Properties

Label 2888.1.u.c.1867.1
Level $2888$
Weight $1$
Character 2888.1867
Analytic conductor $1.441$
Analytic rank $0$
Dimension $6$
Projective image $D_{3}$
CM discriminant -8
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2888,1,Mod(99,2888)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2888, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2888.99");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2888.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.44129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2888.1
Artin image: $S_3\times C_9$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{54} - \cdots)\)

Embedding invariants

Embedding label 1867.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 2888.1867
Dual form 2888.1.u.c.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(-0.173648 + 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.173648 - 0.984808i) q^{6} +(-0.500000 + 0.866025i) q^{8} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(-0.173648 + 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.173648 - 0.984808i) q^{6} +(-0.500000 + 0.866025i) q^{8} +(0.500000 - 0.866025i) q^{11} +(0.500000 + 0.866025i) q^{12} +(0.173648 - 0.984808i) q^{16} +(-1.87939 + 0.684040i) q^{17} +(-0.173648 + 0.984808i) q^{22} +(-0.766044 - 0.642788i) q^{24} +(0.173648 + 0.984808i) q^{25} +(-0.500000 + 0.866025i) q^{27} +(0.173648 + 0.984808i) q^{32} +(0.766044 + 0.642788i) q^{33} +(1.53209 - 1.28558i) q^{34} +(-0.173648 + 0.984808i) q^{41} +(1.53209 + 1.28558i) q^{43} +(-0.173648 - 0.984808i) q^{44} +(0.939693 + 0.342020i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-0.347296 - 1.96962i) q^{51} +(0.173648 - 0.984808i) q^{54} +(0.939693 - 0.342020i) q^{59} +(-0.500000 - 0.866025i) q^{64} +(-0.939693 - 0.342020i) q^{66} +(0.939693 + 0.342020i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(-0.173648 + 0.984808i) q^{73} -1.00000 q^{75} +(-0.766044 - 0.642788i) q^{81} +(-0.173648 - 0.984808i) q^{82} +(0.500000 + 0.866025i) q^{83} +(-1.87939 - 0.684040i) q^{86} +(0.500000 + 0.866025i) q^{88} +(0.347296 + 1.96962i) q^{89} -1.00000 q^{96} +(0.939693 - 0.342020i) q^{97} +(0.173648 - 0.984808i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{8} + 3 q^{11} + 3 q^{12} - 3 q^{27} - 3 q^{49} - 3 q^{50} - 3 q^{64} - 6 q^{68} - 6 q^{75} + 3 q^{83} + 3 q^{88} - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2888\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(2167\) \(2529\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(3\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(4\) 0.766044 0.642788i 0.766044 0.642788i
\(5\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(6\) −0.173648 0.984808i −0.173648 0.984808i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(12\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(13\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.173648 0.984808i 0.173648 0.984808i
\(17\) −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i \(0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(23\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(24\) −0.766044 0.642788i −0.766044 0.642788i
\(25\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(26\) 0 0
\(27\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(28\) 0 0
\(29\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(33\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(34\) 1.53209 1.28558i 1.53209 1.28558i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(42\) 0 0
\(43\) 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) −0.173648 0.984808i −0.173648 0.984808i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(48\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(49\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(50\) −0.500000 0.866025i −0.500000 0.866025i
\(51\) −0.347296 1.96962i −0.347296 1.96962i
\(52\) 0 0
\(53\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(54\) 0.173648 0.984808i 0.173648 0.984808i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(60\) 0 0
\(61\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0 0
\(66\) −0.939693 0.342020i −0.939693 0.342020i
\(67\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(68\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(72\) 0 0
\(73\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) 0 0
\(81\) −0.766044 0.642788i −0.766044 0.642788i
\(82\) −0.173648 0.984808i −0.173648 0.984808i
\(83\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.87939 0.684040i −1.87939 0.684040i
\(87\) 0 0
\(88\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(89\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −1.00000
\(97\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(98\) 0.173648 0.984808i 0.173648 0.984808i
\(99\) 0 0
\(100\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(101\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(102\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(108\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(109\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.939693 0.342020i −0.939693 0.342020i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(128\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(129\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(130\) 0 0
\(131\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(132\) 1.00000 1.00000
\(133\) 0 0
\(134\) −1.00000 −1.00000
\(135\) 0 0
\(136\) 0.347296 1.96962i 0.347296 1.96962i
\(137\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(138\) 0 0
\(139\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −0.173648 0.984808i −0.173648 0.984808i
\(147\) −0.766044 0.642788i −0.766044 0.642788i
\(148\) 0 0
\(149\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(150\) 0.939693 0.342020i 0.939693 0.342020i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(163\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(164\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(165\) 0 0
\(166\) −0.766044 0.642788i −0.766044 0.642788i
\(167\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(168\) 0 0
\(169\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.00000 2.00000
\(173\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.766044 0.642788i −0.766044 0.642788i
\(177\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(178\) −1.00000 1.73205i −1.00000 1.73205i
\(179\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(180\) 0 0
\(181\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.939693 0.342020i 0.939693 0.342020i
\(193\) 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i \(-0.444444\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(194\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(195\) 0 0
\(196\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(200\) −0.939693 0.342020i −0.939693 0.342020i
\(201\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(202\) 0 0
\(203\) 0 0
\(204\) −1.53209 1.28558i −1.53209 1.28558i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i \(0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(215\) 0 0
\(216\) −0.500000 0.866025i −0.500000 0.866025i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.939693 0.342020i −0.939693 0.342020i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.939693 0.342020i 0.939693 0.342020i
\(227\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.500000 0.866025i 0.500000 0.866025i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(250\) 0 0
\(251\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.939693 0.342020i
\(257\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(258\) 1.00000 1.73205i 1.00000 1.73205i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(263\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(264\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(265\) 0 0
\(266\) 0 0
\(267\) −2.00000 −2.00000
\(268\) 0.939693 0.342020i 0.939693 0.342020i
\(269\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(270\) 0 0
\(271\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(272\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(273\) 0 0
\(274\) 0.500000 0.866025i 0.500000 0.866025i
\(275\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(282\) 0 0
\(283\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.29813 1.92836i 2.29813 1.92836i
\(290\) 0 0
\(291\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(292\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.87939 0.684040i 1.87939 0.684040i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(327\) 0 0
\(328\) −0.766044 0.642788i −0.766044 0.642788i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(332\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) 0.766044 0.642788i 0.766044 0.642788i
\(339\) 0.173648 0.984808i 0.173648 0.984808i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(353\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(354\) −0.500000 0.866025i −0.500000 0.866025i
\(355\) 0 0
\(356\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(357\) 0 0
\(358\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(359\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) −0.347296 1.96962i −0.347296 1.96962i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(384\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(385\) 0 0
\(386\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(387\) 0 0
\(388\) 0.500000 0.866025i 0.500000 0.866025i
\(389\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.500000 0.866025i −0.500000 0.866025i
\(393\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(402\) 0.173648 0.984808i 0.173648 0.984808i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.87939 + 0.684040i 1.87939 + 0.684040i
\(409\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(410\) 0 0
\(411\) −0.500000 0.866025i −0.500000 0.866025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.00000 1.00000
\(418\) 0 0
\(419\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(422\) 1.53209 1.28558i 1.53209 1.28558i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 1.73205i −1.00000 1.73205i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.87939 0.684040i −1.87939 0.684040i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(432\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(433\) 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i \(-0.222222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 1.00000 1.00000
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(452\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(453\) 0 0
\(454\) 0.939693 0.342020i 0.939693 0.342020i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0.347296 1.96962i 0.347296 1.96962i
\(460\) 0 0
\(461\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(462\) 0 0
\(463\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(467\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(473\) 1.87939 0.684040i 1.87939 0.684040i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(490\) 0 0
\(491\) 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i \(-0.444444\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(492\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.766044 0.642788i 0.766044 0.642788i
\(499\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.500000 0.866025i 0.500000 0.866025i
\(503\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.173648 0.984808i −0.173648 0.984808i
\(508\) 0 0
\(509\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) −1.00000 −1.00000
\(515\) 0 0
\(516\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(522\) 0 0
\(523\) −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 0.342020i \(-0.888889\pi\)
\(524\) 0.500000 0.866025i 0.500000 0.866025i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.766044 0.642788i 0.766044 0.642788i
\(529\) 0.173648 0.984808i 0.173648 0.984808i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.87939 0.684040i 1.87939 0.684040i
\(535\) 0 0
\(536\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(537\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(538\) 0 0
\(539\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(540\) 0 0
\(541\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.00000 1.73205i −1.00000 1.73205i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i \(-0.222222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(548\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(549\) 0 0
\(550\) −1.00000 −1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.766044 0.642788i −0.766044 0.642788i
\(557\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.87939 0.684040i −1.87939 0.684040i
\(562\) 0.500000 0.866025i 0.500000 0.866025i
\(563\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(579\) 1.87939 + 0.684040i 1.87939 + 0.684040i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.500000 0.866025i −0.500000 0.866025i
\(583\) 0 0
\(584\) −0.766044 0.642788i −0.766044 0.642788i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i \(0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(594\) −0.766044 0.642788i −0.766044 0.642788i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(600\) 0.500000 0.866025i 0.500000 0.866025i
\(601\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(614\) −0.173648 0.984808i −0.173648 0.984808i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(618\) 0 0
\(619\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(626\) −1.00000 −1.00000
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(632\) 0 0
\(633\) −0.347296 1.96962i −0.347296 1.96962i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(642\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(643\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.939693 0.342020i 0.939693 0.342020i
\(649\) 0.173648 0.984808i 0.173648 0.984808i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.173648 0.984808i −0.173648 0.984808i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(660\) 0 0
\(661\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(662\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(663\) 0 0
\(664\) −1.00000 −1.00000
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(675\) −0.939693 0.342020i −0.939693 0.342020i
\(676\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.173648 0.984808i 0.173648 0.984808i
\(682\) 0 0
\(683\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.53209 1.28558i 1.53209 1.28558i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.347296 1.96962i −0.347296 1.96962i
\(698\) 0 0
\(699\) 0.766044 0.642788i 0.766044 0.642788i
\(700\) 0 0
\(701\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(707\) 0 0
\(708\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(709\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.87939 0.684040i −1.87939 0.684040i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.173648 0.984808i −0.173648 0.984808i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.00000 1.00000
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(728\) 0 0
\(729\) −0.500000 0.866025i −0.500000 0.866025i
\(730\) 0 0
\(731\) −3.75877 1.36808i −3.75877 1.36808i
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.766044 0.642788i 0.766044 0.642788i
\(738\) 0 0
\(739\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(752\) 0 0
\(753\) −0.500000 0.866025i −0.500000 0.866025i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(758\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.500000 0.866025i 0.500000 0.866025i
\(769\) −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 0.342020i \(-0.888889\pi\)
\(770\) 0 0
\(771\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(772\) −1.00000 1.73205i −1.00000 1.73205i
\(773\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(785\) 0 0
\(786\) −0.500000 0.866025i −0.500000 0.866025i
\(787\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(801\) 0 0
\(802\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(803\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(804\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(810\) 0 0
\(811\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −2.00000 −2.00000
\(817\) 0 0
\(818\) −1.00000 −1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(822\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 0 0
\(825\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(826\) 0 0
\(827\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.347296 1.96962i 0.347296 1.96962i
\(834\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(839\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) 0 0
\(841\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(842\) 0 0
\(843\) −0.500000 0.866025i −0.500000 0.866025i
\(844\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(850\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(858\) 0 0
\(859\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) −0.939693 0.342020i −0.939693 0.342020i
\(865\) 0 0
\(866\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(867\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(877\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(887\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.766044 0.642788i −0.766044 0.642788i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −0.939693 0.342020i −0.939693 0.342020i
\(903\) 0 0
\(904\) 0.500000 0.866025i 0.500000 0.866025i
\(905\) 0 0
\(906\) 0 0
\(907\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(908\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 1.00000 1.00000
\(914\) 0.939693 0.342020i 0.939693 0.342020i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) −0.939693 0.342020i −0.939693 0.342020i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.00000 −1.00000
\(933\) 0 0
\(934\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(935\) 0 0
\(936\) 0 0
\(937\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(938\) 0 0
\(939\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(940\) 0 0
\(941\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.173648 0.984808i −0.173648 0.984808i
\(945\) 0 0
\(946\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(947\) 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i \(-0.444444\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.766044 0.642788i −0.766044 0.642788i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(978\) −0.939693 0.342020i −0.939693 0.342020i
\(979\) 1.87939 + 0.684040i 1.87939 + 0.684040i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(983\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(984\) 0.766044 0.642788i 0.766044 0.642788i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(992\) 0 0
\(993\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(994\) 0 0
\(995\) 0 0
\(996\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(997\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(998\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.1.u.c.1867.1 6
8.3 odd 2 CM 2888.1.u.c.1867.1 6
19.2 odd 18 2888.1.f.a.723.1 1
19.3 odd 18 2888.1.k.a.2819.1 2
19.4 even 9 inner 2888.1.u.c.99.1 6
19.5 even 9 152.1.k.a.11.1 2
19.6 even 9 inner 2888.1.u.c.2555.1 6
19.7 even 3 inner 2888.1.u.c.2411.1 6
19.8 odd 6 2888.1.u.d.1859.1 6
19.9 even 9 inner 2888.1.u.c.595.1 6
19.10 odd 18 2888.1.u.d.595.1 6
19.11 even 3 inner 2888.1.u.c.1859.1 6
19.12 odd 6 2888.1.u.d.2411.1 6
19.13 odd 18 2888.1.u.d.2555.1 6
19.14 odd 18 2888.1.k.a.2595.1 2
19.15 odd 18 2888.1.u.d.99.1 6
19.16 even 9 152.1.k.a.83.1 yes 2
19.17 even 9 2888.1.f.b.723.1 1
19.18 odd 2 2888.1.u.d.1867.1 6
57.5 odd 18 1368.1.bz.a.163.1 2
57.35 odd 18 1368.1.bz.a.235.1 2
76.35 odd 18 608.1.o.a.463.1 2
76.43 odd 18 608.1.o.a.239.1 2
95.24 even 18 3800.1.bd.c.3051.1 2
95.43 odd 36 3800.1.bn.b.2899.2 4
95.54 even 18 3800.1.bd.c.1451.1 2
95.62 odd 36 3800.1.bn.b.2899.1 4
95.73 odd 36 3800.1.bn.b.1299.1 4
95.92 odd 36 3800.1.bn.b.1299.2 4
152.3 even 18 2888.1.k.a.2819.1 2
152.5 even 18 608.1.o.a.239.1 2
152.11 odd 6 inner 2888.1.u.c.1859.1 6
152.27 even 6 2888.1.u.d.1859.1 6
152.35 odd 18 152.1.k.a.83.1 yes 2
152.43 odd 18 152.1.k.a.11.1 2
152.51 even 18 2888.1.u.d.2555.1 6
152.59 even 18 2888.1.f.a.723.1 1
152.67 even 18 2888.1.u.d.595.1 6
152.75 even 2 2888.1.u.d.1867.1 6
152.83 odd 6 inner 2888.1.u.c.2411.1 6
152.91 even 18 2888.1.u.d.99.1 6
152.99 odd 18 inner 2888.1.u.c.99.1 6
152.107 even 6 2888.1.u.d.2411.1 6
152.123 odd 18 inner 2888.1.u.c.595.1 6
152.131 odd 18 2888.1.f.b.723.1 1
152.139 odd 18 inner 2888.1.u.c.2555.1 6
152.147 even 18 2888.1.k.a.2595.1 2
152.149 even 18 608.1.o.a.463.1 2
456.35 even 18 1368.1.bz.a.235.1 2
456.347 even 18 1368.1.bz.a.163.1 2
760.43 even 36 3800.1.bn.b.2899.2 4
760.187 even 36 3800.1.bn.b.1299.2 4
760.339 odd 18 3800.1.bd.c.1451.1 2
760.347 even 36 3800.1.bn.b.2899.1 4
760.499 odd 18 3800.1.bd.c.3051.1 2
760.643 even 36 3800.1.bn.b.1299.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.1.k.a.11.1 2 19.5 even 9
152.1.k.a.11.1 2 152.43 odd 18
152.1.k.a.83.1 yes 2 19.16 even 9
152.1.k.a.83.1 yes 2 152.35 odd 18
608.1.o.a.239.1 2 76.43 odd 18
608.1.o.a.239.1 2 152.5 even 18
608.1.o.a.463.1 2 76.35 odd 18
608.1.o.a.463.1 2 152.149 even 18
1368.1.bz.a.163.1 2 57.5 odd 18
1368.1.bz.a.163.1 2 456.347 even 18
1368.1.bz.a.235.1 2 57.35 odd 18
1368.1.bz.a.235.1 2 456.35 even 18
2888.1.f.a.723.1 1 19.2 odd 18
2888.1.f.a.723.1 1 152.59 even 18
2888.1.f.b.723.1 1 19.17 even 9
2888.1.f.b.723.1 1 152.131 odd 18
2888.1.k.a.2595.1 2 19.14 odd 18
2888.1.k.a.2595.1 2 152.147 even 18
2888.1.k.a.2819.1 2 19.3 odd 18
2888.1.k.a.2819.1 2 152.3 even 18
2888.1.u.c.99.1 6 19.4 even 9 inner
2888.1.u.c.99.1 6 152.99 odd 18 inner
2888.1.u.c.595.1 6 19.9 even 9 inner
2888.1.u.c.595.1 6 152.123 odd 18 inner
2888.1.u.c.1859.1 6 19.11 even 3 inner
2888.1.u.c.1859.1 6 152.11 odd 6 inner
2888.1.u.c.1867.1 6 1.1 even 1 trivial
2888.1.u.c.1867.1 6 8.3 odd 2 CM
2888.1.u.c.2411.1 6 19.7 even 3 inner
2888.1.u.c.2411.1 6 152.83 odd 6 inner
2888.1.u.c.2555.1 6 19.6 even 9 inner
2888.1.u.c.2555.1 6 152.139 odd 18 inner
2888.1.u.d.99.1 6 19.15 odd 18
2888.1.u.d.99.1 6 152.91 even 18
2888.1.u.d.595.1 6 19.10 odd 18
2888.1.u.d.595.1 6 152.67 even 18
2888.1.u.d.1859.1 6 19.8 odd 6
2888.1.u.d.1859.1 6 152.27 even 6
2888.1.u.d.1867.1 6 19.18 odd 2
2888.1.u.d.1867.1 6 152.75 even 2
2888.1.u.d.2411.1 6 19.12 odd 6
2888.1.u.d.2411.1 6 152.107 even 6
2888.1.u.d.2555.1 6 19.13 odd 18
2888.1.u.d.2555.1 6 152.51 even 18
3800.1.bd.c.1451.1 2 95.54 even 18
3800.1.bd.c.1451.1 2 760.339 odd 18
3800.1.bd.c.3051.1 2 95.24 even 18
3800.1.bd.c.3051.1 2 760.499 odd 18
3800.1.bn.b.1299.1 4 95.73 odd 36
3800.1.bn.b.1299.1 4 760.643 even 36
3800.1.bn.b.1299.2 4 95.92 odd 36
3800.1.bn.b.1299.2 4 760.187 even 36
3800.1.bn.b.2899.1 4 95.62 odd 36
3800.1.bn.b.2899.1 4 760.347 even 36
3800.1.bn.b.2899.2 4 95.43 odd 36
3800.1.bn.b.2899.2 4 760.43 even 36