Properties

Label 152.8.a.d
Level $152$
Weight $8$
Character orbit 152.a
Self dual yes
Analytic conductor $47.483$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,8,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.4825238736\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2 x^{8} - 13922 x^{7} - 25112 x^{6} + 57411673 x^{5} + 379057666 x^{4} - 62486804160 x^{3} + \cdots + 69542466153984 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{19}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 6) q^{3} + (\beta_{2} - 2 \beta_1 + 10) q^{5} + (\beta_{3} + \beta_{2} + 52) q^{7} + (\beta_{6} + \beta_{3} + 3 \beta_{2} + \cdots + 943) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 6) q^{3} + (\beta_{2} - 2 \beta_1 + 10) q^{5} + (\beta_{3} + \beta_{2} + 52) q^{7} + (\beta_{6} + \beta_{3} + 3 \beta_{2} + \cdots + 943) q^{9}+ \cdots + (336 \beta_{8} + 829 \beta_{7} + \cdots + 2420371) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 56 q^{3} + 82 q^{5} + 464 q^{7} + 8513 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 56 q^{3} + 82 q^{5} + 464 q^{7} + 8513 q^{9} + 3360 q^{11} + 16522 q^{13} - 46608 q^{15} - 12902 q^{17} + 61731 q^{19} + 956 q^{21} - 76956 q^{23} + 188627 q^{25} + 417356 q^{27} + 63186 q^{29} + 314040 q^{31} + 89912 q^{33} + 429444 q^{35} + 389598 q^{37} - 350316 q^{39} + 424802 q^{41} + 1707520 q^{43} + 1515186 q^{45} + 968164 q^{47} + 3215825 q^{49} + 1731172 q^{51} + 1629130 q^{53} + 2745620 q^{55} + 384104 q^{57} + 4118768 q^{59} + 4051834 q^{61} + 6884020 q^{63} + 14144476 q^{65} + 5291736 q^{67} + 17194484 q^{69} + 7132000 q^{71} + 16065346 q^{73} - 2212376 q^{75} + 5883084 q^{77} + 799544 q^{79} + 26315489 q^{81} + 9460268 q^{83} - 2142320 q^{85} + 32521836 q^{87} + 29176746 q^{89} + 16210748 q^{91} + 46195392 q^{93} + 562438 q^{95} + 33616226 q^{97} + 21789816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 2 x^{8} - 13922 x^{7} - 25112 x^{6} + 57411673 x^{5} + 379057666 x^{4} - 62486804160 x^{3} + \cdots + 69542466153984 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 86369939727737 \nu^{8} + \cdots + 12\!\cdots\!44 ) / 12\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 14\!\cdots\!55 \nu^{8} + \cdots + 20\!\cdots\!12 ) / 19\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 67\!\cdots\!97 \nu^{8} + \cdots + 58\!\cdots\!68 ) / 29\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 424739328970720 \nu^{8} + \cdots - 47\!\cdots\!00 ) / 18\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 55\!\cdots\!31 \nu^{8} + \cdots - 87\!\cdots\!08 ) / 19\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 772928886362595 \nu^{8} + \cdots - 75\!\cdots\!56 ) / 12\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 84\!\cdots\!43 \nu^{8} + \cdots - 41\!\cdots\!64 ) / 48\!\cdots\!84 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{3} + 3\beta_{2} + 5\beta _1 + 3094 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{8} - 6\beta_{7} - 3\beta_{6} + 14\beta_{5} - 22\beta_{4} + 5\beta_{3} - 170\beta_{2} + 5737\beta _1 + 16306 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 246 \beta_{8} - 870 \beta_{7} + 6745 \beta_{6} + 218 \beta_{5} + 164 \beta_{4} + 7065 \beta_{3} + \cdots + 17599490 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 30519 \beta_{8} - 22602 \beta_{7} - 18885 \beta_{6} + 135952 \beta_{5} - 156332 \beta_{4} + \cdots + 126800870 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3257124 \beta_{8} - 8998014 \beta_{7} + 43235341 \beta_{6} + 2992102 \beta_{5} + 938212 \beta_{4} + \cdots + 109685571738 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 223599417 \beta_{8} - 15333714 \beta_{7} - 157559025 \beta_{6} + 1091696124 \beta_{5} + \cdots + 937381890942 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 31102975458 \beta_{8} - 74462823846 \beta_{7} + 277014842209 \beta_{6} + 28990339890 \beta_{5} + \cdots + 702834772848850 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−82.7282
−70.2165
−30.7875
−18.9403
−7.53304
10.1837
41.7024
77.2992
83.0202
0 −76.7282 0 510.168 0 −402.237 0 3700.22 0
1.2 0 −64.2165 0 −1.14422 0 1813.97 0 1936.76 0
1.3 0 −24.7875 0 150.360 0 −1661.39 0 −1572.58 0
1.4 0 −12.9403 0 −448.356 0 −610.684 0 −2019.55 0
1.5 0 −1.53304 0 −60.7705 0 1098.49 0 −2184.65 0
1.6 0 16.1837 0 −161.818 0 −301.718 0 −1925.09 0
1.7 0 47.7024 0 432.335 0 207.442 0 88.5147 0
1.8 0 83.2992 0 −427.913 0 −991.087 0 4751.76 0
1.9 0 89.0202 0 89.1384 0 1311.21 0 5737.60 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.8.a.d 9
4.b odd 2 1 304.8.a.m 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.8.a.d 9 1.a even 1 1 trivial
304.8.a.m 9 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{9} - 56 T_{3}^{8} - 12530 T_{3}^{7} + 539452 T_{3}^{6} + 47978161 T_{3}^{5} + \cdots + 13870109203776 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(152))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} \) Copy content Toggle raw display
$3$ \( T^{9} + \cdots + 13870109203776 \) Copy content Toggle raw display
$5$ \( T^{9} + \cdots + 63\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{9} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{9} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots - 77\!\cdots\!30 \) Copy content Toggle raw display
$19$ \( (T - 6859)^{9} \) Copy content Toggle raw display
$23$ \( T^{9} + \cdots + 75\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots + 10\!\cdots\!12 \) Copy content Toggle raw display
$31$ \( T^{9} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots + 72\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots - 54\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots + 11\!\cdots\!52 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots - 11\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots - 72\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots + 71\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots + 50\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots - 10\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots - 30\!\cdots\!34 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots - 61\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots + 29\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots - 37\!\cdots\!72 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots + 39\!\cdots\!44 \) Copy content Toggle raw display
show more
show less