Properties

Label 1521.2.i.e
Level $1521$
Weight $2$
Character orbit 1521.i
Analytic conductor $12.145$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(746,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.746");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{7} - \beta_{5}) q^{2} + 2 \beta_{3} q^{4} + ( - \beta_{7} + \beta_{5} + \beta_{2}) q^{5} + \beta_1 q^{7} + ( - 2 \beta_{6} - 2 \beta_{3} + \cdots - 2) q^{10} + (2 \beta_{7} - \beta_{5} - 3 \beta_{4}) q^{11}+ \cdots + (4 \beta_{7} + 6 \beta_{5} + 2 \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} + 32 q^{16} - 8 q^{19} + 16 q^{22} - 8 q^{28} - 44 q^{31} - 48 q^{34} - 32 q^{37} + 64 q^{55} - 16 q^{58} + 64 q^{61} + 4 q^{67} - 16 q^{70} - 44 q^{73} - 16 q^{76} + 16 q^{79} + 48 q^{85}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{4} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{24}^{7} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{4} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{5} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{6} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} - \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( -\beta_{6} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(-\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
746.1
−0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 0.258819i
−1.41421 1.41421i 0 2.00000i −0.517638 0.517638i 0 1.36603 + 1.36603i 0 0 1.46410i
746.2 −1.41421 1.41421i 0 2.00000i 1.93185 + 1.93185i 0 −0.366025 0.366025i 0 0 5.46410i
746.3 1.41421 + 1.41421i 0 2.00000i −1.93185 1.93185i 0 −0.366025 0.366025i 0 0 5.46410i
746.4 1.41421 + 1.41421i 0 2.00000i 0.517638 + 0.517638i 0 1.36603 + 1.36603i 0 0 1.46410i
944.1 −1.41421 + 1.41421i 0 2.00000i −0.517638 + 0.517638i 0 1.36603 1.36603i 0 0 1.46410i
944.2 −1.41421 + 1.41421i 0 2.00000i 1.93185 1.93185i 0 −0.366025 + 0.366025i 0 0 5.46410i
944.3 1.41421 1.41421i 0 2.00000i −1.93185 + 1.93185i 0 −0.366025 + 0.366025i 0 0 5.46410i
944.4 1.41421 1.41421i 0 2.00000i 0.517638 0.517638i 0 1.36603 1.36603i 0 0 1.46410i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 746.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.2.i.e 8
3.b odd 2 1 inner 1521.2.i.e 8
13.b even 2 1 1521.2.i.d 8
13.d odd 4 1 1521.2.i.d 8
13.d odd 4 1 inner 1521.2.i.e 8
13.e even 6 1 117.2.ba.a 8
13.f odd 12 1 117.2.ba.a 8
39.d odd 2 1 1521.2.i.d 8
39.f even 4 1 1521.2.i.d 8
39.f even 4 1 inner 1521.2.i.e 8
39.h odd 6 1 117.2.ba.a 8
39.k even 12 1 117.2.ba.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.ba.a 8 13.e even 6 1
117.2.ba.a 8 13.f odd 12 1
117.2.ba.a 8 39.h odd 6 1
117.2.ba.a 8 39.k even 12 1
1521.2.i.d 8 13.b even 2 1
1521.2.i.d 8 13.d odd 4 1
1521.2.i.d 8 39.d odd 2 1
1521.2.i.d 8 39.f even 4 1
1521.2.i.e 8 1.a even 1 1 trivial
1521.2.i.e 8 3.b odd 2 1 inner
1521.2.i.e 8 13.d odd 4 1 inner
1521.2.i.e 8 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1521, [\chi])\):

\( T_{2}^{4} + 16 \) Copy content Toggle raw display
\( T_{5}^{8} + 56T_{5}^{4} + 16 \) Copy content Toggle raw display
\( T_{7}^{4} - 2T_{7}^{3} + 2T_{7}^{2} + 2T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 56T^{4} + 16 \) Copy content Toggle raw display
$7$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 1784 T^{4} + 456976 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} - 48 T^{2} + 144)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 4 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 22 T^{3} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 16 T^{3} + \cdots + 676)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 896T^{4} + 4096 \) Copy content Toggle raw display
$43$ \( (T^{4} + 78 T^{2} + 1089)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 2168 T^{4} + 234256 \) Copy content Toggle raw display
$53$ \( (T^{4} + 112 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 10808T^{4} + 16 \) Copy content Toggle raw display
$61$ \( (T^{2} - 16 T + 37)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 2 T^{3} + \cdots + 5329)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 60152 T^{4} + 456976 \) Copy content Toggle raw display
$73$ \( (T^{4} + 22 T^{3} + \cdots + 2209)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 4 T - 23)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 3104T^{4} + 256 \) Copy content Toggle raw display
$89$ \( T^{8} + 17696 T^{4} + 7311616 \) Copy content Toggle raw display
$97$ \( (T^{4} + 10 T^{3} + \cdots + 3721)^{2} \) Copy content Toggle raw display
show more
show less