Properties

Label 1512.1.ef.b.1357.1
Level $1512$
Weight $1$
Character 1512.1357
Analytic conductor $0.755$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -56
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(13,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 8, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.13");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.ef (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.754586299101\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{9} + \cdots)\)

Embedding invariants

Embedding label 1357.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 1512.1357
Dual form 1512.1.ef.b.517.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.0603074 - 0.342020i) q^{5} +(-0.173648 + 0.984808i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.173648 + 0.300767i) q^{10} +(-0.173648 - 0.984808i) q^{12} +(-0.939693 - 0.342020i) q^{13} +(-0.939693 - 0.342020i) q^{14} +(-0.326352 - 0.118782i) q^{15} +(0.173648 - 0.984808i) q^{16} +(0.766044 + 0.642788i) q^{18} +(0.766044 - 1.32683i) q^{19} +(-0.266044 - 0.223238i) q^{20} +(0.939693 - 0.342020i) q^{21} +(0.266044 - 0.223238i) q^{23} +(0.500000 + 0.866025i) q^{24} +(0.826352 - 0.300767i) q^{25} +1.00000 q^{26} -1.00000 q^{27} +1.00000 q^{28} +0.347296 q^{30} +(0.173648 + 0.984808i) q^{32} +(0.173648 - 0.300767i) q^{35} +(-0.939693 - 0.342020i) q^{36} +(-0.266044 + 1.50881i) q^{38} +(-0.766044 + 0.642788i) q^{39} +(0.326352 + 0.118782i) q^{40} +(-0.766044 + 0.642788i) q^{42} +(-0.266044 + 0.223238i) q^{45} +(-0.173648 + 0.300767i) q^{46} +(-0.766044 - 0.642788i) q^{48} +(0.173648 + 0.984808i) q^{49} +(-0.673648 + 0.565258i) q^{50} +(-0.939693 + 0.342020i) q^{52} +(0.939693 - 0.342020i) q^{54} +(-0.939693 + 0.342020i) q^{56} +(-0.766044 - 1.32683i) q^{57} +(-0.347296 - 1.96962i) q^{59} +(-0.326352 + 0.118782i) q^{60} +(1.43969 + 1.20805i) q^{61} +(0.173648 - 0.984808i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-0.0603074 + 0.342020i) q^{65} +(-0.0603074 - 0.342020i) q^{69} +(-0.0603074 + 0.342020i) q^{70} +(-0.173648 - 0.300767i) q^{71} +1.00000 q^{72} +(0.152704 - 0.866025i) q^{75} +(-0.266044 - 1.50881i) q^{76} +(0.500000 - 0.866025i) q^{78} +(-1.43969 + 0.524005i) q^{79} -0.347296 q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.939693 + 0.342020i) q^{83} +(0.500000 - 0.866025i) q^{84} +(0.173648 - 0.300767i) q^{90} +(-0.500000 - 0.866025i) q^{91} +(0.0603074 - 0.342020i) q^{92} +(-0.500000 - 0.181985i) q^{95} +(0.939693 + 0.342020i) q^{96} +(-0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 6 q^{5} - 3 q^{8} - 3 q^{9} - 3 q^{15} + 3 q^{20} - 3 q^{23} + 3 q^{24} + 6 q^{25} + 6 q^{26} - 6 q^{27} + 6 q^{28} + 3 q^{38} + 3 q^{40} + 3 q^{45} - 3 q^{50} - 3 q^{60} + 3 q^{61} - 3 q^{64}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(3\) 0.500000 0.866025i 0.500000 0.866025i
\(4\) 0.766044 0.642788i 0.766044 0.642788i
\(5\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(6\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(7\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) −0.500000 0.866025i −0.500000 0.866025i
\(10\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(11\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(12\) −0.173648 0.984808i −0.173648 0.984808i
\(13\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(14\) −0.939693 0.342020i −0.939693 0.342020i
\(15\) −0.326352 0.118782i −0.326352 0.118782i
\(16\) 0.173648 0.984808i 0.173648 0.984808i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(19\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(20\) −0.266044 0.223238i −0.266044 0.223238i
\(21\) 0.939693 0.342020i 0.939693 0.342020i
\(22\) 0 0
\(23\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(24\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(25\) 0.826352 0.300767i 0.826352 0.300767i
\(26\) 1.00000 1.00000
\(27\) −1.00000 −1.00000
\(28\) 1.00000 1.00000
\(29\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(30\) 0.347296 0.347296
\(31\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(32\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.173648 0.300767i 0.173648 0.300767i
\(36\) −0.939693 0.342020i −0.939693 0.342020i
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(39\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(40\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(41\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(42\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(43\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(44\) 0 0
\(45\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(46\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(47\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(48\) −0.766044 0.642788i −0.766044 0.642788i
\(49\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(50\) −0.673648 + 0.565258i −0.673648 + 0.565258i
\(51\) 0 0
\(52\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.939693 0.342020i 0.939693 0.342020i
\(55\) 0 0
\(56\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(57\) −0.766044 1.32683i −0.766044 1.32683i
\(58\) 0 0
\(59\) −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(60\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(61\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 0.173648 0.984808i 0.173648 0.984808i
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(66\) 0 0
\(67\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(68\) 0 0
\(69\) −0.0603074 0.342020i −0.0603074 0.342020i
\(70\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(71\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 0.152704 0.866025i 0.152704 0.866025i
\(76\) −0.266044 1.50881i −0.266044 1.50881i
\(77\) 0 0
\(78\) 0.500000 0.866025i 0.500000 0.866025i
\(79\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −0.347296 −0.347296
\(81\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(84\) 0.500000 0.866025i 0.500000 0.866025i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0.173648 0.300767i 0.173648 0.300767i
\(91\) −0.500000 0.866025i −0.500000 0.866025i
\(92\) 0.0603074 0.342020i 0.0603074 0.342020i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.500000 0.181985i −0.500000 0.181985i
\(96\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(97\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 0 0
\(100\) 0.439693 0.761570i 0.439693 0.761570i
\(101\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(104\) 0.766044 0.642788i 0.766044 0.642788i
\(105\) −0.173648 0.300767i −0.173648 0.300767i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.766044 0.642788i 0.766044 0.642788i
\(113\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(115\) −0.0923963 0.0775297i −0.0923963 0.0775297i
\(116\) 0 0
\(117\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(118\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(119\) 0 0
\(120\) 0.266044 0.223238i 0.266044 0.223238i
\(121\) −0.939693 0.342020i −0.939693 0.342020i
\(122\) −1.76604 0.642788i −1.76604 0.642788i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.326352 0.565258i −0.326352 0.565258i
\(126\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(127\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(128\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(129\) 0 0
\(130\) −0.0603074 0.342020i −0.0603074 0.342020i
\(131\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(132\) 0 0
\(133\) 1.43969 0.524005i 1.43969 0.524005i
\(134\) 0 0
\(135\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(136\) 0 0
\(137\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(138\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(139\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(140\) −0.0603074 0.342020i −0.0603074 0.342020i
\(141\) 0 0
\(142\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(143\) 0 0
\(144\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(148\) 0 0
\(149\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(150\) 0.152704 + 0.866025i 0.152704 + 0.866025i
\(151\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(152\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(157\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(158\) 1.17365 0.984808i 1.17365 0.984808i
\(159\) 0 0
\(160\) 0.326352 0.118782i 0.326352 0.118782i
\(161\) 0.347296 0.347296
\(162\) 0.173648 0.984808i 0.173648 0.984808i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.766044 0.642788i 0.766044 0.642788i
\(167\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(168\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(169\) 0 0
\(170\) 0 0
\(171\) −1.53209 −1.53209
\(172\) 0 0
\(173\) −0.347296 + 1.96962i −0.347296 + 1.96962i −0.173648 + 0.984808i \(0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(174\) 0 0
\(175\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(176\) 0 0
\(177\) −1.87939 0.684040i −1.87939 0.684040i
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(181\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(182\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(183\) 1.76604 0.642788i 1.76604 0.642788i
\(184\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.766044 0.642788i −0.766044 0.642788i
\(190\) 0.532089 0.532089
\(191\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(192\) −1.00000 −1.00000
\(193\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(194\) 0 0
\(195\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(196\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(201\) 0 0
\(202\) −1.76604 0.642788i −1.76604 0.642788i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.326352 0.118782i −0.326352 0.118782i
\(208\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(209\) 0 0
\(210\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(211\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(212\) 0 0
\(213\) −0.347296 −0.347296
\(214\) 0 0
\(215\) 0 0
\(216\) 0.500000 0.866025i 0.500000 0.866025i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(224\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(225\) −0.673648 0.565258i −0.673648 0.565258i
\(226\) −0.766044 1.32683i −0.766044 1.32683i
\(227\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(228\) −1.43969 0.524005i −1.43969 0.524005i
\(229\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(230\) 0.113341 + 0.0412527i 0.113341 + 0.0412527i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(234\) −0.500000 0.866025i −0.500000 0.866025i
\(235\) 0 0
\(236\) −1.53209 1.28558i −1.53209 1.28558i
\(237\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(238\) 0 0
\(239\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(240\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(241\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(242\) 1.00000 1.00000
\(243\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(244\) 1.87939 1.87939
\(245\) 0.326352 0.118782i 0.326352 0.118782i
\(246\) 0 0
\(247\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(248\) 0 0
\(249\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(250\) 0.500000 + 0.419550i 0.500000 + 0.419550i
\(251\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(252\) −0.500000 0.866025i −0.500000 0.866025i
\(253\) 0 0
\(254\) 0.266044 1.50881i 0.266044 1.50881i
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.939693 0.342020i
\(257\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(261\) 0 0
\(262\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(263\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(267\) 0 0
\(268\) 0 0
\(269\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(270\) −0.173648 0.300767i −0.173648 0.300767i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −1.00000 −1.00000
\(274\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(275\) 0 0
\(276\) −0.266044 0.223238i −0.266044 0.223238i
\(277\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(278\) 0.766044 1.32683i 0.766044 1.32683i
\(279\) 0 0
\(280\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(281\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(284\) −0.326352 0.118782i −0.326352 0.118782i
\(285\) −0.407604 + 0.342020i −0.407604 + 0.342020i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.766044 0.642788i 0.766044 0.642788i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) −1.00000 −1.00000
\(295\) −0.652704 + 0.237565i −0.652704 + 0.237565i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(300\) −0.439693 0.761570i −0.439693 0.761570i
\(301\) 0 0
\(302\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(303\) 1.76604 0.642788i 1.76604 0.642788i
\(304\) −1.17365 0.984808i −1.17365 0.984808i
\(305\) 0.326352 0.565258i 0.326352 0.565258i
\(306\) 0 0
\(307\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(312\) −0.173648 0.984808i −0.173648 0.984808i
\(313\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(314\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(315\) −0.347296 −0.347296
\(316\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(317\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(321\) 0 0
\(322\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(323\) 0 0
\(324\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(325\) −0.879385 −0.879385
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(332\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.173648 0.984808i −0.173648 0.984808i
\(337\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(338\) 0 0
\(339\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(340\) 0 0
\(341\) 0 0
\(342\) 1.43969 0.524005i 1.43969 0.524005i
\(343\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(344\) 0 0
\(345\) −0.113341 + 0.0412527i −0.113341 + 0.0412527i
\(346\) −0.347296 1.96962i −0.347296 1.96962i
\(347\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(348\) 0 0
\(349\) 1.87939 0.684040i 1.87939 0.684040i 0.939693 0.342020i \(-0.111111\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(350\) −0.879385 −0.879385
\(351\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(352\) 0 0
\(353\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(354\) 2.00000 2.00000
\(355\) −0.0923963 + 0.0775297i −0.0923963 + 0.0775297i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(360\) −0.0603074 0.342020i −0.0603074 0.342020i
\(361\) −0.673648 1.16679i −0.673648 1.16679i
\(362\) 0.326352 1.85083i 0.326352 1.85083i
\(363\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(364\) −0.939693 0.342020i −0.939693 0.342020i
\(365\) 0 0
\(366\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(367\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(368\) −0.173648 0.300767i −0.173648 0.300767i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(374\) 0 0
\(375\) −0.652704 −0.652704
\(376\) 0 0
\(377\) 0 0
\(378\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(381\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(382\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(383\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(384\) 0.939693 0.342020i 0.939693 0.342020i
\(385\) 0 0
\(386\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(390\) −0.326352 0.118782i −0.326352 0.118782i
\(391\) 0 0
\(392\) −0.939693 0.342020i −0.939693 0.342020i
\(393\) −0.326352 1.85083i −0.326352 1.85083i
\(394\) 0 0
\(395\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(396\) 0 0
\(397\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0.266044 1.50881i 0.266044 1.50881i
\(400\) −0.152704 0.866025i −0.152704 0.866025i
\(401\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.87939 1.87939
\(405\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(410\) 0 0
\(411\) 0.173648 0.984808i 0.173648 0.984808i
\(412\) 0 0
\(413\) 1.00000 1.73205i 1.00000 1.73205i
\(414\) 0.347296 0.347296
\(415\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(416\) 0.173648 0.984808i 0.173648 0.984808i
\(417\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(418\) 0 0
\(419\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) −0.326352 0.118782i −0.326352 0.118782i
\(421\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0.326352 0.118782i 0.326352 0.118782i
\(427\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.0923963 0.524005i −0.0923963 0.524005i
\(438\) 0 0
\(439\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(440\) 0 0
\(441\) 0.766044 0.642788i 0.766044 0.642788i
\(442\) 0 0
\(443\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.173648 0.984808i 0.173648 0.984808i
\(449\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(450\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(451\) 0 0
\(452\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(453\) −0.266044 0.223238i −0.266044 0.223238i
\(454\) −0.266044 1.50881i −0.266044 1.50881i
\(455\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(456\) 1.53209 1.53209
\(457\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(458\) 1.87939 1.87939
\(459\) 0 0
\(460\) −0.120615 −0.120615
\(461\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.43969 1.20805i −1.43969 1.20805i
\(467\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(468\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.326352 0.118782i −0.326352 0.118782i
\(472\) 1.87939 + 0.684040i 1.87939 + 0.684040i
\(473\) 0 0
\(474\) −0.266044 1.50881i −0.266044 1.50881i
\(475\) 0.233956 1.32683i 0.233956 1.32683i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(479\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(480\) 0.0603074 0.342020i 0.0603074 0.342020i
\(481\) 0 0
\(482\) 0 0
\(483\) 0.173648 0.300767i 0.173648 0.300767i
\(484\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(485\) 0 0
\(486\) −0.766044 0.642788i −0.766044 0.642788i
\(487\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(488\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(489\) 0 0
\(490\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(491\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.766044 1.32683i 0.766044 1.32683i
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0603074 0.342020i 0.0603074 0.342020i
\(498\) −0.173648 0.984808i −0.173648 0.984808i
\(499\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(500\) −0.613341 0.223238i −0.613341 0.223238i
\(501\) 0 0
\(502\) 0.326352 1.85083i 0.326352 1.85083i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(505\) 0.326352 0.565258i 0.326352 0.565258i
\(506\) 0 0
\(507\) 0 0
\(508\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(509\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(520\) −0.266044 0.223238i −0.266044 0.223238i
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(524\) 0.326352 1.85083i 0.326352 1.85083i
\(525\) 0.673648 0.565258i 0.673648 0.565258i
\(526\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(530\) 0 0
\(531\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(532\) 0.766044 1.32683i 0.766044 1.32683i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.43969 0.524005i 1.43969 0.524005i
\(539\) 0 0
\(540\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(544\) 0 0
\(545\) 0 0
\(546\) 0.939693 0.342020i 0.939693 0.342020i
\(547\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(548\) 0.500000 0.866025i 0.500000 0.866025i
\(549\) 0.326352 1.85083i 0.326352 1.85083i
\(550\) 0 0
\(551\) 0 0
\(552\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(553\) −1.43969 0.524005i −1.43969 0.524005i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.266044 0.223238i −0.266044 0.223238i
\(561\) 0 0
\(562\) −0.326352 1.85083i −0.326352 1.85083i
\(563\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(564\) 0 0
\(565\) 0.500000 0.181985i 0.500000 0.181985i
\(566\) −0.347296 −0.347296
\(567\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(568\) 0.347296 0.347296
\(569\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(570\) 0.266044 0.460802i 0.266044 0.460802i
\(571\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(572\) 0 0
\(573\) 0.326352 1.85083i 0.326352 1.85083i
\(574\) 0 0
\(575\) 0.152704 0.264490i 0.152704 0.264490i
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0.173648 0.984808i 0.173648 0.984808i
\(579\) −0.266044 1.50881i −0.266044 1.50881i
\(580\) 0 0
\(581\) −0.939693 0.342020i −0.939693 0.342020i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.326352 0.118782i 0.326352 0.118782i
\(586\) 0.173648 0.300767i 0.173648 0.300767i
\(587\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(588\) 0.939693 0.342020i 0.939693 0.342020i
\(589\) 0 0
\(590\) 0.532089 0.446476i 0.532089 0.446476i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.266044 0.223238i 0.266044 0.223238i
\(599\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(600\) 0.673648 + 0.565258i 0.673648 + 0.565258i
\(601\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.173648 0.300767i −0.173648 0.300767i
\(605\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(606\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(607\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(608\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(609\) 0 0
\(610\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −1.17365 0.984808i −1.17365 0.984808i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(618\) 0 0
\(619\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(622\) 0 0
\(623\) 0 0
\(624\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(625\) 0.500000 0.419550i 0.500000 0.419550i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.266044 0.223238i −0.266044 0.223238i
\(629\) 0 0
\(630\) 0.326352 0.118782i 0.326352 0.118782i
\(631\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(632\) 0.266044 1.50881i 0.266044 1.50881i
\(633\) 0 0
\(634\) 0 0
\(635\) 0.500000 + 0.181985i 0.500000 + 0.181985i
\(636\) 0 0
\(637\) 0.173648 0.984808i 0.173648 0.984808i
\(638\) 0 0
\(639\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(640\) 0.173648 0.300767i 0.173648 0.300767i
\(641\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(642\) 0 0
\(643\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0.266044 0.223238i 0.266044 0.223238i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.500000 0.866025i −0.500000 0.866025i
\(649\) 0 0
\(650\) 0.826352 0.300767i 0.826352 0.300767i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(654\) 0 0
\(655\) −0.500000 0.419550i −0.500000 0.419550i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(660\) 0 0
\(661\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.173648 0.984808i 0.173648 0.984808i
\(665\) −0.266044 0.460802i −0.266044 0.460802i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(673\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(674\) −1.00000 −1.00000
\(675\) −0.826352 + 0.300767i −0.826352 + 0.300767i
\(676\) 0 0
\(677\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(678\) −1.53209 −1.53209
\(679\) 0 0
\(680\) 0 0
\(681\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(685\) −0.173648 0.300767i −0.173648 0.300767i
\(686\) 0.173648 0.984808i 0.173648 0.984808i
\(687\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.0923963 0.0775297i 0.0923963 0.0775297i
\(691\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(693\) 0 0
\(694\) 0 0
\(695\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(699\) 1.87939 1.87939
\(700\) 0.826352 0.300767i 0.826352 0.300767i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.00000 −1.00000
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(708\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(709\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(710\) 0.0603074 0.104455i 0.0603074 0.104455i
\(711\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.266044 1.50881i −0.266044 1.50881i
\(718\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(721\) 0 0
\(722\) 1.03209 + 0.866025i 1.03209 + 0.866025i
\(723\) 0 0
\(724\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(725\) 0 0
\(726\) 0.500000 0.866025i 0.500000 0.866025i
\(727\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(728\) 1.00000 1.00000
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0.939693 1.62760i 0.939693 1.62760i
\(733\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0.0603074 0.342020i 0.0603074 0.342020i
\(736\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(742\) 0 0
\(743\) −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 0.342020i \(-0.888889\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.613341 0.223238i 0.613341 0.223238i
\(751\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(752\) 0 0
\(753\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(754\) 0 0
\(755\) −0.120615 −0.120615
\(756\) −1.00000 −1.00000
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.407604 0.342020i 0.407604 0.342020i
\(761\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(762\) −1.17365 0.984808i −1.17365 0.984808i
\(763\) 0 0
\(764\) 0.939693 1.62760i 0.939693 1.62760i
\(765\) 0 0
\(766\) 0 0
\(767\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(768\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(769\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.266044 1.50881i 0.266044 1.50881i
\(773\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0.347296 0.347296
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) −0.113341 + 0.0412527i −0.113341 + 0.0412527i
\(786\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(787\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(788\) 0 0
\(789\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(790\) −0.407604 0.342020i −0.407604 0.342020i
\(791\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(792\) 0 0
\(793\) −0.939693 1.62760i −0.939693 1.62760i
\(794\) 0.173648 0.984808i 0.173648 0.984808i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(798\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(799\) 0 0
\(800\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(801\) 0 0
\(802\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(803\) 0 0
\(804\) 0 0
\(805\) −0.0209445 0.118782i −0.0209445 0.118782i
\(806\) 0 0
\(807\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(808\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) −0.347296 −0.347296
\(811\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(820\) 0 0
\(821\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(823\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(827\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(829\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(830\) −0.266044 0.223238i −0.266044 0.223238i
\(831\) 0 0
\(832\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(833\) 0 0
\(834\) −0.766044 1.32683i −0.766044 1.32683i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.53209 −1.53209
\(839\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(840\) 0.347296 0.347296
\(841\) 0.766044 0.642788i 0.766044 0.642788i
\(842\) 0 0
\(843\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.500000 0.866025i −0.500000 0.866025i
\(848\) 0 0
\(849\) 0.266044 0.223238i 0.266044 0.223238i
\(850\) 0 0
\(851\) 0 0
\(852\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(853\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(854\) −0.939693 1.62760i −0.939693 1.62760i
\(855\) 0.0923963 + 0.524005i 0.0923963 + 0.524005i
\(856\) 0 0
\(857\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(858\) 0 0
\(859\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.939693 0.342020i 0.939693 0.342020i
\(863\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(864\) −0.173648 0.984808i −0.173648 0.984808i
\(865\) 0.694593 0.694593
\(866\) 0 0
\(867\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(875\) 0.113341 0.642788i 0.113341 0.642788i
\(876\) 0 0
\(877\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(878\) 0 0
\(879\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(880\) 0 0
\(881\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(882\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(883\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) −0.120615 + 0.684040i −0.120615 + 0.684040i
\(886\) 0 0
\(887\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(888\) 0 0
\(889\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(897\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(898\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(899\) 0 0
\(900\) −0.879385 −0.879385
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.43969 0.524005i −1.43969 0.524005i
\(905\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(906\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(907\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(908\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(909\) 0.326352 1.85083i 0.326352 1.85083i
\(910\) 0.173648 0.300767i 0.173648 0.300767i
\(911\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(912\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(913\) 0 0
\(914\) 0.266044 0.223238i 0.266044 0.223238i
\(915\) −0.326352 0.565258i −0.326352 0.565258i
\(916\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(917\) 1.87939 1.87939
\(918\) 0 0
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0.113341 0.0412527i 0.113341 0.0412527i
\(921\) 1.53209 1.53209
\(922\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(923\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(924\) 0 0
\(925\) 0 0
\(926\) 0.939693 1.62760i 0.939693 1.62760i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(930\) 0 0
\(931\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(932\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(933\) 0 0
\(934\) 0.173648 0.984808i 0.173648 0.984808i
\(935\) 0 0
\(936\) −0.939693 0.342020i −0.939693 0.342020i
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(942\) 0.347296 0.347296
\(943\) 0 0
\(944\) −2.00000 −2.00000
\(945\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(946\) 0 0
\(947\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(948\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(949\) 0 0
\(950\) 0.233956 + 1.32683i 0.233956 + 1.32683i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 0 0
\(955\) −0.326352 0.565258i −0.326352 0.565258i
\(956\) 0.266044 1.50881i 0.266044 1.50881i
\(957\) 0 0
\(958\) 0 0
\(959\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(960\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(961\) 0.173648 0.984808i 0.173648 0.984808i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.407604 0.342020i −0.407604 0.342020i
\(966\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(967\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(968\) 0.766044 0.642788i 0.766044 0.642788i
\(969\) 0 0
\(970\) 0 0
\(971\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(972\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(973\) −1.53209 −1.53209
\(974\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(975\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(976\) 1.43969 1.20805i 1.43969 1.20805i
\(977\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.173648 0.300767i 0.173648 0.300767i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(995\) 0 0
\(996\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(997\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.ef.b.1357.1 yes 6
7.6 odd 2 1512.1.ef.a.1357.1 yes 6
8.5 even 2 1512.1.ef.a.1357.1 yes 6
27.4 even 9 inner 1512.1.ef.b.517.1 yes 6
56.13 odd 2 CM 1512.1.ef.b.1357.1 yes 6
189.139 odd 18 1512.1.ef.a.517.1 6
216.85 even 18 1512.1.ef.a.517.1 6
1512.517 odd 18 inner 1512.1.ef.b.517.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.1.ef.a.517.1 6 189.139 odd 18
1512.1.ef.a.517.1 6 216.85 even 18
1512.1.ef.a.1357.1 yes 6 7.6 odd 2
1512.1.ef.a.1357.1 yes 6 8.5 even 2
1512.1.ef.b.517.1 yes 6 27.4 even 9 inner
1512.1.ef.b.517.1 yes 6 1512.517 odd 18 inner
1512.1.ef.b.1357.1 yes 6 1.1 even 1 trivial
1512.1.ef.b.1357.1 yes 6 56.13 odd 2 CM