Properties

Label 152.1.k.a.83.1
Level $152$
Weight $1$
Character 152.83
Analytic conductor $0.076$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,1,Mod(11,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.11");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 152.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0758578819202\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2888.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.184832.1

Embedding invariants

Embedding label 83.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 152.83
Dual form 152.1.k.a.11.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{6} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{6} +1.00000 q^{8} -1.00000 q^{11} -1.00000 q^{12} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(0.500000 + 0.866025i) q^{22} +(0.500000 + 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +(-0.500000 + 0.866025i) q^{32} +(-0.500000 - 0.866025i) q^{33} +(-1.00000 + 1.73205i) q^{34} +1.00000 q^{38} +(0.500000 + 0.866025i) q^{41} +(-1.00000 - 1.73205i) q^{43} +(0.500000 - 0.866025i) q^{44} +(0.500000 - 0.866025i) q^{48} +1.00000 q^{49} +1.00000 q^{50} +(1.00000 - 1.73205i) q^{51} +(-0.500000 - 0.866025i) q^{54} -1.00000 q^{57} +(0.500000 + 0.866025i) q^{59} +1.00000 q^{64} +(-0.500000 + 0.866025i) q^{66} +(0.500000 - 0.866025i) q^{67} +2.00000 q^{68} +(0.500000 + 0.866025i) q^{73} -1.00000 q^{75} +(-0.500000 - 0.866025i) q^{76} +(0.500000 + 0.866025i) q^{81} +(0.500000 - 0.866025i) q^{82} -1.00000 q^{83} +(-1.00000 + 1.73205i) q^{86} -1.00000 q^{88} +(-1.00000 + 1.73205i) q^{89} -1.00000 q^{96} +(0.500000 + 0.866025i) q^{97} +(-0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} - q^{4} + q^{6} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + q^{3} - q^{4} + q^{6} + 2 q^{8} - 2 q^{11} - 2 q^{12} - q^{16} - 2 q^{17} - q^{19} + q^{22} + q^{24} - q^{25} + 2 q^{27} - q^{32} - q^{33} - 2 q^{34} + 2 q^{38} + q^{41} - 2 q^{43} + q^{44} + q^{48} + 2 q^{49} + 2 q^{50} + 2 q^{51} - q^{54} - 2 q^{57} + q^{59} + 2 q^{64} - q^{66} + q^{67} + 4 q^{68} + q^{73} - 2 q^{75} - q^{76} + q^{81} + q^{82} - 2 q^{83} - 2 q^{86} - 2 q^{88} - 2 q^{89} - 2 q^{96} + q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.500000 0.866025i
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0.500000 0.866025i 0.500000 0.866025i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000 1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −1.00000 −1.00000
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(20\) 0 0
\(21\) 0 0
\(22\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(33\) −0.500000 0.866025i −0.500000 0.866025i
\(34\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.00000 1.00000
\(39\) 0 0
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(44\) 0.500000 0.866025i 0.500000 0.866025i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0.500000 0.866025i 0.500000 0.866025i
\(49\) 1.00000 1.00000
\(50\) 1.00000 1.00000
\(51\) 1.00000 1.73205i 1.00000 1.73205i
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −1.00000
\(58\) 0 0
\(59\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(67\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(68\) 2.00000 2.00000
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0 0
\(73\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) −0.500000 0.866025i −0.500000 0.866025i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) 0.500000 0.866025i 0.500000 0.866025i
\(83\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(87\) 0 0
\(88\) −1.00000 −1.00000
\(89\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −1.00000
\(97\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.500000 0.866025i
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) −2.00000 −2.00000
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(108\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.500000 0.866025i 0.500000 0.866025i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.500000 0.866025i −0.500000 0.866025i
\(129\) 1.00000 1.73205i 1.00000 1.73205i
\(130\) 0 0
\(131\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 1.00000 1.00000
\(133\) 0 0
\(134\) −1.00000 −1.00000
\(135\) 0 0
\(136\) −1.00000 1.73205i −1.00000 1.73205i
\(137\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(138\) 0 0
\(139\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0.500000 0.866025i 0.500000 0.866025i
\(147\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.500000 0.866025i 0.500000 0.866025i
\(163\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) −1.00000 −1.00000
\(165\) 0 0
\(166\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(167\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.00000 2.00000
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(177\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(178\) 2.00000 2.00000
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(193\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(194\) 0.500000 0.866025i 0.500000 0.866025i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(201\) 1.00000 1.00000
\(202\) 0 0
\(203\) 0 0
\(204\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.500000 0.866025i 0.500000 0.866025i
\(210\) 0 0
\(211\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.00000 1.73205i −1.00000 1.73205i
\(215\) 0 0
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) 0 0
\(219\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(227\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0.500000 0.866025i 0.500000 0.866025i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.00000 −1.00000
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) −0.500000 0.866025i −0.500000 0.866025i
\(250\) 0 0
\(251\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(258\) −2.00000 −2.00000
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.500000 0.866025i 0.500000 0.866025i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) −0.500000 0.866025i −0.500000 0.866025i
\(265\) 0 0
\(266\) 0 0
\(267\) −2.00000 −2.00000
\(268\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(273\) 0 0
\(274\) −1.00000 −1.00000
\(275\) 0.500000 0.866025i 0.500000 0.866025i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −1.00000 −1.00000
\(279\) 0 0
\(280\) 0 0
\(281\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(290\) 0 0
\(291\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(292\) −1.00000 −1.00000
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.500000 0.866025i 0.500000 0.866025i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 −1.00000
\(298\) 0 0
\(299\) 0 0
\(300\) 0.500000 0.866025i 0.500000 0.866025i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.00000 1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(322\) 0 0
\(323\) 2.00000 2.00000
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(327\) 0 0
\(328\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0.500000 0.866025i 0.500000 0.866025i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(339\) −0.500000 0.866025i −0.500000 0.866025i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −1.00000 1.73205i −1.00000 1.73205i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.500000 0.866025i 0.500000 0.866025i
\(353\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 1.00000 1.00000
\(355\) 0 0
\(356\) −1.00000 1.73205i −1.00000 1.73205i
\(357\) 0 0
\(358\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 1.00000 1.73205i 1.00000 1.73205i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0.500000 0.866025i 0.500000 0.866025i
\(385\) 0 0
\(386\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(387\) 0 0
\(388\) −1.00000 −1.00000
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 1.00000
\(393\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) −0.500000 0.866025i −0.500000 0.866025i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.00000 1.73205i 1.00000 1.73205i
\(409\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(410\) 0 0
\(411\) 1.00000 1.00000
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.00000 1.00000
\(418\) −1.00000 −1.00000
\(419\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 2.00000
\(426\) 0 0
\(427\) 0 0
\(428\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 1.00000 1.00000
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) −0.500000 0.866025i −0.500000 0.866025i
\(452\) 0.500000 0.866025i 0.500000 0.866025i
\(453\) 0 0
\(454\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(455\) 0 0
\(456\) −1.00000 −1.00000
\(457\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) −1.00000 1.73205i −1.00000 1.73205i
\(460\) 0 0
\(461\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.500000 0.866025i 0.500000 0.866025i
\(467\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(473\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(474\) 0 0
\(475\) −0.500000 0.866025i −0.500000 0.866025i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 −1.00000
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −0.500000 0.866025i −0.500000 0.866025i
\(490\) 0 0
\(491\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(492\) −0.500000 0.866025i −0.500000 0.866025i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(499\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.00000 −1.00000
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.500000 0.866025i 0.500000 0.866025i
\(508\) 0 0
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(514\) −1.00000 −1.00000
\(515\) 0 0
\(516\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) −1.00000 −1.00000
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(535\) 0 0
\(536\) 0.500000 0.866025i 0.500000 0.866025i
\(537\) −0.500000 0.866025i −0.500000 0.866025i
\(538\) 0 0
\(539\) −1.00000 −1.00000
\(540\) 0 0
\(541\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.00000 2.00000
\(545\) 0 0
\(546\) 0 0
\(547\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(549\) 0 0
\(550\) −1.00000 −1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(562\) −1.00000 −1.00000
\(563\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.500000 0.866025i 0.500000 0.866025i
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 3.00000 3.00000
\(579\) 1.00000 1.73205i 1.00000 1.73205i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.00000 1.00000
\(583\) 0 0
\(584\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(594\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −1.00000 −1.00000
\(601\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −0.500000 0.866025i −0.500000 0.866025i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 0.500000 0.866025i 0.500000 0.866025i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) −1.00000 −1.00000
\(627\) 1.00000 1.00000
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 1.00000 1.73205i 1.00000 1.73205i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 1.00000 1.73205i 1.00000 1.73205i
\(643\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.00000 1.73205i −1.00000 1.73205i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) −0.500000 0.866025i −0.500000 0.866025i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.500000 0.866025i 0.500000 0.866025i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.500000 0.866025i 0.500000 0.866025i
\(657\) 0 0
\(658\) 0 0
\(659\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(663\) 0 0
\(664\) −1.00000 −1.00000
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(674\) 0.500000 0.866025i 0.500000 0.866025i
\(675\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(676\) 1.00000 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.500000 0.866025i −0.500000 0.866025i
\(682\) 0 0
\(683\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.500000 0.866025i 0.500000 0.866025i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.00000 1.73205i 1.00000 1.73205i
\(698\) 0 0
\(699\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(700\) 0 0
\(701\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(707\) 0 0
\(708\) −0.500000 0.866025i −0.500000 0.866025i
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(723\) 1.00000 1.00000
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −2.00000 + 3.46410i −2.00000 + 3.46410i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −2.00000 −2.00000
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 1.00000 1.00000
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) −1.00000 1.73205i −1.00000 1.73205i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 1.00000 1.00000
\(772\) 2.00000 2.00000
\(773\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(777\) 0 0
\(778\) 0 0
\(779\) −1.00000 −1.00000
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.500000 0.866025i −0.500000 0.866025i
\(785\) 0 0
\(786\) 1.00000 1.00000
\(787\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.500000 0.866025i
\(801\) 0 0
\(802\) 0.500000 0.866025i 0.500000 0.866025i
\(803\) −0.500000 0.866025i −0.500000 0.866025i
\(804\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −2.00000 −2.00000
\(817\) 2.00000 2.00000
\(818\) −1.00000 −1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) −0.500000 0.866025i −0.500000 0.866025i
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 1.00000 1.00000
\(826\) 0 0
\(827\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.00000 1.73205i −1.00000 1.73205i
\(834\) −0.500000 0.866025i −0.500000 0.866025i
\(835\) 0 0
\(836\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(837\) 0 0
\(838\) −1.00000 1.73205i −1.00000 1.73205i
\(839\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 0 0
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) 0 0
\(843\) 1.00000 1.00000
\(844\) 2.00000 2.00000
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(850\) −1.00000 1.73205i −1.00000 1.73205i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(865\) 0 0
\(866\) 2.00000 2.00000
\(867\) −3.00000 −3.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −0.500000 0.866025i −0.500000 0.866025i
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 −1.00000
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.500000 0.866025i −0.500000 0.866025i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(903\) 0 0
\(904\) −1.00000 −1.00000
\(905\) 0 0
\(906\) 0 0
\(907\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0.500000 0.866025i 0.500000 0.866025i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(913\) 1.00000 1.00000
\(914\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(932\) −1.00000 −1.00000
\(933\) 0 0
\(934\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(935\) 0 0
\(936\) 0 0
\(937\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(938\) 0 0
\(939\) 1.00000 1.00000
\(940\) 0 0
\(941\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.500000 0.866025i 0.500000 0.866025i
\(945\) 0 0
\(946\) 1.00000 1.73205i 1.00000 1.73205i
\(947\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(951\) 0 0
\(952\) 0 0
\(953\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(970\) 0 0
\(971\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(979\) 1.00000 1.73205i 1.00000 1.73205i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(983\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) −0.500000 0.866025i −0.500000 0.866025i
\(994\) 0 0
\(995\) 0 0
\(996\) 1.00000 1.00000
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0.500000 0.866025i 0.500000 0.866025i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.1.k.a.83.1 yes 2
3.2 odd 2 1368.1.bz.a.235.1 2
4.3 odd 2 608.1.o.a.463.1 2
5.2 odd 4 3800.1.bn.b.1299.2 4
5.3 odd 4 3800.1.bn.b.1299.1 4
5.4 even 2 3800.1.bd.c.1451.1 2
8.3 odd 2 CM 152.1.k.a.83.1 yes 2
8.5 even 2 608.1.o.a.463.1 2
19.2 odd 18 2888.1.u.d.2555.1 6
19.3 odd 18 2888.1.u.d.595.1 6
19.4 even 9 2888.1.u.c.2411.1 6
19.5 even 9 2888.1.u.c.99.1 6
19.6 even 9 2888.1.u.c.1867.1 6
19.7 even 3 2888.1.f.b.723.1 1
19.8 odd 6 2888.1.k.a.2595.1 2
19.9 even 9 2888.1.u.c.1859.1 6
19.10 odd 18 2888.1.u.d.1859.1 6
19.11 even 3 inner 152.1.k.a.11.1 2
19.12 odd 6 2888.1.f.a.723.1 1
19.13 odd 18 2888.1.u.d.1867.1 6
19.14 odd 18 2888.1.u.d.99.1 6
19.15 odd 18 2888.1.u.d.2411.1 6
19.16 even 9 2888.1.u.c.595.1 6
19.17 even 9 2888.1.u.c.2555.1 6
19.18 odd 2 2888.1.k.a.2819.1 2
24.11 even 2 1368.1.bz.a.235.1 2
40.3 even 4 3800.1.bn.b.1299.1 4
40.19 odd 2 3800.1.bd.c.1451.1 2
40.27 even 4 3800.1.bn.b.1299.2 4
57.11 odd 6 1368.1.bz.a.163.1 2
76.11 odd 6 608.1.o.a.239.1 2
95.49 even 6 3800.1.bd.c.3051.1 2
95.68 odd 12 3800.1.bn.b.2899.2 4
95.87 odd 12 3800.1.bn.b.2899.1 4
152.3 even 18 2888.1.u.d.595.1 6
152.11 odd 6 inner 152.1.k.a.11.1 2
152.27 even 6 2888.1.k.a.2595.1 2
152.35 odd 18 2888.1.u.c.595.1 6
152.43 odd 18 2888.1.u.c.99.1 6
152.51 even 18 2888.1.u.d.1867.1 6
152.59 even 18 2888.1.u.d.2555.1 6
152.67 even 18 2888.1.u.d.1859.1 6
152.75 even 2 2888.1.k.a.2819.1 2
152.83 odd 6 2888.1.f.b.723.1 1
152.91 even 18 2888.1.u.d.2411.1 6
152.99 odd 18 2888.1.u.c.2411.1 6
152.107 even 6 2888.1.f.a.723.1 1
152.123 odd 18 2888.1.u.c.1859.1 6
152.125 even 6 608.1.o.a.239.1 2
152.131 odd 18 2888.1.u.c.2555.1 6
152.139 odd 18 2888.1.u.c.1867.1 6
152.147 even 18 2888.1.u.d.99.1 6
456.11 even 6 1368.1.bz.a.163.1 2
760.163 even 12 3800.1.bn.b.2899.2 4
760.467 even 12 3800.1.bn.b.2899.1 4
760.619 odd 6 3800.1.bd.c.3051.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.1.k.a.11.1 2 19.11 even 3 inner
152.1.k.a.11.1 2 152.11 odd 6 inner
152.1.k.a.83.1 yes 2 1.1 even 1 trivial
152.1.k.a.83.1 yes 2 8.3 odd 2 CM
608.1.o.a.239.1 2 76.11 odd 6
608.1.o.a.239.1 2 152.125 even 6
608.1.o.a.463.1 2 4.3 odd 2
608.1.o.a.463.1 2 8.5 even 2
1368.1.bz.a.163.1 2 57.11 odd 6
1368.1.bz.a.163.1 2 456.11 even 6
1368.1.bz.a.235.1 2 3.2 odd 2
1368.1.bz.a.235.1 2 24.11 even 2
2888.1.f.a.723.1 1 19.12 odd 6
2888.1.f.a.723.1 1 152.107 even 6
2888.1.f.b.723.1 1 19.7 even 3
2888.1.f.b.723.1 1 152.83 odd 6
2888.1.k.a.2595.1 2 19.8 odd 6
2888.1.k.a.2595.1 2 152.27 even 6
2888.1.k.a.2819.1 2 19.18 odd 2
2888.1.k.a.2819.1 2 152.75 even 2
2888.1.u.c.99.1 6 19.5 even 9
2888.1.u.c.99.1 6 152.43 odd 18
2888.1.u.c.595.1 6 19.16 even 9
2888.1.u.c.595.1 6 152.35 odd 18
2888.1.u.c.1859.1 6 19.9 even 9
2888.1.u.c.1859.1 6 152.123 odd 18
2888.1.u.c.1867.1 6 19.6 even 9
2888.1.u.c.1867.1 6 152.139 odd 18
2888.1.u.c.2411.1 6 19.4 even 9
2888.1.u.c.2411.1 6 152.99 odd 18
2888.1.u.c.2555.1 6 19.17 even 9
2888.1.u.c.2555.1 6 152.131 odd 18
2888.1.u.d.99.1 6 19.14 odd 18
2888.1.u.d.99.1 6 152.147 even 18
2888.1.u.d.595.1 6 19.3 odd 18
2888.1.u.d.595.1 6 152.3 even 18
2888.1.u.d.1859.1 6 19.10 odd 18
2888.1.u.d.1859.1 6 152.67 even 18
2888.1.u.d.1867.1 6 19.13 odd 18
2888.1.u.d.1867.1 6 152.51 even 18
2888.1.u.d.2411.1 6 19.15 odd 18
2888.1.u.d.2411.1 6 152.91 even 18
2888.1.u.d.2555.1 6 19.2 odd 18
2888.1.u.d.2555.1 6 152.59 even 18
3800.1.bd.c.1451.1 2 5.4 even 2
3800.1.bd.c.1451.1 2 40.19 odd 2
3800.1.bd.c.3051.1 2 95.49 even 6
3800.1.bd.c.3051.1 2 760.619 odd 6
3800.1.bn.b.1299.1 4 5.3 odd 4
3800.1.bn.b.1299.1 4 40.3 even 4
3800.1.bn.b.1299.2 4 5.2 odd 4
3800.1.bn.b.1299.2 4 40.27 even 4
3800.1.bn.b.2899.1 4 95.87 odd 12
3800.1.bn.b.2899.1 4 760.467 even 12
3800.1.bn.b.2899.2 4 95.68 odd 12
3800.1.bn.b.2899.2 4 760.163 even 12