Properties

Label 1520.2.a.q
Level $1520$
Weight $2$
Character orbit 1520.a
Self dual yes
Analytic conductor $12.137$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(1,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1372611072\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - q^{5} + (\beta_{2} - 2 \beta_1 + 1) q^{7} + \beta_{2} q^{9} - 2 \beta_{2} q^{11} + ( - 2 \beta_{2} + \beta_1 - 4) q^{13} - \beta_1 q^{15} + (\beta_{2} - 1) q^{17} - q^{19} + ( - \beta_{2} + 2 \beta_1 - 5) q^{21}+ \cdots + (2 \beta_{2} - 4 \beta_1 - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} - 3 q^{5} + q^{7} - 11 q^{13} - q^{15} - 3 q^{17} - 3 q^{19} - 13 q^{21} + 9 q^{23} + 3 q^{25} + q^{27} - 7 q^{29} - 6 q^{31} - 8 q^{33} - q^{35} - 20 q^{37} - 3 q^{39} - 22 q^{41} + 10 q^{43}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.81361
0.470683
2.34292
0 −1.81361 0 −1.00000 0 4.91638 0 0.289169 0
1.2 0 0.470683 0 −1.00000 0 −2.71982 0 −2.77846 0
1.3 0 2.34292 0 −1.00000 0 −1.19656 0 2.48929 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.a.q 3
4.b odd 2 1 760.2.a.i 3
5.b even 2 1 7600.2.a.bp 3
8.b even 2 1 6080.2.a.br 3
8.d odd 2 1 6080.2.a.bx 3
12.b even 2 1 6840.2.a.bm 3
20.d odd 2 1 3800.2.a.w 3
20.e even 4 2 3800.2.d.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.a.i 3 4.b odd 2 1
1520.2.a.q 3 1.a even 1 1 trivial
3800.2.a.w 3 20.d odd 2 1
3800.2.d.n 6 20.e even 4 2
6080.2.a.br 3 8.b even 2 1
6080.2.a.bx 3 8.d odd 2 1
6840.2.a.bm 3 12.b even 2 1
7600.2.a.bp 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1520))\):

\( T_{3}^{3} - T_{3}^{2} - 4T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} - T_{7}^{2} - 16T_{7} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - T^{2} - 4T + 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - T^{2} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{3} - 28T - 16 \) Copy content Toggle raw display
$13$ \( T^{3} + 11 T^{2} + \cdots - 86 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 9 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{3} + 7 T^{2} + \cdots - 292 \) Copy content Toggle raw display
$31$ \( T^{3} + 6 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$37$ \( T^{3} + 20 T^{2} + \cdots + 244 \) Copy content Toggle raw display
$41$ \( T^{3} + 22 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$43$ \( T^{3} - 10 T^{2} + \cdots + 352 \) Copy content Toggle raw display
$47$ \( T^{3} - 112T + 128 \) Copy content Toggle raw display
$53$ \( T^{3} + 7 T^{2} + \cdots - 1342 \) Copy content Toggle raw display
$59$ \( T^{3} + 11 T^{2} + \cdots - 1544 \) Copy content Toggle raw display
$61$ \( T^{3} + 16 T^{2} + \cdots - 352 \) Copy content Toggle raw display
$67$ \( T^{3} - T^{2} + \cdots - 262 \) Copy content Toggle raw display
$71$ \( T^{3} \) Copy content Toggle raw display
$73$ \( T^{3} + 5 T^{2} + \cdots - 1228 \) Copy content Toggle raw display
$79$ \( T^{3} + 26 T^{2} + \cdots + 496 \) Copy content Toggle raw display
$83$ \( T^{3} - 14 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$89$ \( T^{3} + 6 T^{2} + \cdots - 1256 \) Copy content Toggle raw display
$97$ \( T^{3} - 8 T^{2} + \cdots + 292 \) Copy content Toggle raw display
show more
show less