Properties

Label 1520.2.d.g
Level 15201520
Weight 22
Character orbit 1520.d
Analytic conductor 12.13712.137
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(609,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.609");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1520=24519 1520 = 2^{4} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1520.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.137261107212.1372611072
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β1+1)q5+(2β2β1)q7+q9+(β32)q11+(β2β1)q13+(β3+β2)q15+2β2q17++(β32)q99+O(q100) q + \beta_{2} q^{3} + ( - \beta_1 + 1) q^{5} + ( - 2 \beta_{2} - \beta_1) q^{7} + q^{9} + ( - \beta_{3} - 2) q^{11} + (\beta_{2} - \beta_1) q^{13} + (\beta_{3} + \beta_{2}) q^{15} + 2 \beta_{2} q^{17}+ \cdots + ( - \beta_{3} - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q5+4q98q114q19+16q2112q25+8q2916q3116q358q398q41+4q4520q4916q518q5516q5916q65+32q69+8q99+O(q100) 4 q + 4 q^{5} + 4 q^{9} - 8 q^{11} - 4 q^{19} + 16 q^{21} - 12 q^{25} + 8 q^{29} - 16 q^{31} - 16 q^{35} - 8 q^{39} - 8 q^{41} + 4 q^{45} - 20 q^{49} - 16 q^{51} - 8 q^{55} - 16 q^{59} - 16 q^{65} + 32 q^{69}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 2ζ82 2\zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== 2ζ83+2ζ8 -2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+2β2)/4 ( \beta_{3} + 2\beta_{2} ) / 4 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+2β2)/4 ( -\beta_{3} + 2\beta_{2} ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1520Z)×\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times.

nn 191191 401401 11411141 12171217
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
609.1
−0.707107 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0 1.41421i 0 1.00000 2.00000i 0 0.828427i 0 1.00000 0
609.2 0 1.41421i 0 1.00000 + 2.00000i 0 4.82843i 0 1.00000 0
609.3 0 1.41421i 0 1.00000 2.00000i 0 4.82843i 0 1.00000 0
609.4 0 1.41421i 0 1.00000 + 2.00000i 0 0.828427i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.d.g 4
4.b odd 2 1 760.2.d.d 4
5.b even 2 1 inner 1520.2.d.g 4
5.c odd 4 1 7600.2.a.z 2
5.c odd 4 1 7600.2.a.bb 2
20.d odd 2 1 760.2.d.d 4
20.e even 4 1 3800.2.a.m 2
20.e even 4 1 3800.2.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.2.d.d 4 4.b odd 2 1
760.2.d.d 4 20.d odd 2 1
1520.2.d.g 4 1.a even 1 1 trivial
1520.2.d.g 4 5.b even 2 1 inner
3800.2.a.m 2 20.e even 4 1
3800.2.a.o 2 20.e even 4 1
7600.2.a.z 2 5.c odd 4 1
7600.2.a.bb 2 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1520,[χ])S_{2}^{\mathrm{new}}(1520, [\chi]):

T32+2 T_{3}^{2} + 2 Copy content Toggle raw display
T74+24T72+16 T_{7}^{4} + 24T_{7}^{2} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
55 (T22T+5)2 (T^{2} - 2 T + 5)^{2} Copy content Toggle raw display
77 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
1111 (T2+4T4)2 (T^{2} + 4 T - 4)^{2} Copy content Toggle raw display
1313 T4+12T2+4 T^{4} + 12T^{2} + 4 Copy content Toggle raw display
1717 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
1919 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2323 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
2929 (T24T28)2 (T^{2} - 4 T - 28)^{2} Copy content Toggle raw display
3131 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
3737 T4+12T2+4 T^{4} + 12T^{2} + 4 Copy content Toggle raw display
4141 (T2+4T4)2 (T^{2} + 4 T - 4)^{2} Copy content Toggle raw display
4343 T4+88T2+784 T^{4} + 88T^{2} + 784 Copy content Toggle raw display
4747 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
5353 T4+204T2+8836 T^{4} + 204T^{2} + 8836 Copy content Toggle raw display
5959 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
6161 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
6767 (T2+98)2 (T^{2} + 98)^{2} Copy content Toggle raw display
7171 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
7373 T4+48T2+64 T^{4} + 48T^{2} + 64 Copy content Toggle raw display
7979 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
8383 T4+264T2+4624 T^{4} + 264T^{2} + 4624 Copy content Toggle raw display
8989 (T24T124)2 (T^{2} - 4 T - 124)^{2} Copy content Toggle raw display
9797 T4+172T2+196 T^{4} + 172T^{2} + 196 Copy content Toggle raw display
show more
show less