Properties

Label 152.6.a.b
Level $152$
Weight $6$
Character orbit 152.a
Self dual yes
Analytic conductor $24.378$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,6,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.3783406116\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.976277.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 267x + 1118 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{3} + (\beta_{2} + \beta_1 + 20) q^{5} + ( - 2 \beta_{2} - 2 \beta_1 - 67) q^{7} + ( - 3 \beta_{2} - 11 \beta_1 + 22) q^{9} + (5 \beta_{2} - 25 \beta_1 + 152) q^{11} + ( - 5 \beta_{2} - 21 \beta_1 - 481) q^{13}+ \cdots + ( - 1501 \beta_{2} - 5187 \beta_1 + 43334) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 7 q^{3} + 58 q^{5} - 197 q^{7} + 80 q^{9} + 476 q^{11} - 1417 q^{13} + 988 q^{15} - 2427 q^{17} + 1083 q^{19} - 1787 q^{21} - 2407 q^{23} - 93 q^{25} - 8197 q^{27} + 4227 q^{29} + 10692 q^{31} - 19274 q^{33}+ \cdots + 136690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 267x + 1118 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + \nu - 181 ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{2} + 30\nu - 369 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 30\beta _1 + 723 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.44154
14.2378
−17.6793
0 −24.4044 0 −30.4472 0 33.8943 0 352.577 0
1.2 0 3.13601 0 91.3591 0 −209.718 0 −233.165 0
1.3 0 14.2684 0 −2.91197 0 −21.1761 0 −39.4116 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.6.a.b 3
4.b odd 2 1 304.6.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.6.a.b 3 1.a even 1 1 trivial
304.6.a.i 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 7T_{3}^{2} - 380T_{3} + 1092 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(152))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 7 T^{2} + \cdots + 1092 \) Copy content Toggle raw display
$5$ \( T^{3} - 58 T^{2} + \cdots - 8100 \) Copy content Toggle raw display
$7$ \( T^{3} + 197 T^{2} + \cdots - 150525 \) Copy content Toggle raw display
$11$ \( T^{3} - 476 T^{2} + \cdots + 91411762 \) Copy content Toggle raw display
$13$ \( T^{3} + 1417 T^{2} + \cdots - 74786288 \) Copy content Toggle raw display
$17$ \( T^{3} + 2427 T^{2} + \cdots - 527349875 \) Copy content Toggle raw display
$19$ \( (T - 361)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 15151368128 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 23375387724 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 17670050944 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 1044363272 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 1121026940608 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 94489455476 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 398506731064 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 13389533414544 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 9582166971468 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 3319491792002 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 24881604307408 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 76294453923000 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 10326027907407 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 146922104678560 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 106877538478240 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 305618004982656 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 156598394824064 \) Copy content Toggle raw display
show more
show less