Properties

Label 1512.1.ef.a.853.1
Level $1512$
Weight $1$
Character 1512.853
Analytic conductor $0.755$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -56
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(13,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 8, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.13");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.ef (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.754586299101\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{9} + \cdots)\)

Embedding invariants

Embedding label 853.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 1512.853
Dual form 1512.1.ef.a.1021.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.173648 + 0.984808i) q^{4} +(1.76604 + 0.642788i) q^{5} +(-0.939693 + 0.342020i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.939693 + 1.62760i) q^{10} +(-0.939693 - 0.342020i) q^{12} +(-0.766044 + 0.642788i) q^{13} +(0.766044 - 0.642788i) q^{14} +(-1.43969 + 1.20805i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(0.173648 - 0.984808i) q^{18} +(-0.173648 + 0.300767i) q^{19} +(-0.326352 + 1.85083i) q^{20} +(0.766044 + 0.642788i) q^{21} +(-0.326352 - 1.85083i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(1.93969 + 1.62760i) q^{25} -1.00000 q^{26} +1.00000 q^{27} +1.00000 q^{28} -1.87939 q^{30} +(-0.939693 - 0.342020i) q^{32} +(0.939693 - 1.62760i) q^{35} +(0.766044 - 0.642788i) q^{36} +(-0.326352 + 0.118782i) q^{38} +(-0.173648 - 0.984808i) q^{39} +(-1.43969 + 1.20805i) q^{40} +(0.173648 + 0.984808i) q^{42} +(-0.326352 - 1.85083i) q^{45} +(0.939693 - 1.62760i) q^{46} +(0.173648 - 0.984808i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(0.439693 + 2.49362i) q^{50} +(-0.766044 - 0.642788i) q^{52} +(0.766044 + 0.642788i) q^{54} +(0.766044 + 0.642788i) q^{56} +(-0.173648 - 0.300767i) q^{57} +(-1.87939 - 0.684040i) q^{59} +(-1.43969 - 1.20805i) q^{60} +(0.266044 - 1.50881i) q^{61} +(-0.939693 + 0.342020i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.76604 + 0.642788i) q^{65} +(1.76604 + 0.642788i) q^{69} +(1.76604 - 0.642788i) q^{70} +(0.939693 + 1.62760i) q^{71} +1.00000 q^{72} +(-2.37939 + 0.866025i) q^{75} +(-0.326352 - 0.118782i) q^{76} +(0.500000 - 0.866025i) q^{78} +(0.266044 + 0.223238i) q^{79} -1.87939 q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.766044 - 0.642788i) q^{83} +(-0.500000 + 0.866025i) q^{84} +(0.939693 - 1.62760i) q^{90} +(0.500000 + 0.866025i) q^{91} +(1.76604 - 0.642788i) q^{92} +(-0.500000 + 0.419550i) q^{95} +(0.766044 - 0.642788i) q^{96} +(-0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 6 q^{5} - 3 q^{8} - 3 q^{9} - 3 q^{15} - 3 q^{20} - 3 q^{23} - 3 q^{24} + 6 q^{25} - 6 q^{26} + 6 q^{27} + 6 q^{28} - 3 q^{38} - 3 q^{40} - 3 q^{45} - 3 q^{50} - 3 q^{60} - 3 q^{61} - 3 q^{64}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(3\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(4\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(5\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(6\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(7\) 0.173648 0.984808i 0.173648 0.984808i
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) −0.500000 0.866025i −0.500000 0.866025i
\(10\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(11\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(12\) −0.939693 0.342020i −0.939693 0.342020i
\(13\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(14\) 0.766044 0.642788i 0.766044 0.642788i
\(15\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(16\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.173648 0.984808i 0.173648 0.984808i
\(19\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(20\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(21\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(22\) 0 0
\(23\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(24\) −0.500000 0.866025i −0.500000 0.866025i
\(25\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(26\) −1.00000 −1.00000
\(27\) 1.00000 1.00000
\(28\) 1.00000 1.00000
\(29\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(30\) −1.87939 −1.87939
\(31\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(32\) −0.939693 0.342020i −0.939693 0.342020i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.939693 1.62760i 0.939693 1.62760i
\(36\) 0.766044 0.642788i 0.766044 0.642788i
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(39\) −0.173648 0.984808i −0.173648 0.984808i
\(40\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(41\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(42\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(43\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(44\) 0 0
\(45\) −0.326352 1.85083i −0.326352 1.85083i
\(46\) 0.939693 1.62760i 0.939693 1.62760i
\(47\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(48\) 0.173648 0.984808i 0.173648 0.984808i
\(49\) −0.939693 0.342020i −0.939693 0.342020i
\(50\) 0.439693 + 2.49362i 0.439693 + 2.49362i
\(51\) 0 0
\(52\) −0.766044 0.642788i −0.766044 0.642788i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(55\) 0 0
\(56\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(57\) −0.173648 0.300767i −0.173648 0.300767i
\(58\) 0 0
\(59\) −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 0.342020i \(-0.888889\pi\)
\(60\) −1.43969 1.20805i −1.43969 1.20805i
\(61\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(62\) 0 0
\(63\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(66\) 0 0
\(67\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(68\) 0 0
\(69\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(70\) 1.76604 0.642788i 1.76604 0.642788i
\(71\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) −2.37939 + 0.866025i −2.37939 + 0.866025i
\(76\) −0.326352 0.118782i −0.326352 0.118782i
\(77\) 0 0
\(78\) 0.500000 0.866025i 0.500000 0.866025i
\(79\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −1.87939 −1.87939
\(81\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(84\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0.939693 1.62760i 0.939693 1.62760i
\(91\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(92\) 1.76604 0.642788i 1.76604 0.642788i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.500000 + 0.419550i −0.500000 + 0.419550i
\(96\) 0.766044 0.642788i 0.766044 0.642788i
\(97\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 0 0
\(100\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(101\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(102\) 0 0
\(103\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(104\) −0.173648 0.984808i −0.173648 0.984808i
\(105\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(113\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0.0603074 0.342020i 0.0603074 0.342020i
\(115\) 0.613341 3.47843i 0.613341 3.47843i
\(116\) 0 0
\(117\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(118\) −1.00000 1.73205i −1.00000 1.73205i
\(119\) 0 0
\(120\) −0.326352 1.85083i −0.326352 1.85083i
\(121\) 0.766044 0.642788i 0.766044 0.642788i
\(122\) 1.17365 0.984808i 1.17365 0.984808i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(126\) −0.939693 0.342020i −0.939693 0.342020i
\(127\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(128\) 0.173648 0.984808i 0.173648 0.984808i
\(129\) 0 0
\(130\) −1.76604 0.642788i −1.76604 0.642788i
\(131\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(134\) 0 0
\(135\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(136\) 0 0
\(137\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(138\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(139\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(140\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(141\) 0 0
\(142\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(143\) 0 0
\(144\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.766044 0.642788i 0.766044 0.642788i
\(148\) 0 0
\(149\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(150\) −2.37939 0.866025i −2.37939 0.866025i
\(151\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(152\) −0.173648 0.300767i −0.173648 0.300767i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.939693 0.342020i 0.939693 0.342020i
\(157\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(158\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(159\) 0 0
\(160\) −1.43969 1.20805i −1.43969 1.20805i
\(161\) −1.87939 −1.87939
\(162\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.173648 0.984808i −0.173648 0.984808i
\(167\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(168\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(169\) 0 0
\(170\) 0 0
\(171\) 0.347296 0.347296
\(172\) 0 0
\(173\) −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i \(0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(174\) 0 0
\(175\) 1.93969 1.62760i 1.93969 1.62760i
\(176\) 0 0
\(177\) 1.53209 1.28558i 1.53209 1.28558i
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 1.76604 0.642788i 1.76604 0.642788i
\(181\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(182\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(183\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(184\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.173648 0.984808i 0.173648 0.984808i
\(190\) −0.652704 −0.652704
\(191\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(192\) 1.00000 1.00000
\(193\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(194\) 0 0
\(195\) 0.326352 1.85083i 0.326352 1.85083i
\(196\) 0.173648 0.984808i 0.173648 0.984808i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −2.37939 + 0.866025i −2.37939 + 0.866025i
\(201\) 0 0
\(202\) 1.17365 0.984808i 1.17365 0.984808i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(208\) 0.500000 0.866025i 0.500000 0.866025i
\(209\) 0 0
\(210\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(211\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(212\) 0 0
\(213\) −1.87939 −1.87939
\(214\) 0 0
\(215\) 0 0
\(216\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(224\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(225\) 0.439693 2.49362i 0.439693 2.49362i
\(226\) −0.173648 0.300767i −0.173648 0.300767i
\(227\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(228\) 0.266044 0.223238i 0.266044 0.223238i
\(229\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(230\) 2.70574 2.27038i 2.70574 2.27038i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(234\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(235\) 0 0
\(236\) 0.347296 1.96962i 0.347296 1.96962i
\(237\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(238\) 0 0
\(239\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(240\) 0.939693 1.62760i 0.939693 1.62760i
\(241\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(242\) 1.00000 1.00000
\(243\) −0.500000 0.866025i −0.500000 0.866025i
\(244\) 1.53209 1.53209
\(245\) −1.43969 1.20805i −1.43969 1.20805i
\(246\) 0 0
\(247\) −0.0603074 0.342020i −0.0603074 0.342020i
\(248\) 0 0
\(249\) 0.939693 0.342020i 0.939693 0.342020i
\(250\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(251\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(252\) −0.500000 0.866025i −0.500000 0.866025i
\(253\) 0 0
\(254\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.766044 0.642788i
\(257\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.939693 1.62760i −0.939693 1.62760i
\(261\) 0 0
\(262\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(263\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(267\) 0 0
\(268\) 0 0
\(269\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(270\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −1.00000 −1.00000
\(274\) −0.173648 0.984808i −0.173648 0.984808i
\(275\) 0 0
\(276\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(277\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(278\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(279\) 0 0
\(280\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(281\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(284\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(285\) −0.113341 0.642788i −0.113341 0.642788i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(294\) 1.00000 1.00000
\(295\) −2.87939 2.41609i −2.87939 2.41609i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(300\) −1.26604 2.19285i −1.26604 2.19285i
\(301\) 0 0
\(302\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(303\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(304\) 0.0603074 0.342020i 0.0603074 0.342020i
\(305\) 1.43969 2.49362i 1.43969 2.49362i
\(306\) 0 0
\(307\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(312\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(313\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(315\) −1.87939 −1.87939
\(316\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(317\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.326352 1.85083i −0.326352 1.85083i
\(321\) 0 0
\(322\) −1.43969 1.20805i −1.43969 1.20805i
\(323\) 0 0
\(324\) −0.939693 0.342020i −0.939693 0.342020i
\(325\) −2.53209 −2.53209
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(332\) 0.500000 0.866025i 0.500000 0.866025i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.939693 0.342020i −0.939693 0.342020i
\(337\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(338\) 0 0
\(339\) 0.266044 0.223238i 0.266044 0.223238i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(343\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(344\) 0 0
\(345\) 2.70574 + 2.27038i 2.70574 + 2.27038i
\(346\) −1.87939 0.684040i −1.87939 0.684040i
\(347\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(348\) 0 0
\(349\) 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(350\) 2.53209 2.53209
\(351\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(352\) 0 0
\(353\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(354\) 2.00000 2.00000
\(355\) 0.613341 + 3.47843i 0.613341 + 3.47843i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(361\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(362\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(363\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(364\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(365\) 0 0
\(366\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(367\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(368\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(374\) 0 0
\(375\) −2.87939 −2.87939
\(376\) 0 0
\(377\) 0 0
\(378\) 0.766044 0.642788i 0.766044 0.642788i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.500000 0.419550i −0.500000 0.419550i
\(381\) −0.173648 0.300767i −0.173648 0.300767i
\(382\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(383\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(384\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(385\) 0 0
\(386\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(390\) 1.43969 1.20805i 1.43969 1.20805i
\(391\) 0 0
\(392\) 0.766044 0.642788i 0.766044 0.642788i
\(393\) −1.43969 0.524005i −1.43969 0.524005i
\(394\) 0 0
\(395\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(398\) 0 0
\(399\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(400\) −2.37939 0.866025i −2.37939 0.866025i
\(401\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.53209 1.53209
\(405\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(410\) 0 0
\(411\) 0.939693 0.342020i 0.939693 0.342020i
\(412\) 0 0
\(413\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(414\) −1.87939 −1.87939
\(415\) −0.939693 1.62760i −0.939693 1.62760i
\(416\) 0.939693 0.342020i 0.939693 0.342020i
\(417\) −0.326352 0.118782i −0.326352 0.118782i
\(418\) 0 0
\(419\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(420\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(421\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −1.43969 1.20805i −1.43969 1.20805i
\(427\) −1.43969 0.524005i −1.43969 0.524005i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(438\) 0 0
\(439\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(440\) 0 0
\(441\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(442\) 0 0
\(443\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(449\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(450\) 1.93969 1.62760i 1.93969 1.62760i
\(451\) 0 0
\(452\) 0.0603074 0.342020i 0.0603074 0.342020i
\(453\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(454\) −0.326352 0.118782i −0.326352 0.118782i
\(455\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(456\) 0.347296 0.347296
\(457\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(458\) 1.53209 1.53209
\(459\) 0 0
\(460\) 3.53209 3.53209
\(461\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(462\) 0 0
\(463\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.266044 1.50881i 0.266044 1.50881i
\(467\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(468\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(472\) 1.53209 1.28558i 1.53209 1.28558i
\(473\) 0 0
\(474\) −0.326352 0.118782i −0.326352 0.118782i
\(475\) −0.826352 + 0.300767i −0.826352 + 0.300767i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 1.76604 0.642788i 1.76604 0.642788i
\(481\) 0 0
\(482\) 0 0
\(483\) 0.939693 1.62760i 0.939693 1.62760i
\(484\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(485\) 0 0
\(486\) 0.173648 0.984808i 0.173648 0.984808i
\(487\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(488\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(489\) 0 0
\(490\) −0.326352 1.85083i −0.326352 1.85083i
\(491\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.173648 0.300767i 0.173648 0.300767i
\(495\) 0 0
\(496\) 0 0
\(497\) 1.76604 0.642788i 1.76604 0.642788i
\(498\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(499\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(500\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(501\) 0 0
\(502\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0.173648 0.984808i 0.173648 0.984808i
\(505\) 1.43969 2.49362i 1.43969 2.49362i
\(506\) 0 0
\(507\) 0 0
\(508\) −0.326352 0.118782i −0.326352 0.118782i
\(509\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.347296 1.96962i 0.347296 1.96962i
\(520\) 0.326352 1.85083i 0.326352 1.85083i
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(524\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(525\) 0.439693 + 2.49362i 0.439693 + 2.49362i
\(526\) 1.17365 0.984808i 1.17365 0.984808i
\(527\) 0 0
\(528\) 0 0
\(529\) −2.37939 + 0.866025i −2.37939 + 0.866025i
\(530\) 0 0
\(531\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(532\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(539\) 0 0
\(540\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −0.766044 1.32683i −0.766044 1.32683i
\(544\) 0 0
\(545\) 0 0
\(546\) −0.766044 0.642788i −0.766044 0.642788i
\(547\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(548\) 0.500000 0.866025i 0.500000 0.866025i
\(549\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(550\) 0 0
\(551\) 0 0
\(552\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(553\) 0.266044 0.223238i 0.266044 0.223238i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(561\) 0 0
\(562\) −1.43969 0.524005i −1.43969 0.524005i
\(563\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) −0.500000 0.419550i −0.500000 0.419550i
\(566\) −1.87939 −1.87939
\(567\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(568\) −1.87939 −1.87939
\(569\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(570\) 0.326352 0.565258i 0.326352 0.565258i
\(571\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(574\) 0 0
\(575\) 2.37939 4.12122i 2.37939 4.12122i
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(579\) −0.326352 0.118782i −0.326352 0.118782i
\(580\) 0 0
\(581\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(586\) 0.939693 1.62760i 0.939693 1.62760i
\(587\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(588\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(589\) 0 0
\(590\) −0.652704 3.70167i −0.652704 3.70167i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(599\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(600\) 0.439693 2.49362i 0.439693 2.49362i
\(601\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(605\) 1.76604 0.642788i 1.76604 0.642788i
\(606\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(607\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(608\) 0.266044 0.223238i 0.266044 0.223238i
\(609\) 0 0
\(610\) 2.70574 0.984808i 2.70574 0.984808i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0.0603074 0.342020i 0.0603074 0.342020i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(618\) 0 0
\(619\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(620\) 0 0
\(621\) −0.326352 1.85083i −0.326352 1.85083i
\(622\) 0 0
\(623\) 0 0
\(624\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(625\) 0.500000 + 2.83564i 0.500000 + 2.83564i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(629\) 0 0
\(630\) −1.43969 1.20805i −1.43969 1.20805i
\(631\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(632\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(633\) 0 0
\(634\) 0 0
\(635\) −0.500000 + 0.419550i −0.500000 + 0.419550i
\(636\) 0 0
\(637\) 0.939693 0.342020i 0.939693 0.342020i
\(638\) 0 0
\(639\) 0.939693 1.62760i 0.939693 1.62760i
\(640\) 0.939693 1.62760i 0.939693 1.62760i
\(641\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(642\) 0 0
\(643\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(644\) −0.326352 1.85083i −0.326352 1.85083i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.500000 0.866025i −0.500000 0.866025i
\(649\) 0 0
\(650\) −1.93969 1.62760i −1.93969 1.62760i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(654\) 0 0
\(655\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.939693 0.342020i 0.939693 0.342020i
\(665\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 0.866025i −0.500000 0.866025i
\(673\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(674\) −1.00000 −1.00000
\(675\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(676\) 0 0
\(677\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(678\) 0.347296 0.347296
\(679\) 0 0
\(680\) 0 0
\(681\) 0.0603074 0.342020i 0.0603074 0.342020i
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(685\) −0.939693 1.62760i −0.939693 1.62760i
\(686\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(687\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.613341 + 3.47843i 0.613341 + 3.47843i
\(691\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(692\) −1.00000 1.73205i −1.00000 1.73205i
\(693\) 0 0
\(694\) 0 0
\(695\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(699\) 1.53209 1.53209
\(700\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.00000 −1.00000
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.43969 0.524005i −1.43969 0.524005i
\(708\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(709\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(710\) −1.76604 + 3.05888i −1.76604 + 3.05888i
\(711\) 0.0603074 0.342020i 0.0603074 0.342020i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.326352 0.118782i −0.326352 0.118782i
\(718\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(721\) 0 0
\(722\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(723\) 0 0
\(724\) −1.43969 0.524005i −1.43969 0.524005i
\(725\) 0 0
\(726\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(727\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(728\) −1.00000 −1.00000
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(733\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(734\) 0 0
\(735\) 1.76604 0.642788i 1.76604 0.642788i
\(736\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(742\) 0 0
\(743\) 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i \(-0.222222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(748\) 0 0
\(749\) 0 0
\(750\) −2.20574 1.85083i −2.20574 1.85083i
\(751\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) 0 0
\(753\) −0.766044 1.32683i −0.766044 1.32683i
\(754\) 0 0
\(755\) 3.53209 3.53209
\(756\) 1.00000 1.00000
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.113341 0.642788i −0.113341 0.642788i
\(761\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(762\) 0.0603074 0.342020i 0.0603074 0.342020i
\(763\) 0 0
\(764\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(765\) 0 0
\(766\) 0 0
\(767\) 1.87939 0.684040i 1.87939 0.684040i
\(768\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(769\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(773\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 1.87939 1.87939
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 2.70574 + 2.27038i 2.70574 + 2.27038i
\(786\) −0.766044 1.32683i −0.766044 1.32683i
\(787\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(788\) 0 0
\(789\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(790\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(791\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(792\) 0 0
\(793\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(794\) 0.939693 0.342020i 0.939693 0.342020i
\(795\) 0 0
\(796\) 0 0
\(797\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(798\) −0.326352 0.118782i −0.326352 0.118782i
\(799\) 0 0
\(800\) −1.26604 2.19285i −1.26604 2.19285i
\(801\) 0 0
\(802\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(803\) 0 0
\(804\) 0 0
\(805\) −3.31908 1.20805i −3.31908 1.20805i
\(806\) 0 0
\(807\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(808\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) −1.87939 −1.87939
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.500000 0.866025i 0.500000 0.866025i
\(820\) 0 0
\(821\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(822\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(823\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(827\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) −1.43969 1.20805i −1.43969 1.20805i
\(829\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0.326352 1.85083i 0.326352 1.85083i
\(831\) 0 0
\(832\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(833\) 0 0
\(834\) −0.173648 0.300767i −0.173648 0.300767i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.347296 0.347296
\(839\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(840\) −1.87939 −1.87939
\(841\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(842\) 0 0
\(843\) 0.266044 1.50881i 0.266044 1.50881i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.500000 0.866025i −0.500000 0.866025i
\(848\) 0 0
\(849\) −0.326352 1.85083i −0.326352 1.85083i
\(850\) 0 0
\(851\) 0 0
\(852\) −0.326352 1.85083i −0.326352 1.85083i
\(853\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) −0.766044 1.32683i −0.766044 1.32683i
\(855\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(856\) 0 0
\(857\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(858\) 0 0
\(859\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.766044 0.642788i −0.766044 0.642788i
\(863\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(864\) −0.939693 0.342020i −0.939693 0.342020i
\(865\) −3.75877 −3.75877
\(866\) 0 0
\(867\) −0.500000 0.866025i −0.500000 0.866025i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(875\) 2.70574 0.984808i 2.70574 0.984808i
\(876\) 0 0
\(877\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(878\) 0 0
\(879\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(880\) 0 0
\(881\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(882\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(883\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) 3.53209 1.28558i 3.53209 1.28558i
\(886\) 0 0
\(887\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(888\) 0 0
\(889\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −0.939693 0.342020i −0.939693 0.342020i
\(897\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(898\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(899\) 0 0
\(900\) 2.53209 2.53209
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.266044 0.223238i 0.266044 0.223238i
\(905\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(906\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(907\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(908\) −0.173648 0.300767i −0.173648 0.300767i
\(909\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(910\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(911\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(912\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(913\) 0 0
\(914\) −0.326352 1.85083i −0.326352 1.85083i
\(915\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(916\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(917\) 1.53209 1.53209
\(918\) 0 0
\(919\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(920\) 2.70574 + 2.27038i 2.70574 + 2.27038i
\(921\) 0.347296 0.347296
\(922\) −0.326352 1.85083i −0.326352 1.85083i
\(923\) −1.76604 0.642788i −1.76604 0.642788i
\(924\) 0 0
\(925\) 0 0
\(926\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(930\) 0 0
\(931\) 0.266044 0.223238i 0.266044 0.223238i
\(932\) 1.17365 0.984808i 1.17365 0.984808i
\(933\) 0 0
\(934\) 0.939693 0.342020i 0.939693 0.342020i
\(935\) 0 0
\(936\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(942\) −1.87939 −1.87939
\(943\) 0 0
\(944\) 2.00000 2.00000
\(945\) 0.939693 1.62760i 0.939693 1.62760i
\(946\) 0 0
\(947\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(948\) −0.173648 0.300767i −0.173648 0.300767i
\(949\) 0 0
\(950\) −0.826352 0.300767i −0.826352 0.300767i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 0 0
\(955\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(956\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(960\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(961\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(966\) 1.76604 0.642788i 1.76604 0.642788i
\(967\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(972\) 0.766044 0.642788i 0.766044 0.642788i
\(973\) 0.347296 0.347296
\(974\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(975\) 1.26604 2.19285i 1.26604 2.19285i
\(976\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(977\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.939693 1.62760i 0.939693 1.62760i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.326352 0.118782i 0.326352 0.118782i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 0 0
\(994\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(995\) 0 0
\(996\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(997\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.ef.a.853.1 6
7.6 odd 2 1512.1.ef.b.853.1 yes 6
8.5 even 2 1512.1.ef.b.853.1 yes 6
27.22 even 9 inner 1512.1.ef.a.1021.1 yes 6
56.13 odd 2 CM 1512.1.ef.a.853.1 6
189.76 odd 18 1512.1.ef.b.1021.1 yes 6
216.157 even 18 1512.1.ef.b.1021.1 yes 6
1512.1021 odd 18 inner 1512.1.ef.a.1021.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.1.ef.a.853.1 6 1.1 even 1 trivial
1512.1.ef.a.853.1 6 56.13 odd 2 CM
1512.1.ef.a.1021.1 yes 6 27.22 even 9 inner
1512.1.ef.a.1021.1 yes 6 1512.1021 odd 18 inner
1512.1.ef.b.853.1 yes 6 7.6 odd 2
1512.1.ef.b.853.1 yes 6 8.5 even 2
1512.1.ef.b.1021.1 yes 6 189.76 odd 18
1512.1.ef.b.1021.1 yes 6 216.157 even 18