Properties

Label 1521.4.a.h.1.1
Level $1521$
Weight $4$
Character 1521.1
Self dual yes
Analytic conductor $89.742$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -7.00000 q^{4} -7.00000 q^{5} -10.0000 q^{7} -15.0000 q^{8} -7.00000 q^{10} +22.0000 q^{11} -10.0000 q^{14} +41.0000 q^{16} -37.0000 q^{17} +30.0000 q^{19} +49.0000 q^{20} +22.0000 q^{22} +162.000 q^{23} -76.0000 q^{25} +70.0000 q^{28} +113.000 q^{29} +196.000 q^{31} +161.000 q^{32} -37.0000 q^{34} +70.0000 q^{35} +13.0000 q^{37} +30.0000 q^{38} +105.000 q^{40} -285.000 q^{41} -246.000 q^{43} -154.000 q^{44} +162.000 q^{46} +462.000 q^{47} -243.000 q^{49} -76.0000 q^{50} +537.000 q^{53} -154.000 q^{55} +150.000 q^{56} +113.000 q^{58} -576.000 q^{59} -635.000 q^{61} +196.000 q^{62} -167.000 q^{64} +202.000 q^{67} +259.000 q^{68} +70.0000 q^{70} +1086.00 q^{71} -805.000 q^{73} +13.0000 q^{74} -210.000 q^{76} -220.000 q^{77} +884.000 q^{79} -287.000 q^{80} -285.000 q^{82} -518.000 q^{83} +259.000 q^{85} -246.000 q^{86} -330.000 q^{88} -194.000 q^{89} -1134.00 q^{92} +462.000 q^{94} -210.000 q^{95} -1202.00 q^{97} -243.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) 0 0
\(4\) −7.00000 −0.875000
\(5\) −7.00000 −0.626099 −0.313050 0.949737i \(-0.601351\pi\)
−0.313050 + 0.949737i \(0.601351\pi\)
\(6\) 0 0
\(7\) −10.0000 −0.539949 −0.269975 0.962867i \(-0.587015\pi\)
−0.269975 + 0.962867i \(0.587015\pi\)
\(8\) −15.0000 −0.662913
\(9\) 0 0
\(10\) −7.00000 −0.221359
\(11\) 22.0000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −10.0000 −0.190901
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) −37.0000 −0.527872 −0.263936 0.964540i \(-0.585021\pi\)
−0.263936 + 0.964540i \(0.585021\pi\)
\(18\) 0 0
\(19\) 30.0000 0.362235 0.181118 0.983461i \(-0.442029\pi\)
0.181118 + 0.983461i \(0.442029\pi\)
\(20\) 49.0000 0.547837
\(21\) 0 0
\(22\) 22.0000 0.213201
\(23\) 162.000 1.46867 0.734333 0.678789i \(-0.237495\pi\)
0.734333 + 0.678789i \(0.237495\pi\)
\(24\) 0 0
\(25\) −76.0000 −0.608000
\(26\) 0 0
\(27\) 0 0
\(28\) 70.0000 0.472456
\(29\) 113.000 0.723571 0.361786 0.932261i \(-0.382167\pi\)
0.361786 + 0.932261i \(0.382167\pi\)
\(30\) 0 0
\(31\) 196.000 1.13557 0.567785 0.823177i \(-0.307801\pi\)
0.567785 + 0.823177i \(0.307801\pi\)
\(32\) 161.000 0.889408
\(33\) 0 0
\(34\) −37.0000 −0.186631
\(35\) 70.0000 0.338062
\(36\) 0 0
\(37\) 13.0000 0.0577618 0.0288809 0.999583i \(-0.490806\pi\)
0.0288809 + 0.999583i \(0.490806\pi\)
\(38\) 30.0000 0.128070
\(39\) 0 0
\(40\) 105.000 0.415049
\(41\) −285.000 −1.08560 −0.542799 0.839863i \(-0.682635\pi\)
−0.542799 + 0.839863i \(0.682635\pi\)
\(42\) 0 0
\(43\) −246.000 −0.872434 −0.436217 0.899842i \(-0.643682\pi\)
−0.436217 + 0.899842i \(0.643682\pi\)
\(44\) −154.000 −0.527645
\(45\) 0 0
\(46\) 162.000 0.519252
\(47\) 462.000 1.43382 0.716911 0.697165i \(-0.245555\pi\)
0.716911 + 0.697165i \(0.245555\pi\)
\(48\) 0 0
\(49\) −243.000 −0.708455
\(50\) −76.0000 −0.214960
\(51\) 0 0
\(52\) 0 0
\(53\) 537.000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(54\) 0 0
\(55\) −154.000 −0.377552
\(56\) 150.000 0.357939
\(57\) 0 0
\(58\) 113.000 0.255821
\(59\) −576.000 −1.27100 −0.635498 0.772102i \(-0.719205\pi\)
−0.635498 + 0.772102i \(0.719205\pi\)
\(60\) 0 0
\(61\) −635.000 −1.33284 −0.666421 0.745575i \(-0.732175\pi\)
−0.666421 + 0.745575i \(0.732175\pi\)
\(62\) 196.000 0.401484
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) 0 0
\(66\) 0 0
\(67\) 202.000 0.368332 0.184166 0.982895i \(-0.441042\pi\)
0.184166 + 0.982895i \(0.441042\pi\)
\(68\) 259.000 0.461888
\(69\) 0 0
\(70\) 70.0000 0.119523
\(71\) 1086.00 1.81527 0.907637 0.419755i \(-0.137884\pi\)
0.907637 + 0.419755i \(0.137884\pi\)
\(72\) 0 0
\(73\) −805.000 −1.29066 −0.645330 0.763904i \(-0.723280\pi\)
−0.645330 + 0.763904i \(0.723280\pi\)
\(74\) 13.0000 0.0204219
\(75\) 0 0
\(76\) −210.000 −0.316956
\(77\) −220.000 −0.325602
\(78\) 0 0
\(79\) 884.000 1.25896 0.629480 0.777017i \(-0.283268\pi\)
0.629480 + 0.777017i \(0.283268\pi\)
\(80\) −287.000 −0.401095
\(81\) 0 0
\(82\) −285.000 −0.383817
\(83\) −518.000 −0.685035 −0.342517 0.939511i \(-0.611280\pi\)
−0.342517 + 0.939511i \(0.611280\pi\)
\(84\) 0 0
\(85\) 259.000 0.330500
\(86\) −246.000 −0.308452
\(87\) 0 0
\(88\) −330.000 −0.399751
\(89\) −194.000 −0.231056 −0.115528 0.993304i \(-0.536856\pi\)
−0.115528 + 0.993304i \(0.536856\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1134.00 −1.28508
\(93\) 0 0
\(94\) 462.000 0.506933
\(95\) −210.000 −0.226795
\(96\) 0 0
\(97\) −1202.00 −1.25819 −0.629096 0.777328i \(-0.716575\pi\)
−0.629096 + 0.777328i \(0.716575\pi\)
\(98\) −243.000 −0.250477
\(99\) 0 0
\(100\) 532.000 0.532000
\(101\) 429.000 0.422645 0.211322 0.977416i \(-0.432223\pi\)
0.211322 + 0.977416i \(0.432223\pi\)
\(102\) 0 0
\(103\) −1302.00 −1.24553 −0.622766 0.782408i \(-0.713991\pi\)
−0.622766 + 0.782408i \(0.713991\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 537.000 0.492057
\(107\) 1338.00 1.20887 0.604436 0.796654i \(-0.293398\pi\)
0.604436 + 0.796654i \(0.293398\pi\)
\(108\) 0 0
\(109\) −1034.00 −0.908617 −0.454308 0.890844i \(-0.650114\pi\)
−0.454308 + 0.890844i \(0.650114\pi\)
\(110\) −154.000 −0.133485
\(111\) 0 0
\(112\) −410.000 −0.345905
\(113\) −1077.00 −0.896599 −0.448299 0.893884i \(-0.647970\pi\)
−0.448299 + 0.893884i \(0.647970\pi\)
\(114\) 0 0
\(115\) −1134.00 −0.919531
\(116\) −791.000 −0.633125
\(117\) 0 0
\(118\) −576.000 −0.449365
\(119\) 370.000 0.285024
\(120\) 0 0
\(121\) −847.000 −0.636364
\(122\) −635.000 −0.471231
\(123\) 0 0
\(124\) −1372.00 −0.993623
\(125\) 1407.00 1.00677
\(126\) 0 0
\(127\) −988.000 −0.690321 −0.345161 0.938544i \(-0.612176\pi\)
−0.345161 + 0.938544i \(0.612176\pi\)
\(128\) −1455.00 −1.00473
\(129\) 0 0
\(130\) 0 0
\(131\) −560.000 −0.373492 −0.186746 0.982408i \(-0.559794\pi\)
−0.186746 + 0.982408i \(0.559794\pi\)
\(132\) 0 0
\(133\) −300.000 −0.195589
\(134\) 202.000 0.130225
\(135\) 0 0
\(136\) 555.000 0.349933
\(137\) 519.000 0.323658 0.161829 0.986819i \(-0.448261\pi\)
0.161829 + 0.986819i \(0.448261\pi\)
\(138\) 0 0
\(139\) −348.000 −0.212352 −0.106176 0.994347i \(-0.533861\pi\)
−0.106176 + 0.994347i \(0.533861\pi\)
\(140\) −490.000 −0.295804
\(141\) 0 0
\(142\) 1086.00 0.641796
\(143\) 0 0
\(144\) 0 0
\(145\) −791.000 −0.453027
\(146\) −805.000 −0.456317
\(147\) 0 0
\(148\) −91.0000 −0.0505416
\(149\) 645.000 0.354634 0.177317 0.984154i \(-0.443258\pi\)
0.177317 + 0.984154i \(0.443258\pi\)
\(150\) 0 0
\(151\) 2914.00 1.57045 0.785225 0.619211i \(-0.212547\pi\)
0.785225 + 0.619211i \(0.212547\pi\)
\(152\) −450.000 −0.240130
\(153\) 0 0
\(154\) −220.000 −0.115118
\(155\) −1372.00 −0.710979
\(156\) 0 0
\(157\) −2079.00 −1.05683 −0.528415 0.848986i \(-0.677213\pi\)
−0.528415 + 0.848986i \(0.677213\pi\)
\(158\) 884.000 0.445109
\(159\) 0 0
\(160\) −1127.00 −0.556857
\(161\) −1620.00 −0.793006
\(162\) 0 0
\(163\) 1700.00 0.816897 0.408449 0.912781i \(-0.366070\pi\)
0.408449 + 0.912781i \(0.366070\pi\)
\(164\) 1995.00 0.949898
\(165\) 0 0
\(166\) −518.000 −0.242196
\(167\) −3680.00 −1.70519 −0.852596 0.522571i \(-0.824973\pi\)
−0.852596 + 0.522571i \(0.824973\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 259.000 0.116849
\(171\) 0 0
\(172\) 1722.00 0.763379
\(173\) −4146.00 −1.82205 −0.911025 0.412352i \(-0.864707\pi\)
−0.911025 + 0.412352i \(0.864707\pi\)
\(174\) 0 0
\(175\) 760.000 0.328289
\(176\) 902.000 0.386311
\(177\) 0 0
\(178\) −194.000 −0.0816905
\(179\) −3674.00 −1.53412 −0.767060 0.641575i \(-0.778281\pi\)
−0.767060 + 0.641575i \(0.778281\pi\)
\(180\) 0 0
\(181\) −3283.00 −1.34820 −0.674098 0.738642i \(-0.735467\pi\)
−0.674098 + 0.738642i \(0.735467\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2430.00 −0.973598
\(185\) −91.0000 −0.0361646
\(186\) 0 0
\(187\) −814.000 −0.318319
\(188\) −3234.00 −1.25459
\(189\) 0 0
\(190\) −210.000 −0.0801842
\(191\) 596.000 0.225786 0.112893 0.993607i \(-0.463988\pi\)
0.112893 + 0.993607i \(0.463988\pi\)
\(192\) 0 0
\(193\) −393.000 −0.146574 −0.0732869 0.997311i \(-0.523349\pi\)
−0.0732869 + 0.997311i \(0.523349\pi\)
\(194\) −1202.00 −0.444838
\(195\) 0 0
\(196\) 1701.00 0.619898
\(197\) 3522.00 1.27377 0.636884 0.770960i \(-0.280223\pi\)
0.636884 + 0.770960i \(0.280223\pi\)
\(198\) 0 0
\(199\) 2018.00 0.718855 0.359428 0.933173i \(-0.382972\pi\)
0.359428 + 0.933173i \(0.382972\pi\)
\(200\) 1140.00 0.403051
\(201\) 0 0
\(202\) 429.000 0.149427
\(203\) −1130.00 −0.390692
\(204\) 0 0
\(205\) 1995.00 0.679692
\(206\) −1302.00 −0.440362
\(207\) 0 0
\(208\) 0 0
\(209\) 660.000 0.218436
\(210\) 0 0
\(211\) 160.000 0.0522031 0.0261016 0.999659i \(-0.491691\pi\)
0.0261016 + 0.999659i \(0.491691\pi\)
\(212\) −3759.00 −1.21778
\(213\) 0 0
\(214\) 1338.00 0.427401
\(215\) 1722.00 0.546230
\(216\) 0 0
\(217\) −1960.00 −0.613150
\(218\) −1034.00 −0.321245
\(219\) 0 0
\(220\) 1078.00 0.330358
\(221\) 0 0
\(222\) 0 0
\(223\) 4072.00 1.22279 0.611393 0.791327i \(-0.290609\pi\)
0.611393 + 0.791327i \(0.290609\pi\)
\(224\) −1610.00 −0.480235
\(225\) 0 0
\(226\) −1077.00 −0.316995
\(227\) 5794.00 1.69410 0.847051 0.531511i \(-0.178376\pi\)
0.847051 + 0.531511i \(0.178376\pi\)
\(228\) 0 0
\(229\) 6482.00 1.87049 0.935246 0.353999i \(-0.115178\pi\)
0.935246 + 0.353999i \(0.115178\pi\)
\(230\) −1134.00 −0.325103
\(231\) 0 0
\(232\) −1695.00 −0.479665
\(233\) −6890.00 −1.93725 −0.968624 0.248530i \(-0.920053\pi\)
−0.968624 + 0.248530i \(0.920053\pi\)
\(234\) 0 0
\(235\) −3234.00 −0.897714
\(236\) 4032.00 1.11212
\(237\) 0 0
\(238\) 370.000 0.100771
\(239\) −2466.00 −0.667415 −0.333708 0.942677i \(-0.608300\pi\)
−0.333708 + 0.942677i \(0.608300\pi\)
\(240\) 0 0
\(241\) −3617.00 −0.966770 −0.483385 0.875408i \(-0.660593\pi\)
−0.483385 + 0.875408i \(0.660593\pi\)
\(242\) −847.000 −0.224989
\(243\) 0 0
\(244\) 4445.00 1.16624
\(245\) 1701.00 0.443563
\(246\) 0 0
\(247\) 0 0
\(248\) −2940.00 −0.752783
\(249\) 0 0
\(250\) 1407.00 0.355946
\(251\) −4860.00 −1.22215 −0.611077 0.791571i \(-0.709263\pi\)
−0.611077 + 0.791571i \(0.709263\pi\)
\(252\) 0 0
\(253\) 3564.00 0.885639
\(254\) −988.000 −0.244065
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) −565.000 −0.137135 −0.0685676 0.997646i \(-0.521843\pi\)
−0.0685676 + 0.997646i \(0.521843\pi\)
\(258\) 0 0
\(259\) −130.000 −0.0311884
\(260\) 0 0
\(261\) 0 0
\(262\) −560.000 −0.132049
\(263\) 498.000 0.116760 0.0583802 0.998294i \(-0.481406\pi\)
0.0583802 + 0.998294i \(0.481406\pi\)
\(264\) 0 0
\(265\) −3759.00 −0.871372
\(266\) −300.000 −0.0691511
\(267\) 0 0
\(268\) −1414.00 −0.322290
\(269\) −5546.00 −1.25705 −0.628523 0.777791i \(-0.716340\pi\)
−0.628523 + 0.777791i \(0.716340\pi\)
\(270\) 0 0
\(271\) −2256.00 −0.505691 −0.252845 0.967507i \(-0.581366\pi\)
−0.252845 + 0.967507i \(0.581366\pi\)
\(272\) −1517.00 −0.338168
\(273\) 0 0
\(274\) 519.000 0.114430
\(275\) −1672.00 −0.366638
\(276\) 0 0
\(277\) 2309.00 0.500846 0.250423 0.968137i \(-0.419430\pi\)
0.250423 + 0.968137i \(0.419430\pi\)
\(278\) −348.000 −0.0750779
\(279\) 0 0
\(280\) −1050.00 −0.224105
\(281\) −5833.00 −1.23832 −0.619159 0.785265i \(-0.712527\pi\)
−0.619159 + 0.785265i \(0.712527\pi\)
\(282\) 0 0
\(283\) 1650.00 0.346581 0.173290 0.984871i \(-0.444560\pi\)
0.173290 + 0.984871i \(0.444560\pi\)
\(284\) −7602.00 −1.58837
\(285\) 0 0
\(286\) 0 0
\(287\) 2850.00 0.586168
\(288\) 0 0
\(289\) −3544.00 −0.721352
\(290\) −791.000 −0.160169
\(291\) 0 0
\(292\) 5635.00 1.12933
\(293\) −2991.00 −0.596369 −0.298184 0.954508i \(-0.596381\pi\)
−0.298184 + 0.954508i \(0.596381\pi\)
\(294\) 0 0
\(295\) 4032.00 0.795770
\(296\) −195.000 −0.0382910
\(297\) 0 0
\(298\) 645.000 0.125382
\(299\) 0 0
\(300\) 0 0
\(301\) 2460.00 0.471070
\(302\) 2914.00 0.555238
\(303\) 0 0
\(304\) 1230.00 0.232057
\(305\) 4445.00 0.834492
\(306\) 0 0
\(307\) −2422.00 −0.450263 −0.225132 0.974328i \(-0.572281\pi\)
−0.225132 + 0.974328i \(0.572281\pi\)
\(308\) 1540.00 0.284901
\(309\) 0 0
\(310\) −1372.00 −0.251369
\(311\) 3402.00 0.620288 0.310144 0.950690i \(-0.399623\pi\)
0.310144 + 0.950690i \(0.399623\pi\)
\(312\) 0 0
\(313\) 2310.00 0.417153 0.208577 0.978006i \(-0.433117\pi\)
0.208577 + 0.978006i \(0.433117\pi\)
\(314\) −2079.00 −0.373646
\(315\) 0 0
\(316\) −6188.00 −1.10159
\(317\) 257.000 0.0455349 0.0227674 0.999741i \(-0.492752\pi\)
0.0227674 + 0.999741i \(0.492752\pi\)
\(318\) 0 0
\(319\) 2486.00 0.436330
\(320\) 1169.00 0.204216
\(321\) 0 0
\(322\) −1620.00 −0.280370
\(323\) −1110.00 −0.191214
\(324\) 0 0
\(325\) 0 0
\(326\) 1700.00 0.288817
\(327\) 0 0
\(328\) 4275.00 0.719657
\(329\) −4620.00 −0.774191
\(330\) 0 0
\(331\) 1028.00 0.170707 0.0853535 0.996351i \(-0.472798\pi\)
0.0853535 + 0.996351i \(0.472798\pi\)
\(332\) 3626.00 0.599405
\(333\) 0 0
\(334\) −3680.00 −0.602876
\(335\) −1414.00 −0.230612
\(336\) 0 0
\(337\) 2487.00 0.402005 0.201002 0.979591i \(-0.435580\pi\)
0.201002 + 0.979591i \(0.435580\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −1813.00 −0.289187
\(341\) 4312.00 0.684774
\(342\) 0 0
\(343\) 5860.00 0.922479
\(344\) 3690.00 0.578347
\(345\) 0 0
\(346\) −4146.00 −0.644192
\(347\) 2850.00 0.440911 0.220455 0.975397i \(-0.429246\pi\)
0.220455 + 0.975397i \(0.429246\pi\)
\(348\) 0 0
\(349\) −2018.00 −0.309516 −0.154758 0.987952i \(-0.549460\pi\)
−0.154758 + 0.987952i \(0.549460\pi\)
\(350\) 760.000 0.116068
\(351\) 0 0
\(352\) 3542.00 0.536333
\(353\) 5287.00 0.797163 0.398582 0.917133i \(-0.369503\pi\)
0.398582 + 0.917133i \(0.369503\pi\)
\(354\) 0 0
\(355\) −7602.00 −1.13654
\(356\) 1358.00 0.202174
\(357\) 0 0
\(358\) −3674.00 −0.542394
\(359\) 7278.00 1.06997 0.534983 0.844863i \(-0.320318\pi\)
0.534983 + 0.844863i \(0.320318\pi\)
\(360\) 0 0
\(361\) −5959.00 −0.868786
\(362\) −3283.00 −0.476659
\(363\) 0 0
\(364\) 0 0
\(365\) 5635.00 0.808080
\(366\) 0 0
\(367\) −4202.00 −0.597664 −0.298832 0.954306i \(-0.596597\pi\)
−0.298832 + 0.954306i \(0.596597\pi\)
\(368\) 6642.00 0.940865
\(369\) 0 0
\(370\) −91.0000 −0.0127861
\(371\) −5370.00 −0.751473
\(372\) 0 0
\(373\) −1583.00 −0.219744 −0.109872 0.993946i \(-0.535044\pi\)
−0.109872 + 0.993946i \(0.535044\pi\)
\(374\) −814.000 −0.112543
\(375\) 0 0
\(376\) −6930.00 −0.950499
\(377\) 0 0
\(378\) 0 0
\(379\) −2052.00 −0.278111 −0.139056 0.990285i \(-0.544407\pi\)
−0.139056 + 0.990285i \(0.544407\pi\)
\(380\) 1470.00 0.198446
\(381\) 0 0
\(382\) 596.000 0.0798273
\(383\) 6872.00 0.916822 0.458411 0.888740i \(-0.348419\pi\)
0.458411 + 0.888740i \(0.348419\pi\)
\(384\) 0 0
\(385\) 1540.00 0.203859
\(386\) −393.000 −0.0518217
\(387\) 0 0
\(388\) 8414.00 1.10092
\(389\) 11653.0 1.51884 0.759422 0.650598i \(-0.225482\pi\)
0.759422 + 0.650598i \(0.225482\pi\)
\(390\) 0 0
\(391\) −5994.00 −0.775268
\(392\) 3645.00 0.469644
\(393\) 0 0
\(394\) 3522.00 0.450345
\(395\) −6188.00 −0.788233
\(396\) 0 0
\(397\) 6134.00 0.775458 0.387729 0.921774i \(-0.373260\pi\)
0.387729 + 0.921774i \(0.373260\pi\)
\(398\) 2018.00 0.254154
\(399\) 0 0
\(400\) −3116.00 −0.389500
\(401\) 10795.0 1.34433 0.672165 0.740401i \(-0.265364\pi\)
0.672165 + 0.740401i \(0.265364\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −3003.00 −0.369814
\(405\) 0 0
\(406\) −1130.00 −0.138130
\(407\) 286.000 0.0348317
\(408\) 0 0
\(409\) −8489.00 −1.02629 −0.513147 0.858301i \(-0.671520\pi\)
−0.513147 + 0.858301i \(0.671520\pi\)
\(410\) 1995.00 0.240307
\(411\) 0 0
\(412\) 9114.00 1.08984
\(413\) 5760.00 0.686274
\(414\) 0 0
\(415\) 3626.00 0.428900
\(416\) 0 0
\(417\) 0 0
\(418\) 660.000 0.0772288
\(419\) −1496.00 −0.174426 −0.0872129 0.996190i \(-0.527796\pi\)
−0.0872129 + 0.996190i \(0.527796\pi\)
\(420\) 0 0
\(421\) −11695.0 −1.35387 −0.676935 0.736043i \(-0.736692\pi\)
−0.676935 + 0.736043i \(0.736692\pi\)
\(422\) 160.000 0.0184566
\(423\) 0 0
\(424\) −8055.00 −0.922607
\(425\) 2812.00 0.320946
\(426\) 0 0
\(427\) 6350.00 0.719668
\(428\) −9366.00 −1.05776
\(429\) 0 0
\(430\) 1722.00 0.193121
\(431\) −10590.0 −1.18353 −0.591766 0.806110i \(-0.701569\pi\)
−0.591766 + 0.806110i \(0.701569\pi\)
\(432\) 0 0
\(433\) −13949.0 −1.54814 −0.774072 0.633098i \(-0.781783\pi\)
−0.774072 + 0.633098i \(0.781783\pi\)
\(434\) −1960.00 −0.216781
\(435\) 0 0
\(436\) 7238.00 0.795040
\(437\) 4860.00 0.532003
\(438\) 0 0
\(439\) −10726.0 −1.16611 −0.583057 0.812431i \(-0.698144\pi\)
−0.583057 + 0.812431i \(0.698144\pi\)
\(440\) 2310.00 0.250284
\(441\) 0 0
\(442\) 0 0
\(443\) −16228.0 −1.74044 −0.870221 0.492662i \(-0.836024\pi\)
−0.870221 + 0.492662i \(0.836024\pi\)
\(444\) 0 0
\(445\) 1358.00 0.144664
\(446\) 4072.00 0.432320
\(447\) 0 0
\(448\) 1670.00 0.176116
\(449\) −7538.00 −0.792294 −0.396147 0.918187i \(-0.629653\pi\)
−0.396147 + 0.918187i \(0.629653\pi\)
\(450\) 0 0
\(451\) −6270.00 −0.654640
\(452\) 7539.00 0.784524
\(453\) 0 0
\(454\) 5794.00 0.598956
\(455\) 0 0
\(456\) 0 0
\(457\) 15539.0 1.59056 0.795278 0.606245i \(-0.207325\pi\)
0.795278 + 0.606245i \(0.207325\pi\)
\(458\) 6482.00 0.661319
\(459\) 0 0
\(460\) 7938.00 0.804589
\(461\) −4811.00 −0.486053 −0.243027 0.970020i \(-0.578140\pi\)
−0.243027 + 0.970020i \(0.578140\pi\)
\(462\) 0 0
\(463\) 562.000 0.0564111 0.0282056 0.999602i \(-0.491021\pi\)
0.0282056 + 0.999602i \(0.491021\pi\)
\(464\) 4633.00 0.463538
\(465\) 0 0
\(466\) −6890.00 −0.684921
\(467\) −4914.00 −0.486922 −0.243461 0.969911i \(-0.578283\pi\)
−0.243461 + 0.969911i \(0.578283\pi\)
\(468\) 0 0
\(469\) −2020.00 −0.198880
\(470\) −3234.00 −0.317390
\(471\) 0 0
\(472\) 8640.00 0.842560
\(473\) −5412.00 −0.526097
\(474\) 0 0
\(475\) −2280.00 −0.220239
\(476\) −2590.00 −0.249396
\(477\) 0 0
\(478\) −2466.00 −0.235967
\(479\) 3600.00 0.343399 0.171700 0.985149i \(-0.445074\pi\)
0.171700 + 0.985149i \(0.445074\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3617.00 −0.341805
\(483\) 0 0
\(484\) 5929.00 0.556818
\(485\) 8414.00 0.787753
\(486\) 0 0
\(487\) −17130.0 −1.59391 −0.796955 0.604038i \(-0.793557\pi\)
−0.796955 + 0.604038i \(0.793557\pi\)
\(488\) 9525.00 0.883558
\(489\) 0 0
\(490\) 1701.00 0.156823
\(491\) 11838.0 1.08807 0.544034 0.839063i \(-0.316896\pi\)
0.544034 + 0.839063i \(0.316896\pi\)
\(492\) 0 0
\(493\) −4181.00 −0.381953
\(494\) 0 0
\(495\) 0 0
\(496\) 8036.00 0.727474
\(497\) −10860.0 −0.980156
\(498\) 0 0
\(499\) 8976.00 0.805252 0.402626 0.915364i \(-0.368097\pi\)
0.402626 + 0.915364i \(0.368097\pi\)
\(500\) −9849.00 −0.880921
\(501\) 0 0
\(502\) −4860.00 −0.432096
\(503\) −1682.00 −0.149099 −0.0745494 0.997217i \(-0.523752\pi\)
−0.0745494 + 0.997217i \(0.523752\pi\)
\(504\) 0 0
\(505\) −3003.00 −0.264617
\(506\) 3564.00 0.313121
\(507\) 0 0
\(508\) 6916.00 0.604031
\(509\) −15167.0 −1.32076 −0.660379 0.750933i \(-0.729604\pi\)
−0.660379 + 0.750933i \(0.729604\pi\)
\(510\) 0 0
\(511\) 8050.00 0.696890
\(512\) 11521.0 0.994455
\(513\) 0 0
\(514\) −565.000 −0.0484846
\(515\) 9114.00 0.779827
\(516\) 0 0
\(517\) 10164.0 0.864627
\(518\) −130.000 −0.0110268
\(519\) 0 0
\(520\) 0 0
\(521\) 6783.00 0.570381 0.285191 0.958471i \(-0.407943\pi\)
0.285191 + 0.958471i \(0.407943\pi\)
\(522\) 0 0
\(523\) −13918.0 −1.16366 −0.581828 0.813312i \(-0.697662\pi\)
−0.581828 + 0.813312i \(0.697662\pi\)
\(524\) 3920.00 0.326805
\(525\) 0 0
\(526\) 498.000 0.0412810
\(527\) −7252.00 −0.599435
\(528\) 0 0
\(529\) 14077.0 1.15698
\(530\) −3759.00 −0.308076
\(531\) 0 0
\(532\) 2100.00 0.171140
\(533\) 0 0
\(534\) 0 0
\(535\) −9366.00 −0.756874
\(536\) −3030.00 −0.244172
\(537\) 0 0
\(538\) −5546.00 −0.444433
\(539\) −5346.00 −0.427214
\(540\) 0 0
\(541\) −1335.00 −0.106093 −0.0530463 0.998592i \(-0.516893\pi\)
−0.0530463 + 0.998592i \(0.516893\pi\)
\(542\) −2256.00 −0.178789
\(543\) 0 0
\(544\) −5957.00 −0.469493
\(545\) 7238.00 0.568884
\(546\) 0 0
\(547\) −3806.00 −0.297501 −0.148750 0.988875i \(-0.547525\pi\)
−0.148750 + 0.988875i \(0.547525\pi\)
\(548\) −3633.00 −0.283201
\(549\) 0 0
\(550\) −1672.00 −0.129626
\(551\) 3390.00 0.262103
\(552\) 0 0
\(553\) −8840.00 −0.679774
\(554\) 2309.00 0.177076
\(555\) 0 0
\(556\) 2436.00 0.185808
\(557\) 1905.00 0.144915 0.0724573 0.997372i \(-0.476916\pi\)
0.0724573 + 0.997372i \(0.476916\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 2870.00 0.216571
\(561\) 0 0
\(562\) −5833.00 −0.437812
\(563\) 4800.00 0.359318 0.179659 0.983729i \(-0.442501\pi\)
0.179659 + 0.983729i \(0.442501\pi\)
\(564\) 0 0
\(565\) 7539.00 0.561359
\(566\) 1650.00 0.122535
\(567\) 0 0
\(568\) −16290.0 −1.20337
\(569\) −14678.0 −1.08143 −0.540715 0.841206i \(-0.681846\pi\)
−0.540715 + 0.841206i \(0.681846\pi\)
\(570\) 0 0
\(571\) −586.000 −0.0429481 −0.0214740 0.999769i \(-0.506836\pi\)
−0.0214740 + 0.999769i \(0.506836\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 2850.00 0.207242
\(575\) −12312.0 −0.892949
\(576\) 0 0
\(577\) 8939.00 0.644949 0.322474 0.946578i \(-0.395485\pi\)
0.322474 + 0.946578i \(0.395485\pi\)
\(578\) −3544.00 −0.255036
\(579\) 0 0
\(580\) 5537.00 0.396399
\(581\) 5180.00 0.369884
\(582\) 0 0
\(583\) 11814.0 0.839255
\(584\) 12075.0 0.855594
\(585\) 0 0
\(586\) −2991.00 −0.210848
\(587\) 13792.0 0.969773 0.484887 0.874577i \(-0.338861\pi\)
0.484887 + 0.874577i \(0.338861\pi\)
\(588\) 0 0
\(589\) 5880.00 0.411343
\(590\) 4032.00 0.281347
\(591\) 0 0
\(592\) 533.000 0.0370037
\(593\) −9569.00 −0.662650 −0.331325 0.943517i \(-0.607496\pi\)
−0.331325 + 0.943517i \(0.607496\pi\)
\(594\) 0 0
\(595\) −2590.00 −0.178453
\(596\) −4515.00 −0.310305
\(597\) 0 0
\(598\) 0 0
\(599\) 5192.00 0.354156 0.177078 0.984197i \(-0.443336\pi\)
0.177078 + 0.984197i \(0.443336\pi\)
\(600\) 0 0
\(601\) −3677.00 −0.249564 −0.124782 0.992184i \(-0.539823\pi\)
−0.124782 + 0.992184i \(0.539823\pi\)
\(602\) 2460.00 0.166548
\(603\) 0 0
\(604\) −20398.0 −1.37414
\(605\) 5929.00 0.398427
\(606\) 0 0
\(607\) −10960.0 −0.732871 −0.366435 0.930443i \(-0.619422\pi\)
−0.366435 + 0.930443i \(0.619422\pi\)
\(608\) 4830.00 0.322175
\(609\) 0 0
\(610\) 4445.00 0.295037
\(611\) 0 0
\(612\) 0 0
\(613\) −26027.0 −1.71488 −0.857439 0.514585i \(-0.827946\pi\)
−0.857439 + 0.514585i \(0.827946\pi\)
\(614\) −2422.00 −0.159192
\(615\) 0 0
\(616\) 3300.00 0.215845
\(617\) −17681.0 −1.15366 −0.576832 0.816863i \(-0.695711\pi\)
−0.576832 + 0.816863i \(0.695711\pi\)
\(618\) 0 0
\(619\) 3192.00 0.207265 0.103633 0.994616i \(-0.466953\pi\)
0.103633 + 0.994616i \(0.466953\pi\)
\(620\) 9604.00 0.622106
\(621\) 0 0
\(622\) 3402.00 0.219305
\(623\) 1940.00 0.124758
\(624\) 0 0
\(625\) −349.000 −0.0223360
\(626\) 2310.00 0.147486
\(627\) 0 0
\(628\) 14553.0 0.924726
\(629\) −481.000 −0.0304908
\(630\) 0 0
\(631\) 7580.00 0.478217 0.239109 0.970993i \(-0.423145\pi\)
0.239109 + 0.970993i \(0.423145\pi\)
\(632\) −13260.0 −0.834580
\(633\) 0 0
\(634\) 257.000 0.0160990
\(635\) 6916.00 0.432210
\(636\) 0 0
\(637\) 0 0
\(638\) 2486.00 0.154266
\(639\) 0 0
\(640\) 10185.0 0.629059
\(641\) 27707.0 1.70727 0.853635 0.520871i \(-0.174393\pi\)
0.853635 + 0.520871i \(0.174393\pi\)
\(642\) 0 0
\(643\) 11216.0 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(644\) 11340.0 0.693880
\(645\) 0 0
\(646\) −1110.00 −0.0676043
\(647\) 2536.00 0.154097 0.0770483 0.997027i \(-0.475450\pi\)
0.0770483 + 0.997027i \(0.475450\pi\)
\(648\) 0 0
\(649\) −12672.0 −0.766440
\(650\) 0 0
\(651\) 0 0
\(652\) −11900.0 −0.714785
\(653\) −17730.0 −1.06252 −0.531262 0.847207i \(-0.678282\pi\)
−0.531262 + 0.847207i \(0.678282\pi\)
\(654\) 0 0
\(655\) 3920.00 0.233843
\(656\) −11685.0 −0.695461
\(657\) 0 0
\(658\) −4620.00 −0.273718
\(659\) −18920.0 −1.11839 −0.559195 0.829036i \(-0.688890\pi\)
−0.559195 + 0.829036i \(0.688890\pi\)
\(660\) 0 0
\(661\) 5241.00 0.308398 0.154199 0.988040i \(-0.450720\pi\)
0.154199 + 0.988040i \(0.450720\pi\)
\(662\) 1028.00 0.0603540
\(663\) 0 0
\(664\) 7770.00 0.454118
\(665\) 2100.00 0.122458
\(666\) 0 0
\(667\) 18306.0 1.06269
\(668\) 25760.0 1.49204
\(669\) 0 0
\(670\) −1414.00 −0.0815337
\(671\) −13970.0 −0.803735
\(672\) 0 0
\(673\) 20467.0 1.17228 0.586140 0.810210i \(-0.300647\pi\)
0.586140 + 0.810210i \(0.300647\pi\)
\(674\) 2487.00 0.142130
\(675\) 0 0
\(676\) 0 0
\(677\) 70.0000 0.00397388 0.00198694 0.999998i \(-0.499368\pi\)
0.00198694 + 0.999998i \(0.499368\pi\)
\(678\) 0 0
\(679\) 12020.0 0.679360
\(680\) −3885.00 −0.219093
\(681\) 0 0
\(682\) 4312.00 0.242104
\(683\) −6432.00 −0.360342 −0.180171 0.983635i \(-0.557665\pi\)
−0.180171 + 0.983635i \(0.557665\pi\)
\(684\) 0 0
\(685\) −3633.00 −0.202642
\(686\) 5860.00 0.326146
\(687\) 0 0
\(688\) −10086.0 −0.558903
\(689\) 0 0
\(690\) 0 0
\(691\) −6666.00 −0.366985 −0.183492 0.983021i \(-0.558740\pi\)
−0.183492 + 0.983021i \(0.558740\pi\)
\(692\) 29022.0 1.59429
\(693\) 0 0
\(694\) 2850.00 0.155885
\(695\) 2436.00 0.132954
\(696\) 0 0
\(697\) 10545.0 0.573056
\(698\) −2018.00 −0.109430
\(699\) 0 0
\(700\) −5320.00 −0.287253
\(701\) 14054.0 0.757221 0.378611 0.925556i \(-0.376402\pi\)
0.378611 + 0.925556i \(0.376402\pi\)
\(702\) 0 0
\(703\) 390.000 0.0209234
\(704\) −3674.00 −0.196689
\(705\) 0 0
\(706\) 5287.00 0.281840
\(707\) −4290.00 −0.228207
\(708\) 0 0
\(709\) −71.0000 −0.00376088 −0.00188044 0.999998i \(-0.500599\pi\)
−0.00188044 + 0.999998i \(0.500599\pi\)
\(710\) −7602.00 −0.401828
\(711\) 0 0
\(712\) 2910.00 0.153170
\(713\) 31752.0 1.66777
\(714\) 0 0
\(715\) 0 0
\(716\) 25718.0 1.34236
\(717\) 0 0
\(718\) 7278.00 0.378290
\(719\) −3936.00 −0.204156 −0.102078 0.994776i \(-0.532549\pi\)
−0.102078 + 0.994776i \(0.532549\pi\)
\(720\) 0 0
\(721\) 13020.0 0.672524
\(722\) −5959.00 −0.307162
\(723\) 0 0
\(724\) 22981.0 1.17967
\(725\) −8588.00 −0.439931
\(726\) 0 0
\(727\) 34202.0 1.74482 0.872409 0.488777i \(-0.162557\pi\)
0.872409 + 0.488777i \(0.162557\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 5635.00 0.285700
\(731\) 9102.00 0.460533
\(732\) 0 0
\(733\) −27363.0 −1.37882 −0.689410 0.724371i \(-0.742130\pi\)
−0.689410 + 0.724371i \(0.742130\pi\)
\(734\) −4202.00 −0.211306
\(735\) 0 0
\(736\) 26082.0 1.30624
\(737\) 4444.00 0.222112
\(738\) 0 0
\(739\) 21776.0 1.08396 0.541978 0.840393i \(-0.317676\pi\)
0.541978 + 0.840393i \(0.317676\pi\)
\(740\) 637.000 0.0316440
\(741\) 0 0
\(742\) −5370.00 −0.265686
\(743\) −2484.00 −0.122650 −0.0613251 0.998118i \(-0.519533\pi\)
−0.0613251 + 0.998118i \(0.519533\pi\)
\(744\) 0 0
\(745\) −4515.00 −0.222036
\(746\) −1583.00 −0.0776914
\(747\) 0 0
\(748\) 5698.00 0.278529
\(749\) −13380.0 −0.652730
\(750\) 0 0
\(751\) 32906.0 1.59888 0.799439 0.600748i \(-0.205130\pi\)
0.799439 + 0.600748i \(0.205130\pi\)
\(752\) 18942.0 0.918542
\(753\) 0 0
\(754\) 0 0
\(755\) −20398.0 −0.983257
\(756\) 0 0
\(757\) −3914.00 −0.187922 −0.0939609 0.995576i \(-0.529953\pi\)
−0.0939609 + 0.995576i \(0.529953\pi\)
\(758\) −2052.00 −0.0983272
\(759\) 0 0
\(760\) 3150.00 0.150345
\(761\) 33038.0 1.57375 0.786877 0.617110i \(-0.211697\pi\)
0.786877 + 0.617110i \(0.211697\pi\)
\(762\) 0 0
\(763\) 10340.0 0.490607
\(764\) −4172.00 −0.197562
\(765\) 0 0
\(766\) 6872.00 0.324145
\(767\) 0 0
\(768\) 0 0
\(769\) −17586.0 −0.824665 −0.412332 0.911033i \(-0.635286\pi\)
−0.412332 + 0.911033i \(0.635286\pi\)
\(770\) 1540.00 0.0720750
\(771\) 0 0
\(772\) 2751.00 0.128252
\(773\) −18314.0 −0.852146 −0.426073 0.904689i \(-0.640103\pi\)
−0.426073 + 0.904689i \(0.640103\pi\)
\(774\) 0 0
\(775\) −14896.0 −0.690426
\(776\) 18030.0 0.834071
\(777\) 0 0
\(778\) 11653.0 0.536993
\(779\) −8550.00 −0.393242
\(780\) 0 0
\(781\) 23892.0 1.09465
\(782\) −5994.00 −0.274098
\(783\) 0 0
\(784\) −9963.00 −0.453854
\(785\) 14553.0 0.661680
\(786\) 0 0
\(787\) −42068.0 −1.90542 −0.952708 0.303888i \(-0.901715\pi\)
−0.952708 + 0.303888i \(0.901715\pi\)
\(788\) −24654.0 −1.11455
\(789\) 0 0
\(790\) −6188.00 −0.278682
\(791\) 10770.0 0.484118
\(792\) 0 0
\(793\) 0 0
\(794\) 6134.00 0.274166
\(795\) 0 0
\(796\) −14126.0 −0.628998
\(797\) 4282.00 0.190309 0.0951545 0.995463i \(-0.469665\pi\)
0.0951545 + 0.995463i \(0.469665\pi\)
\(798\) 0 0
\(799\) −17094.0 −0.756874
\(800\) −12236.0 −0.540760
\(801\) 0 0
\(802\) 10795.0 0.475293
\(803\) −17710.0 −0.778297
\(804\) 0 0
\(805\) 11340.0 0.496500
\(806\) 0 0
\(807\) 0 0
\(808\) −6435.00 −0.280176
\(809\) −40221.0 −1.74795 −0.873977 0.485967i \(-0.838468\pi\)
−0.873977 + 0.485967i \(0.838468\pi\)
\(810\) 0 0
\(811\) −7084.00 −0.306724 −0.153362 0.988170i \(-0.549010\pi\)
−0.153362 + 0.988170i \(0.549010\pi\)
\(812\) 7910.00 0.341855
\(813\) 0 0
\(814\) 286.000 0.0123149
\(815\) −11900.0 −0.511459
\(816\) 0 0
\(817\) −7380.00 −0.316026
\(818\) −8489.00 −0.362850
\(819\) 0 0
\(820\) −13965.0 −0.594730
\(821\) −17338.0 −0.737028 −0.368514 0.929622i \(-0.620133\pi\)
−0.368514 + 0.929622i \(0.620133\pi\)
\(822\) 0 0
\(823\) 35496.0 1.50342 0.751709 0.659495i \(-0.229230\pi\)
0.751709 + 0.659495i \(0.229230\pi\)
\(824\) 19530.0 0.825679
\(825\) 0 0
\(826\) 5760.00 0.242634
\(827\) 14992.0 0.630378 0.315189 0.949029i \(-0.397932\pi\)
0.315189 + 0.949029i \(0.397932\pi\)
\(828\) 0 0
\(829\) −20659.0 −0.865521 −0.432760 0.901509i \(-0.642460\pi\)
−0.432760 + 0.901509i \(0.642460\pi\)
\(830\) 3626.00 0.151639
\(831\) 0 0
\(832\) 0 0
\(833\) 8991.00 0.373973
\(834\) 0 0
\(835\) 25760.0 1.06762
\(836\) −4620.00 −0.191132
\(837\) 0 0
\(838\) −1496.00 −0.0616688
\(839\) −28716.0 −1.18163 −0.590814 0.806808i \(-0.701193\pi\)
−0.590814 + 0.806808i \(0.701193\pi\)
\(840\) 0 0
\(841\) −11620.0 −0.476444
\(842\) −11695.0 −0.478665
\(843\) 0 0
\(844\) −1120.00 −0.0456777
\(845\) 0 0
\(846\) 0 0
\(847\) 8470.00 0.343604
\(848\) 22017.0 0.891588
\(849\) 0 0
\(850\) 2812.00 0.113472
\(851\) 2106.00 0.0848328
\(852\) 0 0
\(853\) 13377.0 0.536952 0.268476 0.963286i \(-0.413480\pi\)
0.268476 + 0.963286i \(0.413480\pi\)
\(854\) 6350.00 0.254441
\(855\) 0 0
\(856\) −20070.0 −0.801377
\(857\) 27419.0 1.09290 0.546450 0.837492i \(-0.315979\pi\)
0.546450 + 0.837492i \(0.315979\pi\)
\(858\) 0 0
\(859\) 2422.00 0.0962021 0.0481010 0.998842i \(-0.484683\pi\)
0.0481010 + 0.998842i \(0.484683\pi\)
\(860\) −12054.0 −0.477951
\(861\) 0 0
\(862\) −10590.0 −0.418442
\(863\) 34522.0 1.36169 0.680847 0.732425i \(-0.261612\pi\)
0.680847 + 0.732425i \(0.261612\pi\)
\(864\) 0 0
\(865\) 29022.0 1.14078
\(866\) −13949.0 −0.547351
\(867\) 0 0
\(868\) 13720.0 0.536506
\(869\) 19448.0 0.759181
\(870\) 0 0
\(871\) 0 0
\(872\) 15510.0 0.602334
\(873\) 0 0
\(874\) 4860.00 0.188091
\(875\) −14070.0 −0.543603
\(876\) 0 0
\(877\) 13733.0 0.528769 0.264385 0.964417i \(-0.414831\pi\)
0.264385 + 0.964417i \(0.414831\pi\)
\(878\) −10726.0 −0.412284
\(879\) 0 0
\(880\) −6314.00 −0.241869
\(881\) 22759.0 0.870341 0.435170 0.900348i \(-0.356688\pi\)
0.435170 + 0.900348i \(0.356688\pi\)
\(882\) 0 0
\(883\) −2168.00 −0.0826263 −0.0413131 0.999146i \(-0.513154\pi\)
−0.0413131 + 0.999146i \(0.513154\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16228.0 −0.615339
\(887\) −15888.0 −0.601428 −0.300714 0.953714i \(-0.597225\pi\)
−0.300714 + 0.953714i \(0.597225\pi\)
\(888\) 0 0
\(889\) 9880.00 0.372739
\(890\) 1358.00 0.0511464
\(891\) 0 0
\(892\) −28504.0 −1.06994
\(893\) 13860.0 0.519381
\(894\) 0 0
\(895\) 25718.0 0.960512
\(896\) 14550.0 0.542502
\(897\) 0 0
\(898\) −7538.00 −0.280118
\(899\) 22148.0 0.821665
\(900\) 0 0
\(901\) −19869.0 −0.734664
\(902\) −6270.00 −0.231450
\(903\) 0 0
\(904\) 16155.0 0.594366
\(905\) 22981.0 0.844104
\(906\) 0 0
\(907\) −11628.0 −0.425691 −0.212845 0.977086i \(-0.568273\pi\)
−0.212845 + 0.977086i \(0.568273\pi\)
\(908\) −40558.0 −1.48234
\(909\) 0 0
\(910\) 0 0
\(911\) 12584.0 0.457658 0.228829 0.973467i \(-0.426510\pi\)
0.228829 + 0.973467i \(0.426510\pi\)
\(912\) 0 0
\(913\) −11396.0 −0.413092
\(914\) 15539.0 0.562346
\(915\) 0 0
\(916\) −45374.0 −1.63668
\(917\) 5600.00 0.201667
\(918\) 0 0
\(919\) 17184.0 0.616809 0.308405 0.951255i \(-0.400205\pi\)
0.308405 + 0.951255i \(0.400205\pi\)
\(920\) 17010.0 0.609569
\(921\) 0 0
\(922\) −4811.00 −0.171846
\(923\) 0 0
\(924\) 0 0
\(925\) −988.000 −0.0351192
\(926\) 562.000 0.0199443
\(927\) 0 0
\(928\) 18193.0 0.643550
\(929\) −12777.0 −0.451238 −0.225619 0.974216i \(-0.572440\pi\)
−0.225619 + 0.974216i \(0.572440\pi\)
\(930\) 0 0
\(931\) −7290.00 −0.256627
\(932\) 48230.0 1.69509
\(933\) 0 0
\(934\) −4914.00 −0.172153
\(935\) 5698.00 0.199299
\(936\) 0 0
\(937\) 9191.00 0.320445 0.160222 0.987081i \(-0.448779\pi\)
0.160222 + 0.987081i \(0.448779\pi\)
\(938\) −2020.00 −0.0703149
\(939\) 0 0
\(940\) 22638.0 0.785500
\(941\) −50498.0 −1.74940 −0.874701 0.484662i \(-0.838942\pi\)
−0.874701 + 0.484662i \(0.838942\pi\)
\(942\) 0 0
\(943\) −46170.0 −1.59438
\(944\) −23616.0 −0.814232
\(945\) 0 0
\(946\) −5412.00 −0.186003
\(947\) −1560.00 −0.0535303 −0.0267651 0.999642i \(-0.508521\pi\)
−0.0267651 + 0.999642i \(0.508521\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −2280.00 −0.0778663
\(951\) 0 0
\(952\) −5550.00 −0.188946
\(953\) 21498.0 0.730733 0.365366 0.930864i \(-0.380944\pi\)
0.365366 + 0.930864i \(0.380944\pi\)
\(954\) 0 0
\(955\) −4172.00 −0.141364
\(956\) 17262.0 0.583988
\(957\) 0 0
\(958\) 3600.00 0.121410
\(959\) −5190.00 −0.174759
\(960\) 0 0
\(961\) 8625.00 0.289517
\(962\) 0 0
\(963\) 0 0
\(964\) 25319.0 0.845923
\(965\) 2751.00 0.0917698
\(966\) 0 0
\(967\) −418.000 −0.0139007 −0.00695035 0.999976i \(-0.502212\pi\)
−0.00695035 + 0.999976i \(0.502212\pi\)
\(968\) 12705.0 0.421853
\(969\) 0 0
\(970\) 8414.00 0.278513
\(971\) −18132.0 −0.599262 −0.299631 0.954055i \(-0.596864\pi\)
−0.299631 + 0.954055i \(0.596864\pi\)
\(972\) 0 0
\(973\) 3480.00 0.114659
\(974\) −17130.0 −0.563532
\(975\) 0 0
\(976\) −26035.0 −0.853853
\(977\) −12501.0 −0.409358 −0.204679 0.978829i \(-0.565615\pi\)
−0.204679 + 0.978829i \(0.565615\pi\)
\(978\) 0 0
\(979\) −4268.00 −0.139332
\(980\) −11907.0 −0.388118
\(981\) 0 0
\(982\) 11838.0 0.384690
\(983\) 43708.0 1.41818 0.709089 0.705119i \(-0.249106\pi\)
0.709089 + 0.705119i \(0.249106\pi\)
\(984\) 0 0
\(985\) −24654.0 −0.797504
\(986\) −4181.00 −0.135041
\(987\) 0 0
\(988\) 0 0
\(989\) −39852.0 −1.28131
\(990\) 0 0
\(991\) −39614.0 −1.26981 −0.634904 0.772591i \(-0.718960\pi\)
−0.634904 + 0.772591i \(0.718960\pi\)
\(992\) 31556.0 1.00998
\(993\) 0 0
\(994\) −10860.0 −0.346538
\(995\) −14126.0 −0.450075
\(996\) 0 0
\(997\) −36503.0 −1.15954 −0.579770 0.814780i \(-0.696858\pi\)
−0.579770 + 0.814780i \(0.696858\pi\)
\(998\) 8976.00 0.284700
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.4.a.h.1.1 1
3.2 odd 2 507.4.a.b.1.1 1
13.3 even 3 117.4.g.a.100.1 2
13.9 even 3 117.4.g.a.55.1 2
13.12 even 2 1521.4.a.e.1.1 1
39.5 even 4 507.4.b.d.337.2 2
39.8 even 4 507.4.b.d.337.1 2
39.29 odd 6 39.4.e.b.22.1 yes 2
39.35 odd 6 39.4.e.b.16.1 2
39.38 odd 2 507.4.a.d.1.1 1
156.35 even 6 624.4.q.c.289.1 2
156.107 even 6 624.4.q.c.529.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.e.b.16.1 2 39.35 odd 6
39.4.e.b.22.1 yes 2 39.29 odd 6
117.4.g.a.55.1 2 13.9 even 3
117.4.g.a.100.1 2 13.3 even 3
507.4.a.b.1.1 1 3.2 odd 2
507.4.a.d.1.1 1 39.38 odd 2
507.4.b.d.337.1 2 39.8 even 4
507.4.b.d.337.2 2 39.5 even 4
624.4.q.c.289.1 2 156.35 even 6
624.4.q.c.529.1 2 156.107 even 6
1521.4.a.e.1.1 1 13.12 even 2
1521.4.a.h.1.1 1 1.1 even 1 trivial