Properties

Label 1520.2.g.a
Level $1520$
Weight $2$
Character orbit 1520.g
Analytic conductor $12.137$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,2,Mod(1519,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.1519");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1520.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1372611072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-19})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{5} - 3 q^{7} + 3 q^{9} + ( - 2 \beta + 1) q^{11} + (2 \beta - 1) q^{17} + ( - 2 \beta + 1) q^{19} - 4 q^{23} + (\beta - 5) q^{25} + 3 \beta q^{35} + q^{43} - 3 \beta q^{45} - 13 q^{47} + 2 q^{49} + \cdots + ( - 6 \beta + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} - 6 q^{7} + 6 q^{9} - 8 q^{23} - 9 q^{25} + 3 q^{35} + 2 q^{43} - 3 q^{45} - 26 q^{47} + 4 q^{49} - 19 q^{55} - 30 q^{61} - 18 q^{63} + 18 q^{81} - 32 q^{83} + 19 q^{85} - 19 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1519.1
0.500000 + 2.17945i
0.500000 2.17945i
0 0 0 −0.500000 2.17945i 0 −3.00000 0 3.00000 0
1519.2 0 0 0 −0.500000 + 2.17945i 0 −3.00000 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
20.d odd 2 1 inner
380.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.g.a 2
4.b odd 2 1 1520.2.g.b yes 2
5.b even 2 1 1520.2.g.b yes 2
19.b odd 2 1 CM 1520.2.g.a 2
20.d odd 2 1 inner 1520.2.g.a 2
76.d even 2 1 1520.2.g.b yes 2
95.d odd 2 1 1520.2.g.b yes 2
380.d even 2 1 inner 1520.2.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1520.2.g.a 2 1.a even 1 1 trivial
1520.2.g.a 2 19.b odd 2 1 CM
1520.2.g.a 2 20.d odd 2 1 inner
1520.2.g.a 2 380.d even 2 1 inner
1520.2.g.b yes 2 4.b odd 2 1
1520.2.g.b yes 2 5.b even 2 1
1520.2.g.b yes 2 76.d even 2 1
1520.2.g.b yes 2 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1520, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T + 5 \) Copy content Toggle raw display
$7$ \( (T + 3)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 19 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 19 \) Copy content Toggle raw display
$19$ \( T^{2} + 19 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( (T + 13)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 15)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 171 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 16)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less