Properties

Label 1512.1.ef.c.13.1
Level $1512$
Weight $1$
Character 1512.13
Analytic conductor $0.755$
Analytic rank $0$
Dimension $12$
Projective image $D_{18}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(13,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 8, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.13");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.ef (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.754586299101\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 13.1
Root \(-0.984808 + 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 1512.13
Dual form 1512.1.ef.c.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(0.984808 + 0.826352i) q^{5} +(0.642788 + 0.766044i) q^{6} +(0.939693 + 0.342020i) q^{7} +(0.500000 + 0.866025i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.642788 - 1.11334i) q^{10} +(0.642788 - 0.766044i) q^{12} +(-0.300767 + 1.70574i) q^{13} +(0.173648 - 0.984808i) q^{14} +(-1.26604 - 0.223238i) q^{15} +(0.766044 - 0.642788i) q^{16} +(-0.939693 - 0.342020i) q^{18} +(-0.342020 - 0.592396i) q^{19} +(-1.20805 - 0.439693i) q^{20} +(-0.984808 + 0.173648i) q^{21} +(-1.43969 + 0.524005i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(0.113341 + 0.642788i) q^{25} +1.73205 q^{26} +1.00000i q^{27} -1.00000 q^{28} +1.28558i q^{30} +(-0.766044 - 0.642788i) q^{32} +(0.642788 + 1.11334i) q^{35} +(-0.173648 + 0.984808i) q^{36} +(-0.524005 + 0.439693i) q^{38} +(-0.592396 - 1.62760i) q^{39} +(-0.223238 + 1.26604i) q^{40} +(0.342020 + 0.939693i) q^{42} +(1.20805 - 0.439693i) q^{45} +(0.766044 + 1.32683i) q^{46} +(-0.342020 + 0.939693i) q^{48} +(0.766044 + 0.642788i) q^{49} +(0.613341 - 0.223238i) q^{50} +(-0.300767 - 1.70574i) q^{52} +(0.984808 - 0.173648i) q^{54} +(0.173648 + 0.984808i) q^{56} +(0.592396 + 0.342020i) q^{57} +(1.26604 - 0.223238i) q^{60} +(1.85083 + 0.673648i) q^{61} +(0.766044 - 0.642788i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-1.70574 + 1.43128i) q^{65} +(0.984808 - 1.17365i) q^{69} +(0.984808 - 0.826352i) q^{70} +(0.766044 - 1.32683i) q^{71} +1.00000 q^{72} +(-0.419550 - 0.500000i) q^{75} +(0.524005 + 0.439693i) q^{76} +(-1.50000 + 0.866025i) q^{78} +(0.326352 + 1.85083i) q^{79} +1.28558 q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.300767 - 1.70574i) q^{83} +(0.866025 - 0.500000i) q^{84} +(-0.642788 - 1.11334i) q^{90} +(-0.866025 + 1.50000i) q^{91} +(1.17365 - 0.984808i) q^{92} +(0.152704 - 0.866025i) q^{95} +(0.984808 + 0.173648i) q^{96} +(0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{8} + 6 q^{9} - 6 q^{15} - 6 q^{23} - 12 q^{25} - 12 q^{28} - 6 q^{50} + 6 q^{60} - 6 q^{64} + 12 q^{72} - 18 q^{78} + 6 q^{79} - 6 q^{81} + 12 q^{92} + 6 q^{95} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.173648 0.984808i
\(3\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(4\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(5\) 0.984808 + 0.826352i 0.984808 + 0.826352i 0.984808 0.173648i \(-0.0555556\pi\)
1.00000i \(0.5\pi\)
\(6\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(7\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(8\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(9\) 0.500000 0.866025i 0.500000 0.866025i
\(10\) 0.642788 1.11334i 0.642788 1.11334i
\(11\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(12\) 0.642788 0.766044i 0.642788 0.766044i
\(13\) −0.300767 + 1.70574i −0.300767 + 1.70574i 0.342020 + 0.939693i \(0.388889\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(14\) 0.173648 0.984808i 0.173648 0.984808i
\(15\) −1.26604 0.223238i −1.26604 0.223238i
\(16\) 0.766044 0.642788i 0.766044 0.642788i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) −0.939693 0.342020i −0.939693 0.342020i
\(19\) −0.342020 0.592396i −0.342020 0.592396i 0.642788 0.766044i \(-0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(20\) −1.20805 0.439693i −1.20805 0.439693i
\(21\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(22\) 0 0
\(23\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) −0.866025 0.500000i −0.866025 0.500000i
\(25\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(26\) 1.73205 1.73205
\(27\) 1.00000i 1.00000i
\(28\) −1.00000 −1.00000
\(29\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(30\) 1.28558i 1.28558i
\(31\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(32\) −0.766044 0.642788i −0.766044 0.642788i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.642788 + 1.11334i 0.642788 + 1.11334i
\(36\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −0.524005 + 0.439693i −0.524005 + 0.439693i
\(39\) −0.592396 1.62760i −0.592396 1.62760i
\(40\) −0.223238 + 1.26604i −0.223238 + 1.26604i
\(41\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(42\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(43\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(44\) 0 0
\(45\) 1.20805 0.439693i 1.20805 0.439693i
\(46\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(47\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(48\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(49\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(50\) 0.613341 0.223238i 0.613341 0.223238i
\(51\) 0 0
\(52\) −0.300767 1.70574i −0.300767 1.70574i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.984808 0.173648i 0.984808 0.173648i
\(55\) 0 0
\(56\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(57\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(58\) 0 0
\(59\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(60\) 1.26604 0.223238i 1.26604 0.223238i
\(61\) 1.85083 + 0.673648i 1.85083 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 0.766044 0.642788i 0.766044 0.642788i
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) −1.70574 + 1.43128i −1.70574 + 1.43128i
\(66\) 0 0
\(67\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(68\) 0 0
\(69\) 0.984808 1.17365i 0.984808 1.17365i
\(70\) 0.984808 0.826352i 0.984808 0.826352i
\(71\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0 0
\(75\) −0.419550 0.500000i −0.419550 0.500000i
\(76\) 0.524005 + 0.439693i 0.524005 + 0.439693i
\(77\) 0 0
\(78\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(79\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) 1.28558 1.28558
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0 0
\(83\) −0.300767 1.70574i −0.300767 1.70574i −0.642788 0.766044i \(-0.722222\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(84\) 0.866025 0.500000i 0.866025 0.500000i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) −0.642788 1.11334i −0.642788 1.11334i
\(91\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(92\) 1.17365 0.984808i 1.17365 0.984808i
\(93\) 0 0
\(94\) 0 0
\(95\) 0.152704 0.866025i 0.152704 0.866025i
\(96\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(97\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(98\) 0.500000 0.866025i 0.500000 0.866025i
\(99\) 0 0
\(100\) −0.326352 0.565258i −0.326352 0.565258i
\(101\) −1.85083 0.673648i −1.85083 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(102\) 0 0
\(103\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(104\) −1.62760 + 0.592396i −1.62760 + 0.592396i
\(105\) −1.11334 0.642788i −1.11334 0.642788i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.342020 0.939693i −0.342020 0.939693i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.939693 0.342020i 0.939693 0.342020i
\(113\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0.233956 0.642788i 0.233956 0.642788i
\(115\) −1.85083 0.673648i −1.85083 0.673648i
\(116\) 0 0
\(117\) 1.32683 + 1.11334i 1.32683 + 1.11334i
\(118\) 0 0
\(119\) 0 0
\(120\) −0.439693 1.20805i −0.439693 1.20805i
\(121\) 0.173648 0.984808i 0.173648 0.984808i
\(122\) 0.342020 1.93969i 0.342020 1.93969i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.223238 0.386659i 0.223238 0.386659i
\(126\) −0.766044 0.642788i −0.766044 0.642788i
\(127\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(128\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(129\) 0 0
\(130\) 1.70574 + 1.43128i 1.70574 + 1.43128i
\(131\) −1.85083 + 0.673648i −1.85083 + 0.673648i −0.866025 + 0.500000i \(0.833333\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) −0.118782 0.673648i −0.118782 0.673648i
\(134\) 0 0
\(135\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(136\) 0 0
\(137\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(138\) −1.32683 0.766044i −1.32683 0.766044i
\(139\) 0.642788 0.233956i 0.642788 0.233956i 1.00000i \(-0.5\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(140\) −0.984808 0.826352i −0.984808 0.826352i
\(141\) 0 0
\(142\) −1.43969 0.524005i −1.43969 0.524005i
\(143\) 0 0
\(144\) −0.173648 0.984808i −0.173648 0.984808i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.984808 0.173648i −0.984808 0.173648i
\(148\) 0 0
\(149\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(150\) −0.419550 + 0.500000i −0.419550 + 0.500000i
\(151\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(152\) 0.342020 0.592396i 0.342020 0.592396i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 1.11334 + 1.32683i 1.11334 + 1.32683i
\(157\) 0.984808 + 0.826352i 0.984808 + 0.826352i 0.984808 0.173648i \(-0.0555556\pi\)
1.00000i \(0.5\pi\)
\(158\) 1.76604 0.642788i 1.76604 0.642788i
\(159\) 0 0
\(160\) −0.223238 1.26604i −0.223238 1.26604i
\(161\) −1.53209 −1.53209
\(162\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.62760 + 0.592396i −1.62760 + 0.592396i
\(167\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(168\) −0.642788 0.766044i −0.642788 0.766044i
\(169\) −1.87939 0.684040i −1.87939 0.684040i
\(170\) 0 0
\(171\) −0.684040 −0.684040
\(172\) 0 0
\(173\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(174\) 0 0
\(175\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) −0.984808 + 0.826352i −0.984808 + 0.826352i
\(181\) −0.984808 1.70574i −0.984808 1.70574i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(182\) 1.62760 + 0.592396i 1.62760 + 0.592396i
\(183\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(184\) −1.17365 0.984808i −1.17365 0.984808i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(190\) −0.879385 −0.879385
\(191\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(192\) 1.00000i 1.00000i
\(193\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(194\) 0 0
\(195\) 0.761570 2.09240i 0.761570 2.09240i
\(196\) −0.939693 0.342020i −0.939693 0.342020i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −0.500000 + 0.419550i −0.500000 + 0.419550i
\(201\) 0 0
\(202\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(208\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(209\) 0 0
\(210\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(211\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(212\) 0 0
\(213\) 1.53209i 1.53209i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(224\) −0.500000 0.866025i −0.500000 0.866025i
\(225\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(226\) 0.939693 1.62760i 0.939693 1.62760i
\(227\) 0.524005 0.439693i 0.524005 0.439693i −0.342020 0.939693i \(-0.611111\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) −0.673648 0.118782i −0.673648 0.118782i
\(229\) 0.342020 1.93969i 0.342020 1.93969i 1.00000i \(-0.5\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(230\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(234\) 0.866025 1.50000i 0.866025 1.50000i
\(235\) 0 0
\(236\) 0 0
\(237\) −1.20805 1.43969i −1.20805 1.43969i
\(238\) 0 0
\(239\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(240\) −1.11334 + 0.642788i −1.11334 + 0.642788i
\(241\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(242\) −1.00000 −1.00000
\(243\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(244\) −1.96962 −1.96962
\(245\) 0.223238 + 1.26604i 0.223238 + 1.26604i
\(246\) 0 0
\(247\) 1.11334 0.405223i 1.11334 0.405223i
\(248\) 0 0
\(249\) 1.11334 + 1.32683i 1.11334 + 1.32683i
\(250\) −0.419550 0.152704i −0.419550 0.152704i
\(251\) 0.984808 + 1.70574i 0.984808 + 1.70574i 0.642788 + 0.766044i \(0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(252\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(253\) 0 0
\(254\) 1.43969 1.20805i 1.43969 1.20805i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.173648 0.984808i
\(257\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.11334 1.92836i 1.11334 1.92836i
\(261\) 0 0
\(262\) 0.984808 + 1.70574i 0.984808 + 1.70574i
\(263\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.642788 + 0.233956i −0.642788 + 0.233956i
\(267\) 0 0
\(268\) 0 0
\(269\) −0.684040 −0.684040 −0.342020 0.939693i \(-0.611111\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(270\) 1.11334 + 0.642788i 1.11334 + 0.642788i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 1.73205i 1.73205i
\(274\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(275\) 0 0
\(276\) −0.524005 + 1.43969i −0.524005 + 1.43969i
\(277\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(278\) −0.342020 0.592396i −0.342020 0.592396i
\(279\) 0 0
\(280\) −0.642788 + 1.11334i −0.642788 + 1.11334i
\(281\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) 0 0
\(283\) 0.223238 1.26604i 0.223238 1.26604i −0.642788 0.766044i \(-0.722222\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(284\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(285\) 0.300767 + 0.826352i 0.300767 + 0.826352i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(289\) −0.500000 0.866025i −0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.20805 0.439693i 1.20805 0.439693i 0.342020 0.939693i \(-0.388889\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(294\) 1.00000i 1.00000i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.460802 2.61334i −0.460802 2.61334i
\(300\) 0.565258 + 0.326352i 0.565258 + 0.326352i
\(301\) 0 0
\(302\) −1.17365 0.984808i −1.17365 0.984808i
\(303\) 1.93969 0.342020i 1.93969 0.342020i
\(304\) −0.642788 0.233956i −0.642788 0.233956i
\(305\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(306\) 0 0
\(307\) 0.342020 0.592396i 0.342020 0.592396i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(312\) 1.11334 1.32683i 1.11334 1.32683i
\(313\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(314\) 0.642788 1.11334i 0.642788 1.11334i
\(315\) 1.28558 1.28558
\(316\) −0.939693 1.62760i −0.939693 1.62760i
\(317\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.20805 + 0.439693i −1.20805 + 0.439693i
\(321\) 0 0
\(322\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(323\) 0 0
\(324\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(325\) −1.13052 −1.13052
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(332\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(337\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(338\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(339\) −1.85083 0.326352i −1.85083 0.326352i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.118782 + 0.673648i 0.118782 + 0.673648i
\(343\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(344\) 0 0
\(345\) 1.93969 0.342020i 1.93969 0.342020i
\(346\) 0 0
\(347\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(350\) 0.652704 0.652704
\(351\) −1.70574 0.300767i −1.70574 0.300767i
\(352\) 0 0
\(353\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(354\) 0 0
\(355\) 1.85083 0.673648i 1.85083 0.673648i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0.984808 + 0.826352i 0.984808 + 0.826352i
\(361\) 0.266044 0.460802i 0.266044 0.460802i
\(362\) −1.50881 + 1.26604i −1.50881 + 1.26604i
\(363\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(364\) 0.300767 1.70574i 0.300767 1.70574i
\(365\) 0 0
\(366\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(367\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(368\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(374\) 0 0
\(375\) 0.446476i 0.446476i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0.152704 + 0.866025i 0.152704 + 0.866025i
\(381\) −1.62760 0.939693i −1.62760 0.939693i
\(382\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(383\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(384\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(385\) 0 0
\(386\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(390\) −2.19285 0.386659i −2.19285 0.386659i
\(391\) 0 0
\(392\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(393\) 1.26604 1.50881i 1.26604 1.50881i
\(394\) 0 0
\(395\) −1.20805 + 2.09240i −1.20805 + 2.09240i
\(396\) 0 0
\(397\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(398\) 0 0
\(399\) 0.439693 + 0.524005i 0.439693 + 0.524005i
\(400\) 0.500000 + 0.419550i 0.500000 + 0.419550i
\(401\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.96962 1.96962
\(405\) 0.223238 1.26604i 0.223238 1.26604i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(412\) 0 0
\(413\) 0 0
\(414\) 1.53209 1.53209
\(415\) 1.11334 1.92836i 1.11334 1.92836i
\(416\) 1.32683 1.11334i 1.32683 1.11334i
\(417\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(418\) 0 0
\(419\) 0.118782 0.673648i 0.118782 0.673648i −0.866025 0.500000i \(-0.833333\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(420\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(421\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 1.50881 0.266044i 1.50881 0.266044i
\(427\) 1.50881 + 1.26604i 1.50881 + 1.26604i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.802823 + 0.673648i 0.802823 + 0.673648i
\(438\) 0 0
\(439\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(440\) 0 0
\(441\) 0.939693 0.342020i 0.939693 0.342020i
\(442\) 0 0
\(443\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(449\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(450\) 0.113341 0.642788i 0.113341 0.642788i
\(451\) 0 0
\(452\) −1.76604 0.642788i −1.76604 0.642788i
\(453\) −0.524005 + 1.43969i −0.524005 + 1.43969i
\(454\) −0.524005 0.439693i −0.524005 0.439693i
\(455\) −2.09240 + 0.761570i −2.09240 + 0.761570i
\(456\) 0.684040i 0.684040i
\(457\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(458\) −1.96962 −1.96962
\(459\) 0 0
\(460\) 1.96962 1.96962
\(461\) −0.223238 1.26604i −0.223238 1.26604i −0.866025 0.500000i \(-0.833333\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(462\) 0 0
\(463\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(467\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(468\) −1.62760 0.592396i −1.62760 0.592396i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.26604 0.223238i −1.26604 0.223238i
\(472\) 0 0
\(473\) 0 0
\(474\) −1.20805 + 1.43969i −1.20805 + 1.43969i
\(475\) 0.342020 0.286989i 0.342020 0.286989i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.939693 1.62760i −0.939693 1.62760i
\(479\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(480\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(481\) 0 0
\(482\) 0 0
\(483\) 1.32683 0.766044i 1.32683 0.766044i
\(484\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(485\) 0 0
\(486\) 0.342020 0.939693i 0.342020 0.939693i
\(487\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(488\) 0.342020 + 1.93969i 0.342020 + 1.93969i
\(489\) 0 0
\(490\) 1.20805 0.439693i 1.20805 0.439693i
\(491\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.592396 1.02606i −0.592396 1.02606i
\(495\) 0 0
\(496\) 0 0
\(497\) 1.17365 0.984808i 1.17365 0.984808i
\(498\) 1.11334 1.32683i 1.11334 1.32683i
\(499\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(500\) −0.0775297 + 0.439693i −0.0775297 + 0.439693i
\(501\) 0 0
\(502\) 1.50881 1.26604i 1.50881 1.26604i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(505\) −1.26604 2.19285i −1.26604 2.19285i
\(506\) 0 0
\(507\) 1.96962 0.347296i 1.96962 0.347296i
\(508\) −1.43969 1.20805i −1.43969 1.20805i
\(509\) 1.62760 0.592396i 1.62760 0.592396i 0.642788 0.766044i \(-0.277778\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0.592396 0.342020i 0.592396 0.342020i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −2.09240 0.761570i −2.09240 0.761570i
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) −0.984808 + 1.70574i −0.984808 + 1.70574i −0.342020 + 0.939693i \(0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(524\) 1.50881 1.26604i 1.50881 1.26604i
\(525\) −0.223238 0.613341i −0.223238 0.613341i
\(526\) 0.0603074 0.342020i 0.0603074 0.342020i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.03209 0.866025i 1.03209 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.342020 + 0.592396i 0.342020 + 0.592396i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.118782 + 0.673648i 0.118782 + 0.673648i
\(539\) 0 0
\(540\) 0.439693 1.20805i 0.439693 1.20805i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(544\) 0 0
\(545\) 0 0
\(546\) −1.70574 + 0.300767i −1.70574 + 0.300767i
\(547\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(548\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(549\) 1.50881 1.26604i 1.50881 1.26604i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.50881 + 0.266044i 1.50881 + 0.266044i
\(553\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.524005 + 0.439693i −0.524005 + 0.439693i
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.20805 + 0.439693i 1.20805 + 0.439693i
\(561\) 0 0
\(562\) −0.266044 0.223238i −0.266044 0.223238i
\(563\) 1.85083 0.673648i 1.85083 0.673648i 0.866025 0.500000i \(-0.166667\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(564\) 0 0
\(565\) 0.419550 + 2.37939i 0.419550 + 2.37939i
\(566\) −1.28558 −1.28558
\(567\) −0.173648 0.984808i −0.173648 0.984808i
\(568\) 1.53209 1.53209
\(569\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(570\) 0.761570 0.439693i 0.761570 0.439693i
\(571\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(572\) 0 0
\(573\) 0.223238 + 0.266044i 0.223238 + 0.266044i
\(574\) 0 0
\(575\) −0.500000 0.866025i −0.500000 0.866025i
\(576\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(579\) 1.20805 1.43969i 1.20805 1.43969i
\(580\) 0 0
\(581\) 0.300767 1.70574i 0.300767 1.70574i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.386659 + 2.19285i 0.386659 + 2.19285i
\(586\) −0.642788 1.11334i −0.642788 1.11334i
\(587\) 0.642788 + 0.233956i 0.642788 + 0.233956i 0.642788 0.766044i \(-0.277778\pi\)
1.00000i \(0.5\pi\)
\(588\) 0.984808 0.173648i 0.984808 0.173648i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −2.49362 + 0.907604i −2.49362 + 0.907604i
\(599\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(600\) 0.223238 0.613341i 0.223238 0.613341i
\(601\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(605\) 0.984808 0.826352i 0.984808 0.826352i
\(606\) −0.673648 1.85083i −0.673648 1.85083i
\(607\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(608\) −0.118782 + 0.673648i −0.118782 + 0.673648i
\(609\) 0 0
\(610\) 1.93969 1.62760i 1.93969 1.62760i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) −0.642788 0.233956i −0.642788 0.233956i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(618\) 0 0
\(619\) 0.223238 + 1.26604i 0.223238 + 1.26604i 0.866025 + 0.500000i \(0.166667\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(620\) 0 0
\(621\) −0.524005 1.43969i −0.524005 1.43969i
\(622\) 0 0
\(623\) 0 0
\(624\) −1.50000 0.866025i −1.50000 0.866025i
\(625\) 1.15270 0.419550i 1.15270 0.419550i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.20805 0.439693i −1.20805 0.439693i
\(629\) 0 0
\(630\) −0.223238 1.26604i −0.223238 1.26604i
\(631\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(632\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(633\) 0 0
\(634\) 0 0
\(635\) −0.419550 + 2.37939i −0.419550 + 2.37939i
\(636\) 0 0
\(637\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(638\) 0 0
\(639\) −0.766044 1.32683i −0.766044 1.32683i
\(640\) 0.642788 + 1.11334i 0.642788 + 1.11334i
\(641\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(642\) 0 0
\(643\) 1.32683 + 1.11334i 1.32683 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(644\) 1.43969 0.524005i 1.43969 0.524005i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.500000 0.866025i 0.500000 0.866025i
\(649\) 0 0
\(650\) 0.196312 + 1.11334i 0.196312 + 1.11334i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(654\) 0 0
\(655\) −2.37939 0.866025i −2.37939 0.866025i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(660\) 0 0
\(661\) −0.118782 + 0.673648i −0.118782 + 0.673648i 0.866025 + 0.500000i \(0.166667\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.32683 1.11334i 1.32683 1.11334i
\(665\) 0.439693 0.761570i 0.439693 0.761570i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(673\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(674\) −1.00000 −1.00000
\(675\) −0.642788 + 0.113341i −0.642788 + 0.113341i
\(676\) 2.00000 2.00000
\(677\) 0.300767 + 1.70574i 0.300767 + 1.70574i 0.642788 + 0.766044i \(0.277778\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(678\) 1.87939i 1.87939i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.233956 + 0.642788i −0.233956 + 0.642788i
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0.642788 0.233956i 0.642788 0.233956i
\(685\) 0.642788 1.11334i 0.642788 1.11334i
\(686\) 0.766044 0.642788i 0.766044 0.642788i
\(687\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(688\) 0 0
\(689\) 0 0
\(690\) −0.673648 1.85083i −0.673648 1.85083i
\(691\) −0.524005 + 0.439693i −0.524005 + 0.439693i −0.866025 0.500000i \(-0.833333\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0.347296i 0.347296i
\(700\) −0.113341 0.642788i −0.113341 0.642788i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 1.73205i 1.73205i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.50881 1.26604i −1.50881 1.26604i
\(708\) 0 0
\(709\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(710\) −0.984808 1.70574i −0.984808 1.70574i
\(711\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.20805 + 1.43969i −1.20805 + 1.43969i
\(718\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0.642788 1.11334i 0.642788 1.11334i
\(721\) 0 0
\(722\) −0.500000 0.181985i −0.500000 0.181985i
\(723\) 0 0
\(724\) 1.50881 + 1.26604i 1.50881 + 1.26604i
\(725\) 0 0
\(726\) 0.866025 0.500000i 0.866025 0.500000i
\(727\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(728\) −1.73205 −1.73205
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 1.70574 0.984808i 1.70574 0.984808i
\(733\) −0.642788 + 0.233956i −0.642788 + 0.233956i −0.642788 0.766044i \(-0.722222\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −0.826352 0.984808i −0.826352 0.984808i
\(736\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) −0.761570 + 0.907604i −0.761570 + 0.907604i
\(742\) 0 0
\(743\) 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i \(-0.444444\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.62760 0.592396i −1.62760 0.592396i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.439693 0.0775297i 0.439693 0.0775297i
\(751\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) −1.70574 0.984808i −1.70574 0.984808i
\(754\) 0 0
\(755\) 1.96962 1.96962
\(756\) 1.00000i 1.00000i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.826352 0.300767i 0.826352 0.300767i
\(761\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(762\) −0.642788 + 1.76604i −0.642788 + 1.76604i
\(763\) 0 0
\(764\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(769\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.43969 1.20805i 1.43969 1.20805i
\(773\) −0.984808 + 1.70574i −0.984808 + 1.70574i −0.342020 + 0.939693i \(0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 2.22668i 2.22668i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0.286989 + 1.62760i 0.286989 + 1.62760i
\(786\) −1.70574 0.984808i −1.70574 0.984808i
\(787\) 1.62760 0.592396i 1.62760 0.592396i 0.642788 0.766044i \(-0.277778\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(788\) 0 0
\(789\) −0.342020 + 0.0603074i −0.342020 + 0.0603074i
\(790\) 2.27038 + 0.826352i 2.27038 + 0.826352i
\(791\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(792\) 0 0
\(793\) −1.70574 + 2.95442i −1.70574 + 2.95442i
\(794\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(795\) 0 0
\(796\) 0 0
\(797\) −0.223238 + 1.26604i −0.223238 + 1.26604i 0.642788 + 0.766044i \(0.277778\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0.439693 0.524005i 0.439693 0.524005i
\(799\) 0 0
\(800\) 0.326352 0.565258i 0.326352 0.565258i
\(801\) 0 0
\(802\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.50881 1.26604i −1.50881 1.26604i
\(806\) 0 0
\(807\) 0.592396 0.342020i 0.592396 0.342020i
\(808\) −0.342020 1.93969i −0.342020 1.93969i
\(809\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) −1.28558 −1.28558
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(820\) 0 0
\(821\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(822\) 0.642788 0.766044i 0.642788 0.766044i
\(823\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) −0.266044 1.50881i −0.266044 1.50881i
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) −2.09240 0.761570i −2.09240 0.761570i
\(831\) 0 0
\(832\) −1.32683 1.11334i −1.32683 1.11334i
\(833\) 0 0
\(834\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.684040 −0.684040
\(839\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(840\) 1.28558i 1.28558i
\(841\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(842\) 0 0
\(843\) −0.118782 + 0.326352i −0.118782 + 0.326352i
\(844\) 0 0
\(845\) −1.28558 2.22668i −1.28558 2.22668i
\(846\) 0 0
\(847\) 0.500000 0.866025i 0.500000 0.866025i
\(848\) 0 0
\(849\) 0.439693 + 1.20805i 0.439693 + 1.20805i
\(850\) 0 0
\(851\) 0 0
\(852\) −0.524005 1.43969i −0.524005 1.43969i
\(853\) 1.50881 1.26604i 1.50881 1.26604i 0.642788 0.766044i \(-0.277778\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(854\) 0.984808 1.70574i 0.984808 1.70574i
\(855\) −0.673648 0.565258i −0.673648 0.565258i
\(856\) 0 0
\(857\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(858\) 0 0
\(859\) −1.32683 1.11334i −1.32683 1.11334i −0.984808 0.173648i \(-0.944444\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(863\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(864\) 0.642788 0.766044i 0.642788 0.766044i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.524005 0.907604i 0.524005 0.907604i
\(875\) 0.342020 0.286989i 0.342020 0.286989i
\(876\) 0 0
\(877\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(878\) 0 0
\(879\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) −0.500000 0.866025i −0.500000 0.866025i
\(883\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(888\) 0 0
\(889\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(897\) 1.70574 + 2.03282i 1.70574 + 2.03282i
\(898\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(899\) 0 0
\(900\) −0.652704 −0.652704
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(905\) 0.439693 2.49362i 0.439693 2.49362i
\(906\) 1.50881 + 0.266044i 1.50881 + 0.266044i
\(907\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(908\) −0.342020 + 0.592396i −0.342020 + 0.592396i
\(909\) −1.50881 + 1.26604i −1.50881 + 1.26604i
\(910\) 1.11334 + 1.92836i 1.11334 + 1.92836i
\(911\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0.673648 0.118782i 0.673648 0.118782i
\(913\) 0 0
\(914\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(915\) −2.19285 1.26604i −2.19285 1.26604i
\(916\) 0.342020 + 1.93969i 0.342020 + 1.93969i
\(917\) −1.96962 −1.96962
\(918\) 0 0
\(919\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(920\) −0.342020 1.93969i −0.342020 1.93969i
\(921\) 0.684040i 0.684040i
\(922\) −1.20805 + 0.439693i −1.20805 + 0.439693i
\(923\) 2.03282 + 1.70574i 2.03282 + 1.70574i
\(924\) 0 0
\(925\) 0 0
\(926\) −0.173648 0.300767i −0.173648 0.300767i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(930\) 0 0
\(931\) 0.118782 0.673648i 0.118782 0.673648i
\(932\) 0.0603074 0.342020i 0.0603074 0.342020i
\(933\) 0 0
\(934\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(935\) 0 0
\(936\) −0.300767 + 1.70574i −0.300767 + 1.70574i
\(937\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.642788 + 0.233956i −0.642788 + 0.233956i −0.642788 0.766044i \(-0.722222\pi\)
1.00000i \(0.5\pi\)
\(942\) 1.28558i 1.28558i
\(943\) 0 0
\(944\) 0 0
\(945\) −1.11334 + 0.642788i −1.11334 + 0.642788i
\(946\) 0 0
\(947\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(948\) 1.62760 + 0.939693i 1.62760 + 0.939693i
\(949\) 0 0
\(950\) −0.342020 0.286989i −0.342020 0.286989i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(954\) 0 0
\(955\) 0.223238 0.386659i 0.223238 0.386659i
\(956\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(957\) 0 0
\(958\) 0 0
\(959\) 0.173648 0.984808i 0.173648 0.984808i
\(960\) 0.826352 0.984808i 0.826352 0.984808i
\(961\) 0.766044 0.642788i 0.766044 0.642788i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.27038 0.826352i −2.27038 0.826352i
\(966\) −0.984808 1.17365i −0.984808 1.17365i
\(967\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) 0.939693 0.342020i 0.939693 0.342020i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.684040 0.684040 0.342020 0.939693i \(-0.388889\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(972\) −0.984808 0.173648i −0.984808 0.173648i
\(973\) 0.684040 0.684040
\(974\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(975\) 0.979055 0.565258i 0.979055 0.565258i
\(976\) 1.85083 0.673648i 1.85083 0.673648i
\(977\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.642788 1.11334i −0.642788 1.11334i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.907604 + 0.761570i −0.907604 + 0.761570i
\(989\) 0 0
\(990\) 0 0
\(991\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −1.17365 0.984808i −1.17365 0.984808i
\(995\) 0 0
\(996\) −1.50000 0.866025i −1.50000 0.866025i
\(997\) 0.342020 + 1.93969i 0.342020 + 1.93969i 0.342020 + 0.939693i \(0.388889\pi\)
1.00000i \(0.500000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.ef.c.13.1 12
7.6 odd 2 inner 1512.1.ef.c.13.2 yes 12
8.5 even 2 inner 1512.1.ef.c.13.2 yes 12
27.25 even 9 inner 1512.1.ef.c.349.1 yes 12
56.13 odd 2 CM 1512.1.ef.c.13.1 12
189.160 odd 18 inner 1512.1.ef.c.349.2 yes 12
216.133 even 18 inner 1512.1.ef.c.349.2 yes 12
1512.349 odd 18 inner 1512.1.ef.c.349.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.1.ef.c.13.1 12 1.1 even 1 trivial
1512.1.ef.c.13.1 12 56.13 odd 2 CM
1512.1.ef.c.13.2 yes 12 7.6 odd 2 inner
1512.1.ef.c.13.2 yes 12 8.5 even 2 inner
1512.1.ef.c.349.1 yes 12 27.25 even 9 inner
1512.1.ef.c.349.1 yes 12 1512.349 odd 18 inner
1512.1.ef.c.349.2 yes 12 189.160 odd 18 inner
1512.1.ef.c.349.2 yes 12 216.133 even 18 inner