i
\(769\) −1.24461e10 −0.986939 −0.493470 0.869763i \(-0.664272\pi\)
−0.493470 + 0.869763i \(0.664272\pi\)
\(770\) 1.55293e10 3.78403e9i 1.22584 0.298702i
\(771\) 5.25724e9 0.413112
\(772\) 3.31209e9i 0.259085i
\(773\) 2.86975e9i 0.223469i −0.993738 0.111734i \(-0.964359\pi\)
0.993738 0.111734i \(-0.0356405\pi\)
\(774\) −4.23310e9 −0.328144
\(775\) 1.69756e10 8.79513e9i 1.30999 0.678714i
\(776\) −2.66078e9 −0.204405
\(777\) 3.80305e9i 0.290843i
\(778\) 8.71459e8i 0.0663465i
\(779\) −1.30067e10 −0.985795
\(780\) −2.45785e9 + 5.98908e8i −0.185449 + 0.0451886i
\(781\) −2.05511e10 −1.54368
\(782\) 3.25323e9i 0.243271i
\(783\) 1.44492e9i 0.107567i
\(784\) −3.65391e9 −0.270802
\(785\) 4.11497e9 + 1.68874e10i 0.303615 + 1.24600i
\(786\) −1.20778e9 −0.0887171
\(787\) 1.10693e10i 0.809487i 0.914430 + 0.404743i \(0.132639\pi\)
−0.914430 + 0.404743i \(0.867361\pi\)
\(788\) 9.96719e9i 0.725657i
\(789\) 1.31112e10 0.950329
\(790\) −4.59807e9 1.88700e10i −0.331803 1.36169i
\(791\) 2.07189e10 1.48850
\(792\) 2.03694e9i 0.145694i
\(793\) 1.38042e10i 0.983002i
\(794\) 1.71198e10 1.21374
\(795\) −8.97424e9 + 2.18676e9i −0.633451 + 0.154354i
\(796\) 9.57172e9 0.672658
\(797\) 9.16190e9i 0.641034i 0.947243 + 0.320517i \(0.103857\pi\)
−0.947243 + 0.320517i \(0.896143\pi\)
\(798\) 9.27445e9i 0.646067i
\(799\) −3.90393e9 −0.270763
\(800\) −1.17767e9 2.27304e9i −0.0813222 0.156961i
\(801\) 7.48782e9 0.514804
\(802\) 7.20369e9i 0.493111i
\(803\) 1.53866e10i 1.04867i
\(804\) −3.62685e8 −0.0246112
\(805\) −2.96957e10 + 7.23598e9i −2.00635 + 0.488890i
\(806\) 1.02542e10 0.689807
\(807\) 7.82308e8i 0.0523987i
\(808\) 1.45851e9i 0.0972681i
\(809\) 7.65555e9 0.508343 0.254171 0.967159i \(-0.418197\pi\)
0.254171 + 0.967159i \(0.418197\pi\)
\(810\) −2.81332e8 1.15456e9i −0.0186004 0.0763339i
\(811\) 1.37797e10 0.907121 0.453561 0.891225i \(-0.350154\pi\)
0.453561 + 0.891225i \(0.350154\pi\)
\(812\) 6.15380e9i 0.403364i
\(813\) 8.16641e9i 0.532984i
\(814\) 4.69494e9 0.305102
\(815\) 3.88340e9 + 1.59370e10i 0.251281 + 1.03123i
\(816\) −5.38685e8 −0.0347072
\(817\) 2.37939e10i 1.52647i
\(818\) 1.72114e10i 1.09946i
\(819\) −5.00126e9 −0.318116
\(820\) −6.89593e9 + 1.68034e9i −0.436761 + 0.106426i
\(821\) 3.07675e10 1.94040 0.970200 0.242304i \(-0.0779032\pi\)
0.970200 + 0.242304i \(0.0779032\pi\)
\(822\) 4.77736e9i 0.300011i
\(823\) 2.78795e10i 1.74335i 0.490081 + 0.871677i \(0.336967\pi\)
−0.490081 + 0.871677i \(0.663033\pi\)
\(824\) 7.64748e9 0.476182
\(825\) 5.29565e9 + 1.02212e10i 0.328345 + 0.633742i
\(826\) 2.44077e10 1.50694
\(827\) 1.30484e10i 0.802211i −0.916032 0.401105i \(-0.868626\pi\)
0.916032 0.401105i \(-0.131374\pi\)
\(828\) 3.89512e9i 0.238460i
\(829\) 2.37741e10 1.44932 0.724659 0.689108i \(-0.241997\pi\)
0.724659 + 0.689108i \(0.241997\pi\)
\(830\) −1.25422e10 + 3.05618e9i −0.761380 + 0.185526i
\(831\) 4.81280e9 0.290934
\(832\) 1.37304e9i 0.0826515i
\(833\) 4.34519e9i 0.260466i
\(834\) −5.51103e9 −0.328966
\(835\) −1.81890e9 7.46458e9i −0.108120 0.443713i
\(836\) −1.14495e10 −0.677742
\(837\) 4.81681e9i 0.283936i
\(838\) 6.36858e8i 0.0373842i
\(839\) −1.02523e10 −0.599315 −0.299658 0.954047i \(-0.596872\pi\)
−0.299658 + 0.954047i \(0.596872\pi\)
\(840\) −1.19817e9 4.91715e9i −0.0697493 0.286243i
\(841\) −1.18609e10 −0.687593
\(842\) 2.63760e9i 0.152271i
\(843\) 5.98015e8i 0.0343808i
\(844\) 3.09448e8 0.0177170
\(845\) 9.59018e9 2.33685e9i 0.546800 0.133239i
\(846\) 4.67422e9 0.265407
\(847\) 1.34851e10i 0.762541i
\(848\) 5.01330e9i 0.282318i
\(849\) 2.91868e9 0.163685
\(850\) −2.70307e9 + 1.40047e9i −0.150970 + 0.0782184i
\(851\) −8.97785e9 −0.499366
\(852\) 6.50726e9i 0.360462i
\(853\) 1.30152e10i 0.718008i −0.933336 0.359004i \(-0.883116\pi\)
0.933336 0.359004i \(-0.116884\pi\)
\(854\) −2.76164e10 −1.51728
\(855\) 6.48967e9 1.58134e9i 0.355092 0.0865257i
\(856\) −5.34103e8 −0.0291050
\(857\) 3.47955e10i 1.88838i 0.329396 + 0.944192i \(0.393155\pi\)
−0.329396 + 0.944192i \(0.606845\pi\)
\(858\) 6.17415e9i 0.333712i
\(859\) 2.22903e9 0.119989 0.0599943 0.998199i \(-0.480892\pi\)
0.0599943 + 0.998199i \(0.480892\pi\)
\(860\) −3.07393e9 1.26151e10i −0.164797 0.676310i
\(861\) −1.40319e10 −0.749212
\(862\) 4.45915e9i 0.237124i
\(863\) 2.28044e10i 1.20776i 0.797075 + 0.603880i \(0.206379\pi\)
−0.797075 + 0.603880i \(0.793621\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) −4.09930e9 1.68231e10i −0.215354 0.883790i
\(866\) −8.04497e9 −0.420932
\(867\) 1.04385e10i 0.543968i
\(868\) 2.05143e10i 1.06473i
\(869\) −4.74016e10 −2.45033
\(870\) −4.30603e9 + 1.04926e9i −0.221697 + 0.0540212i
\(871\) −1.09933e9 −0.0563721
\(872\) 2.67819e9i 0.136783i
\(873\) 3.78849e9i 0.192715i
\(874\) 2.18942e10 1.10927
\(875\) −1.87959e10 2.15588e10i −0.948495 1.08792i
\(876\) −4.87198e9 −0.244873
\(877\) 4.21151e9i 0.210833i −0.994428 0.105417i \(-0.966382\pi\)
0.994428 0.105417i \(-0.0336176\pi\)
\(878\) 1.95125e10i 0.972932i
\(879\) −1.37253e10 −0.681650
\(880\) −6.07032e9 + 1.47916e9i −0.300277 + 0.0731689i
\(881\) 2.60856e10 1.28524 0.642622 0.766184i \(-0.277847\pi\)
0.642622 + 0.766184i \(0.277847\pi\)
\(882\) 5.20254e9i 0.255314i
\(883\) 1.24090e9i 0.0606560i 0.999540 + 0.0303280i \(0.00965519\pi\)
−0.999540 + 0.0303280i \(0.990345\pi\)
\(884\) −1.63280e9 −0.0794969
\(885\) 4.16164e9 + 1.70789e10i 0.201820 + 0.828246i
\(886\) 9.27678e9 0.448104
\(887\) 2.74043e10i 1.31852i −0.751915 0.659260i \(-0.770870\pi\)
0.751915 0.659260i \(-0.229130\pi\)
\(888\) 1.48659e9i 0.0712438i
\(889\) −5.56631e9 −0.265712
\(890\) 5.43741e9 + 2.23145e10i 0.258540 + 1.06102i
\(891\) −2.90026e9 −0.137361
\(892\) 1.67580e10i 0.790578i
\(893\) 2.62734e10i 1.23463i
\(894\) −3.54243e8 −0.0165813
\(895\) −2.84642e9 + 6.93590e8i −0.132714 + 0.0323387i
\(896\) 2.74688e9 0.127574
\(897\) 1.18065e10i 0.546193i
\(898\) 5.05629e9i 0.233005i
\(899\) 1.79648e10 0.824637
\(900\) 3.23641e9 1.67680e9i 0.147984 0.0766713i
\(901\) −5.96176e9 −0.271543
\(902\) 1.73226e10i 0.785943i
\(903\) 2.56693e10i 1.16013i
\(904\) −8.09894e9 −0.364619
\(905\) −2.61935e10 + 6.38259e9i −1.17469 + 0.286238i
\(906\) 1.00612e10 0.449469
\(907\) 1.54071e10i 0.685638i −0.939402 0.342819i \(-0.888618\pi\)
0.939402 0.342819i \(-0.111382\pi\)
\(908\) 8.23163e9i 0.364910i
\(909\) −2.07667e9 −0.0917052
\(910\) −3.63175e9 1.49043e10i −0.159761 0.655642i
\(911\) 1.20985e9 0.0530171 0.0265085 0.999649i \(-0.491561\pi\)
0.0265085 + 0.999649i \(0.491561\pi\)
\(912\) 3.62534e9i 0.158258i
\(913\) 3.15062e10i 1.37009i
\(914\) 1.42828e10 0.618729
\(915\) −4.70875e9 1.93242e10i −0.203204 0.833927i
\(916\) 6.49374e9 0.279165
\(917\) 7.32389e9i 0.313653i
\(918\) 7.66994e8i 0.0327222i
\(919\) −1.95758e10 −0.831986 −0.415993 0.909368i \(-0.636566\pi\)
−0.415993 + 0.909368i \(0.636566\pi\)
\(920\) 1.16079e10 2.82851e9i 0.491469 0.119757i
\(921\) 1.24430e10 0.524827
\(922\) 9.85913e9i 0.414267i
\(923\) 1.97241e10i 0.825640i
\(924\) −1.23519e10 −0.515090
\(925\) −3.86485e9 7.45959e9i −0.160560 0.309898i
\(926\) −2.61747e10 −1.08329
\(927\) 1.08887e10i 0.448949i
\(928\) 2.40549e9i 0.0988065i
\(929\) −2.43152e10 −0.994999 −0.497500 0.867464i \(-0.665748\pi\)
−0.497500 + 0.867464i \(0.665748\pi\)
\(930\) −1.43546e10 + 3.49781e9i −0.585197 + 0.142596i
\(931\) 2.92430e10 1.18768
\(932\) 1.75820e10i 0.711397i
\(933\) 2.06255e10i 0.831416i
\(934\) −3.36714e9 −0.135222
\(935\) 1.75900e9 + 7.21876e9i 0.0703762 + 0.288816i
\(936\) 1.95497e9 0.0779245
\(937\) 2.87271e9i 0.114078i −0.998372 0.0570391i \(-0.981834\pi\)
0.998372 0.0570391i \(-0.0181660\pi\)
\(938\) 2.19930e9i 0.0870111i
\(939\) 1.34182e10 0.528890
\(940\) 3.39427e9 + 1.39297e10i 0.133290 + 0.547009i
\(941\) 3.33166e10 1.30346 0.651729 0.758452i \(-0.274044\pi\)
0.651729 + 0.758452i \(0.274044\pi\)
\(942\) 1.34322e10i 0.523562i
\(943\) 3.31250e10i 1.28637i
\(944\) −9.54085e9 −0.369135
\(945\) 7.00117e9 1.70598e9i 0.269873 0.0657603i
\(946\) −3.16893e10 −1.21701
\(947\) 5.07496e9i 0.194182i 0.995276 + 0.0970908i \(0.0309537\pi\)
−0.995276 + 0.0970908i \(0.969046\pi\)
\(948\) 1.50091e10i 0.572171i
\(949\) −1.47674e10 −0.560882
\(950\) 9.42517e9 + 1.81916e10i 0.356662 + 0.688396i
\(951\) −1.13094e10 −0.426389
\(952\) 3.26656e9i 0.122705i
\(953\) 2.69161e10i 1.00737i −0.863889 0.503683i \(-0.831978\pi\)
0.863889 0.503683i \(-0.168022\pi\)
\(954\) 7.13808e9 0.266172
\(955\) 2.63809e10 6.42827e9i 0.980118 0.238826i
\(956\) −2.41831e9 −0.0895177
\(957\) 1.08168e10i 0.398940i
\(958\) 2.33200e8i 0.00856937i
\(959\) 2.89697e10 1.06067
\(960\) 4.68358e8 + 1.92209e9i 0.0170855 + 0.0701172i
\(961\) 3.23749e10 1.17673
\(962\) 4.50600e9i 0.163184i
\(963\) 7.60471e8i 0.0274404i
\(964\) −1.09116e10 −0.392300
\(965\) −3.42449e9 1.40537e10i −0.122673 0.503439i
\(966\) 2.36198e10 0.843057
\(967\) 1.62053e10i 0.576320i 0.957582 + 0.288160i \(0.0930434\pi\)
−0.957582 + 0.288160i \(0.906957\pi\)
\(968\) 5.27127e9i 0.186789i
\(969\) 4.31121e9 0.152218
\(970\) 1.12901e10 2.75108e9i 0.397189 0.0967836i
\(971\) −1.58919e10 −0.557068 −0.278534 0.960426i \(-0.589848\pi\)
−0.278534 + 0.960426i \(0.589848\pi\)
\(972\) 9.18330e8i 0.0320750i
\(973\) 3.34186e10i 1.16304i
\(974\) 2.07039e10 0.717951
\(975\) 9.80985e9 5.08253e9i 0.338958 0.175616i
\(976\) 1.07951e10 0.371667
\(977\) 2.98228e10i 1.02310i 0.859254 + 0.511549i \(0.170928\pi\)
−0.859254 + 0.511549i \(0.829072\pi\)
\(978\) 1.26763e10i 0.433317i
\(979\) 5.60544e10 1.90928
\(980\) 1.55041e10 3.77791e9i 0.526207 0.128221i
\(981\) 3.81328e9 0.128961
\(982\) 1.60925e10i 0.542293i
\(983\) 3.04567e10i 1.02270i −0.859374 0.511348i \(-0.829146\pi\)
0.859374 0.511348i \(-0.170854\pi\)
\(984\) 5.48500e9 0.183524
\(985\) 1.03055e10 + 4.22925e10i 0.343590 + 1.41006i
\(986\) −2.86058e9 −0.0950354
\(987\) 2.83442e10i 0.938328i
\(988\) 1.09887e10i 0.362491i
\(989\) 6.05974e10 1.99190
\(990\) −2.10607e9 8.64309e9i −0.0689843 0.283104i
\(991\) −4.03364e10 −1.31656 −0.658278 0.752775i \(-0.728715\pi\)
−0.658278 + 0.752775i \(0.728715\pi\)
\(992\) 8.01896e9i 0.260812i
\(993\) 2.16071e10i 0.700283i
\(994\) −3.94597e10 −1.27439
\(995\) −4.06144e10 + 9.89655e9i −1.30707 + 0.318495i
\(996\) 9.97604e9 0.319927
\(997\) 1.00858e10i 0.322312i −0.986929 0.161156i \(-0.948478\pi\)
0.986929 0.161156i \(-0.0515221\pi\)
\(998\) 5.05009e9i 0.160821i
\(999\) 2.11666e9 0.0671693
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.8.c.b.19.2 4
3.2 odd 2 90.8.c.b.19.3 4
4.3 odd 2 240.8.f.d.49.4 4
5.2 odd 4 150.8.a.s.1.2 2
5.3 odd 4 150.8.a.r.1.1 2
5.4 even 2 inner 30.8.c.b.19.4 yes 4
15.2 even 4 450.8.a.be.1.2 2
15.8 even 4 450.8.a.bh.1.1 2
15.14 odd 2 90.8.c.b.19.1 4
20.19 odd 2 240.8.f.d.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.c.b.19.2 4 1.1 even 1 trivial
30.8.c.b.19.4 yes 4 5.4 even 2 inner
90.8.c.b.19.1 4 15.14 odd 2
90.8.c.b.19.3 4 3.2 odd 2
150.8.a.r.1.1 2 5.3 odd 4
150.8.a.s.1.2 2 5.2 odd 4
240.8.f.d.49.2 4 20.19 odd 2
240.8.f.d.49.4 4 4.3 odd 2
450.8.a.be.1.2 2 15.2 even 4
450.8.a.bh.1.1 2 15.8 even 4