Properties

Label 39.4.e.b.22.1
Level $39$
Weight $4$
Character 39.22
Analytic conductor $2.301$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,4,Mod(16,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.16");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30107449022\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 39.22
Dual form 39.4.e.b.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.50000 + 2.59808i) q^{3} +(3.50000 + 6.06218i) q^{4} +7.00000 q^{5} +(1.50000 + 2.59808i) q^{6} +(5.00000 + 8.66025i) q^{7} +15.0000 q^{8} +(-4.50000 - 7.79423i) q^{9} +(3.50000 - 6.06218i) q^{10} +(11.0000 - 19.0526i) q^{11} -21.0000 q^{12} +(-45.5000 - 11.2583i) q^{13} +10.0000 q^{14} +(-10.5000 + 18.1865i) q^{15} +(-20.5000 + 35.5070i) q^{16} +(-18.5000 - 32.0429i) q^{17} -9.00000 q^{18} +(-15.0000 - 25.9808i) q^{19} +(24.5000 + 42.4352i) q^{20} -30.0000 q^{21} +(-11.0000 - 19.0526i) q^{22} +(81.0000 - 140.296i) q^{23} +(-22.5000 + 38.9711i) q^{24} -76.0000 q^{25} +(-32.5000 + 33.7750i) q^{26} +27.0000 q^{27} +(-35.0000 + 60.6218i) q^{28} +(56.5000 - 97.8609i) q^{29} +(10.5000 + 18.1865i) q^{30} +196.000 q^{31} +(80.5000 + 139.430i) q^{32} +(33.0000 + 57.1577i) q^{33} -37.0000 q^{34} +(35.0000 + 60.6218i) q^{35} +(31.5000 - 54.5596i) q^{36} +(-6.50000 + 11.2583i) q^{37} -30.0000 q^{38} +(97.5000 - 101.325i) q^{39} +105.000 q^{40} +(-142.500 + 246.817i) q^{41} +(-15.0000 + 25.9808i) q^{42} +(123.000 + 213.042i) q^{43} +154.000 q^{44} +(-31.5000 - 54.5596i) q^{45} +(-81.0000 - 140.296i) q^{46} -462.000 q^{47} +(-61.5000 - 106.521i) q^{48} +(121.500 - 210.444i) q^{49} +(-38.0000 + 65.8179i) q^{50} +111.000 q^{51} +(-91.0000 - 315.233i) q^{52} -537.000 q^{53} +(13.5000 - 23.3827i) q^{54} +(77.0000 - 133.368i) q^{55} +(75.0000 + 129.904i) q^{56} +90.0000 q^{57} +(-56.5000 - 97.8609i) q^{58} +(-288.000 - 498.831i) q^{59} -147.000 q^{60} +(317.500 + 549.926i) q^{61} +(98.0000 - 169.741i) q^{62} +(45.0000 - 77.9423i) q^{63} -167.000 q^{64} +(-318.500 - 78.8083i) q^{65} +66.0000 q^{66} +(-101.000 + 174.937i) q^{67} +(129.500 - 224.301i) q^{68} +(243.000 + 420.888i) q^{69} +70.0000 q^{70} +(543.000 + 940.504i) q^{71} +(-67.5000 - 116.913i) q^{72} -805.000 q^{73} +(6.50000 + 11.2583i) q^{74} +(114.000 - 197.454i) q^{75} +(105.000 - 181.865i) q^{76} +220.000 q^{77} +(-39.0000 - 135.100i) q^{78} +884.000 q^{79} +(-143.500 + 248.549i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(142.500 + 246.817i) q^{82} +518.000 q^{83} +(-105.000 - 181.865i) q^{84} +(-129.500 - 224.301i) q^{85} +246.000 q^{86} +(169.500 + 293.583i) q^{87} +(165.000 - 285.788i) q^{88} +(-97.0000 + 168.009i) q^{89} -63.0000 q^{90} +(-130.000 - 450.333i) q^{91} +1134.00 q^{92} +(-294.000 + 509.223i) q^{93} +(-231.000 + 400.104i) q^{94} +(-105.000 - 181.865i) q^{95} -483.000 q^{96} +(601.000 + 1040.96i) q^{97} +(-121.500 - 210.444i) q^{98} -198.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} + 7 q^{4} + 14 q^{5} + 3 q^{6} + 10 q^{7} + 30 q^{8} - 9 q^{9} + 7 q^{10} + 22 q^{11} - 42 q^{12} - 91 q^{13} + 20 q^{14} - 21 q^{15} - 41 q^{16} - 37 q^{17} - 18 q^{18} - 30 q^{19}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.176777 0.306186i −0.763998 0.645219i \(-0.776766\pi\)
0.940775 + 0.339032i \(0.110100\pi\)
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) 3.50000 + 6.06218i 0.437500 + 0.757772i
\(5\) 7.00000 0.626099 0.313050 0.949737i \(-0.398649\pi\)
0.313050 + 0.949737i \(0.398649\pi\)
\(6\) 1.50000 + 2.59808i 0.102062 + 0.176777i
\(7\) 5.00000 + 8.66025i 0.269975 + 0.467610i 0.968855 0.247629i \(-0.0796514\pi\)
−0.698880 + 0.715239i \(0.746318\pi\)
\(8\) 15.0000 0.662913
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 3.50000 6.06218i 0.110680 0.191703i
\(11\) 11.0000 19.0526i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) −21.0000 −0.505181
\(13\) −45.5000 11.2583i −0.970725 0.240192i
\(14\) 10.0000 0.190901
\(15\) −10.5000 + 18.1865i −0.180739 + 0.313050i
\(16\) −20.5000 + 35.5070i −0.320312 + 0.554798i
\(17\) −18.5000 32.0429i −0.263936 0.457150i 0.703348 0.710845i \(-0.251687\pi\)
−0.967284 + 0.253695i \(0.918354\pi\)
\(18\) −9.00000 −0.117851
\(19\) −15.0000 25.9808i −0.181118 0.313705i 0.761144 0.648583i \(-0.224638\pi\)
−0.942261 + 0.334878i \(0.891305\pi\)
\(20\) 24.5000 + 42.4352i 0.273918 + 0.474440i
\(21\) −30.0000 −0.311740
\(22\) −11.0000 19.0526i −0.106600 0.184637i
\(23\) 81.0000 140.296i 0.734333 1.27190i −0.220682 0.975346i \(-0.570828\pi\)
0.955015 0.296557i \(-0.0958384\pi\)
\(24\) −22.5000 + 38.9711i −0.191366 + 0.331456i
\(25\) −76.0000 −0.608000
\(26\) −32.5000 + 33.7750i −0.245145 + 0.254762i
\(27\) 27.0000 0.192450
\(28\) −35.0000 + 60.6218i −0.236228 + 0.409159i
\(29\) 56.5000 97.8609i 0.361786 0.626631i −0.626469 0.779446i \(-0.715501\pi\)
0.988255 + 0.152815i \(0.0488339\pi\)
\(30\) 10.5000 + 18.1865i 0.0639010 + 0.110680i
\(31\) 196.000 1.13557 0.567785 0.823177i \(-0.307801\pi\)
0.567785 + 0.823177i \(0.307801\pi\)
\(32\) 80.5000 + 139.430i 0.444704 + 0.770250i
\(33\) 33.0000 + 57.1577i 0.174078 + 0.301511i
\(34\) −37.0000 −0.186631
\(35\) 35.0000 + 60.6218i 0.169031 + 0.292770i
\(36\) 31.5000 54.5596i 0.145833 0.252591i
\(37\) −6.50000 + 11.2583i −0.0288809 + 0.0500232i −0.880105 0.474780i \(-0.842528\pi\)
0.851224 + 0.524803i \(0.175861\pi\)
\(38\) −30.0000 −0.128070
\(39\) 97.5000 101.325i 0.400320 0.416025i
\(40\) 105.000 0.415049
\(41\) −142.500 + 246.817i −0.542799 + 0.940156i 0.455943 + 0.890009i \(0.349302\pi\)
−0.998742 + 0.0501465i \(0.984031\pi\)
\(42\) −15.0000 + 25.9808i −0.0551083 + 0.0954504i
\(43\) 123.000 + 213.042i 0.436217 + 0.755550i 0.997394 0.0721459i \(-0.0229847\pi\)
−0.561177 + 0.827696i \(0.689651\pi\)
\(44\) 154.000 0.527645
\(45\) −31.5000 54.5596i −0.104350 0.180739i
\(46\) −81.0000 140.296i −0.259626 0.449686i
\(47\) −462.000 −1.43382 −0.716911 0.697165i \(-0.754445\pi\)
−0.716911 + 0.697165i \(0.754445\pi\)
\(48\) −61.5000 106.521i −0.184933 0.320312i
\(49\) 121.500 210.444i 0.354227 0.613540i
\(50\) −38.0000 + 65.8179i −0.107480 + 0.186161i
\(51\) 111.000 0.304767
\(52\) −91.0000 315.233i −0.242681 0.840673i
\(53\) −537.000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(54\) 13.5000 23.3827i 0.0340207 0.0589256i
\(55\) 77.0000 133.368i 0.188776 0.326970i
\(56\) 75.0000 + 129.904i 0.178970 + 0.309984i
\(57\) 90.0000 0.209137
\(58\) −56.5000 97.8609i −0.127911 0.221548i
\(59\) −288.000 498.831i −0.635498 1.10072i −0.986409 0.164307i \(-0.947461\pi\)
0.350911 0.936409i \(-0.385872\pi\)
\(60\) −147.000 −0.316294
\(61\) 317.500 + 549.926i 0.666421 + 1.15428i 0.978898 + 0.204350i \(0.0655082\pi\)
−0.312476 + 0.949926i \(0.601159\pi\)
\(62\) 98.0000 169.741i 0.200742 0.347696i
\(63\) 45.0000 77.9423i 0.0899915 0.155870i
\(64\) −167.000 −0.326172
\(65\) −318.500 78.8083i −0.607770 0.150384i
\(66\) 66.0000 0.123091
\(67\) −101.000 + 174.937i −0.184166 + 0.318985i −0.943295 0.331955i \(-0.892292\pi\)
0.759129 + 0.650940i \(0.225625\pi\)
\(68\) 129.500 224.301i 0.230944 0.400006i
\(69\) 243.000 + 420.888i 0.423968 + 0.734333i
\(70\) 70.0000 0.119523
\(71\) 543.000 + 940.504i 0.907637 + 1.57207i 0.817338 + 0.576159i \(0.195449\pi\)
0.0902997 + 0.995915i \(0.471217\pi\)
\(72\) −67.5000 116.913i −0.110485 0.191366i
\(73\) −805.000 −1.29066 −0.645330 0.763904i \(-0.723280\pi\)
−0.645330 + 0.763904i \(0.723280\pi\)
\(74\) 6.50000 + 11.2583i 0.0102109 + 0.0176859i
\(75\) 114.000 197.454i 0.175514 0.304000i
\(76\) 105.000 181.865i 0.158478 0.274492i
\(77\) 220.000 0.325602
\(78\) −39.0000 135.100i −0.0566139 0.196116i
\(79\) 884.000 1.25896 0.629480 0.777017i \(-0.283268\pi\)
0.629480 + 0.777017i \(0.283268\pi\)
\(80\) −143.500 + 248.549i −0.200547 + 0.347358i
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 142.500 + 246.817i 0.191908 + 0.332395i
\(83\) 518.000 0.685035 0.342517 0.939511i \(-0.388720\pi\)
0.342517 + 0.939511i \(0.388720\pi\)
\(84\) −105.000 181.865i −0.136386 0.236228i
\(85\) −129.500 224.301i −0.165250 0.286221i
\(86\) 246.000 0.308452
\(87\) 169.500 + 293.583i 0.208877 + 0.361786i
\(88\) 165.000 285.788i 0.199876 0.346195i
\(89\) −97.0000 + 168.009i −0.115528 + 0.200100i −0.917991 0.396602i \(-0.870189\pi\)
0.802463 + 0.596702i \(0.203523\pi\)
\(90\) −63.0000 −0.0737865
\(91\) −130.000 450.333i −0.149755 0.518766i
\(92\) 1134.00 1.28508
\(93\) −294.000 + 509.223i −0.327811 + 0.567785i
\(94\) −231.000 + 400.104i −0.253466 + 0.439016i
\(95\) −105.000 181.865i −0.113398 0.196410i
\(96\) −483.000 −0.513500
\(97\) 601.000 + 1040.96i 0.629096 + 1.08963i 0.987733 + 0.156149i \(0.0499081\pi\)
−0.358638 + 0.933477i \(0.616759\pi\)
\(98\) −121.500 210.444i −0.125238 0.216919i
\(99\) −198.000 −0.201008
\(100\) −266.000 460.726i −0.266000 0.460726i
\(101\) 214.500 371.525i 0.211322 0.366021i −0.740806 0.671719i \(-0.765556\pi\)
0.952129 + 0.305698i \(0.0988897\pi\)
\(102\) 55.5000 96.1288i 0.0538757 0.0933154i
\(103\) −1302.00 −1.24553 −0.622766 0.782408i \(-0.713991\pi\)
−0.622766 + 0.782408i \(0.713991\pi\)
\(104\) −682.500 168.875i −0.643506 0.159226i
\(105\) −210.000 −0.195180
\(106\) −268.500 + 465.056i −0.246029 + 0.426134i
\(107\) 669.000 1158.74i 0.604436 1.04691i −0.387704 0.921784i \(-0.626732\pi\)
0.992140 0.125130i \(-0.0399349\pi\)
\(108\) 94.5000 + 163.679i 0.0841969 + 0.145833i
\(109\) −1034.00 −0.908617 −0.454308 0.890844i \(-0.650114\pi\)
−0.454308 + 0.890844i \(0.650114\pi\)
\(110\) −77.0000 133.368i −0.0667424 0.115601i
\(111\) −19.5000 33.7750i −0.0166744 0.0288809i
\(112\) −410.000 −0.345905
\(113\) −538.500 932.709i −0.448299 0.776477i 0.549976 0.835180i \(-0.314637\pi\)
−0.998275 + 0.0587032i \(0.981303\pi\)
\(114\) 45.0000 77.9423i 0.0369705 0.0640348i
\(115\) 567.000 982.073i 0.459765 0.796337i
\(116\) 791.000 0.633125
\(117\) 117.000 + 405.300i 0.0924500 + 0.320256i
\(118\) −576.000 −0.449365
\(119\) 185.000 320.429i 0.142512 0.246838i
\(120\) −157.500 + 272.798i −0.119814 + 0.207524i
\(121\) 423.500 + 733.524i 0.318182 + 0.551107i
\(122\) 635.000 0.471231
\(123\) −427.500 740.452i −0.313385 0.542799i
\(124\) 686.000 + 1188.19i 0.496811 + 0.860503i
\(125\) −1407.00 −1.00677
\(126\) −45.0000 77.9423i −0.0318168 0.0551083i
\(127\) 494.000 855.633i 0.345161 0.597836i −0.640222 0.768190i \(-0.721158\pi\)
0.985383 + 0.170354i \(0.0544911\pi\)
\(128\) −727.500 + 1260.07i −0.502363 + 0.870119i
\(129\) −738.000 −0.503700
\(130\) −227.500 + 236.425i −0.153485 + 0.159506i
\(131\) 560.000 0.373492 0.186746 0.982408i \(-0.440206\pi\)
0.186746 + 0.982408i \(0.440206\pi\)
\(132\) −231.000 + 400.104i −0.152318 + 0.263822i
\(133\) 150.000 259.808i 0.0977944 0.169385i
\(134\) 101.000 + 174.937i 0.0651125 + 0.112778i
\(135\) 189.000 0.120493
\(136\) −277.500 480.644i −0.174966 0.303051i
\(137\) 259.500 + 449.467i 0.161829 + 0.280296i 0.935525 0.353261i \(-0.114927\pi\)
−0.773696 + 0.633557i \(0.781594\pi\)
\(138\) 486.000 0.299790
\(139\) 174.000 + 301.377i 0.106176 + 0.183903i 0.914218 0.405222i \(-0.132806\pi\)
−0.808042 + 0.589125i \(0.799473\pi\)
\(140\) −245.000 + 424.352i −0.147902 + 0.256174i
\(141\) 693.000 1200.31i 0.413909 0.716911i
\(142\) 1086.00 0.641796
\(143\) −715.000 + 743.050i −0.418121 + 0.434524i
\(144\) 369.000 0.213542
\(145\) 395.500 685.026i 0.226514 0.392333i
\(146\) −402.500 + 697.150i −0.228158 + 0.395182i
\(147\) 364.500 + 631.333i 0.204513 + 0.354227i
\(148\) −91.0000 −0.0505416
\(149\) 322.500 + 558.586i 0.177317 + 0.307122i 0.940961 0.338516i \(-0.109925\pi\)
−0.763644 + 0.645638i \(0.776592\pi\)
\(150\) −114.000 197.454i −0.0620537 0.107480i
\(151\) 2914.00 1.57045 0.785225 0.619211i \(-0.212547\pi\)
0.785225 + 0.619211i \(0.212547\pi\)
\(152\) −225.000 389.711i −0.120065 0.207959i
\(153\) −166.500 + 288.386i −0.0879786 + 0.152383i
\(154\) 110.000 190.526i 0.0575588 0.0996947i
\(155\) 1372.00 0.710979
\(156\) 955.500 + 236.425i 0.490392 + 0.121341i
\(157\) −2079.00 −1.05683 −0.528415 0.848986i \(-0.677213\pi\)
−0.528415 + 0.848986i \(0.677213\pi\)
\(158\) 442.000 765.566i 0.222555 0.385476i
\(159\) 805.500 1395.17i 0.401763 0.695874i
\(160\) 563.500 + 976.011i 0.278429 + 0.482253i
\(161\) 1620.00 0.793006
\(162\) 40.5000 + 70.1481i 0.0196419 + 0.0340207i
\(163\) −850.000 1472.24i −0.408449 0.707454i 0.586267 0.810118i \(-0.300597\pi\)
−0.994716 + 0.102664i \(0.967263\pi\)
\(164\) −1995.00 −0.949898
\(165\) 231.000 + 400.104i 0.108990 + 0.188776i
\(166\) 259.000 448.601i 0.121098 0.209748i
\(167\) −1840.00 + 3186.97i −0.852596 + 1.47674i 0.0262621 + 0.999655i \(0.491640\pi\)
−0.878858 + 0.477084i \(0.841694\pi\)
\(168\) −450.000 −0.206656
\(169\) 1943.50 + 1024.51i 0.884615 + 0.466321i
\(170\) −259.000 −0.116849
\(171\) −135.000 + 233.827i −0.0603726 + 0.104568i
\(172\) −861.000 + 1491.30i −0.381690 + 0.661106i
\(173\) −2073.00 3590.54i −0.911025 1.57794i −0.812619 0.582795i \(-0.801959\pi\)
−0.0984052 0.995146i \(-0.531374\pi\)
\(174\) 339.000 0.147698
\(175\) −380.000 658.179i −0.164145 0.284307i
\(176\) 451.000 + 781.155i 0.193156 + 0.334555i
\(177\) 1728.00 0.733810
\(178\) 97.0000 + 168.009i 0.0408453 + 0.0707461i
\(179\) −1837.00 + 3181.78i −0.767060 + 1.32859i 0.172090 + 0.985081i \(0.444948\pi\)
−0.939150 + 0.343506i \(0.888385\pi\)
\(180\) 220.500 381.917i 0.0913061 0.158147i
\(181\) −3283.00 −1.34820 −0.674098 0.738642i \(-0.735467\pi\)
−0.674098 + 0.738642i \(0.735467\pi\)
\(182\) −455.000 112.583i −0.185312 0.0458529i
\(183\) −1905.00 −0.769517
\(184\) 1215.00 2104.44i 0.486799 0.843160i
\(185\) −45.5000 + 78.8083i −0.0180823 + 0.0313195i
\(186\) 294.000 + 509.223i 0.115899 + 0.200742i
\(187\) −814.000 −0.318319
\(188\) −1617.00 2800.73i −0.627297 1.08651i
\(189\) 135.000 + 233.827i 0.0519566 + 0.0899915i
\(190\) −210.000 −0.0801842
\(191\) 298.000 + 516.151i 0.112893 + 0.195536i 0.916935 0.399036i \(-0.130655\pi\)
−0.804043 + 0.594572i \(0.797322\pi\)
\(192\) 250.500 433.879i 0.0941577 0.163086i
\(193\) 196.500 340.348i 0.0732869 0.126937i −0.827053 0.562124i \(-0.809984\pi\)
0.900340 + 0.435187i \(0.143318\pi\)
\(194\) 1202.00 0.444838
\(195\) 682.500 709.275i 0.250640 0.260473i
\(196\) 1701.00 0.619898
\(197\) 1761.00 3050.14i 0.636884 1.10311i −0.349229 0.937037i \(-0.613557\pi\)
0.986113 0.166077i \(-0.0531101\pi\)
\(198\) −99.0000 + 171.473i −0.0355335 + 0.0615457i
\(199\) −1009.00 1747.64i −0.359428 0.622547i 0.628438 0.777860i \(-0.283695\pi\)
−0.987865 + 0.155313i \(0.950361\pi\)
\(200\) −1140.00 −0.403051
\(201\) −303.000 524.811i −0.106328 0.184166i
\(202\) −214.500 371.525i −0.0747137 0.129408i
\(203\) 1130.00 0.390692
\(204\) 388.500 + 672.902i 0.133335 + 0.230944i
\(205\) −997.500 + 1727.72i −0.339846 + 0.588630i
\(206\) −651.000 + 1127.57i −0.220181 + 0.381365i
\(207\) −1458.00 −0.489556
\(208\) 1332.50 1384.77i 0.444194 0.461619i
\(209\) −660.000 −0.218436
\(210\) −105.000 + 181.865i −0.0345033 + 0.0597614i
\(211\) −80.0000 + 138.564i −0.0261016 + 0.0452092i −0.878781 0.477225i \(-0.841643\pi\)
0.852680 + 0.522434i \(0.174976\pi\)
\(212\) −1879.50 3255.39i −0.608890 1.05463i
\(213\) −3258.00 −1.04805
\(214\) −669.000 1158.74i −0.213700 0.370140i
\(215\) 861.000 + 1491.30i 0.273115 + 0.473049i
\(216\) 405.000 0.127578
\(217\) 980.000 + 1697.41i 0.306575 + 0.531003i
\(218\) −517.000 + 895.470i −0.160622 + 0.278206i
\(219\) 1207.50 2091.45i 0.372581 0.645330i
\(220\) 1078.00 0.330358
\(221\) 481.000 + 1666.23i 0.146405 + 0.507163i
\(222\) −39.0000 −0.0117906
\(223\) −2036.00 + 3526.46i −0.611393 + 1.05896i 0.379613 + 0.925145i \(0.376057\pi\)
−0.991006 + 0.133818i \(0.957276\pi\)
\(224\) −805.000 + 1394.30i −0.240118 + 0.415896i
\(225\) 342.000 + 592.361i 0.101333 + 0.175514i
\(226\) −1077.00 −0.316995
\(227\) 2897.00 + 5017.75i 0.847051 + 1.46714i 0.883828 + 0.467812i \(0.154958\pi\)
−0.0367765 + 0.999324i \(0.511709\pi\)
\(228\) 315.000 + 545.596i 0.0914973 + 0.158478i
\(229\) 6482.00 1.87049 0.935246 0.353999i \(-0.115178\pi\)
0.935246 + 0.353999i \(0.115178\pi\)
\(230\) −567.000 982.073i −0.162552 0.281548i
\(231\) −330.000 + 571.577i −0.0939931 + 0.162801i
\(232\) 847.500 1467.91i 0.239832 0.415402i
\(233\) 6890.00 1.93725 0.968624 0.248530i \(-0.0799474\pi\)
0.968624 + 0.248530i \(0.0799474\pi\)
\(234\) 409.500 + 101.325i 0.114401 + 0.0283069i
\(235\) −3234.00 −0.897714
\(236\) 2016.00 3491.81i 0.556061 0.963126i
\(237\) −1326.00 + 2296.70i −0.363430 + 0.629480i
\(238\) −185.000 320.429i −0.0503856 0.0872704i
\(239\) 2466.00 0.667415 0.333708 0.942677i \(-0.391700\pi\)
0.333708 + 0.942677i \(0.391700\pi\)
\(240\) −430.500 745.648i −0.115786 0.200547i
\(241\) 1808.50 + 3132.41i 0.483385 + 0.837247i 0.999818 0.0190805i \(-0.00607389\pi\)
−0.516433 + 0.856327i \(0.672741\pi\)
\(242\) 847.000 0.224989
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) −2222.50 + 3849.48i −0.583119 + 1.00999i
\(245\) 850.500 1473.11i 0.221781 0.384137i
\(246\) −855.000 −0.221597
\(247\) 390.000 + 1351.00i 0.100466 + 0.348024i
\(248\) 2940.00 0.752783
\(249\) −777.000 + 1345.80i −0.197753 + 0.342517i
\(250\) −703.500 + 1218.50i −0.177973 + 0.308258i
\(251\) −2430.00 4208.88i −0.611077 1.05842i −0.991059 0.133422i \(-0.957403\pi\)
0.379983 0.924994i \(-0.375930\pi\)
\(252\) 630.000 0.157485
\(253\) −1782.00 3086.51i −0.442820 0.766986i
\(254\) −494.000 855.633i −0.122033 0.211367i
\(255\) 777.000 0.190814
\(256\) 59.5000 + 103.057i 0.0145264 + 0.0251604i
\(257\) −282.500 + 489.304i −0.0685676 + 0.118763i −0.898271 0.439442i \(-0.855176\pi\)
0.829703 + 0.558204i \(0.188510\pi\)
\(258\) −369.000 + 639.127i −0.0890424 + 0.154226i
\(259\) −130.000 −0.0311884
\(260\) −637.000 2206.63i −0.151943 0.526344i
\(261\) −1017.00 −0.241190
\(262\) 280.000 484.974i 0.0660246 0.114358i
\(263\) 249.000 431.281i 0.0583802 0.101118i −0.835358 0.549706i \(-0.814740\pi\)
0.893738 + 0.448588i \(0.148073\pi\)
\(264\) 495.000 + 857.365i 0.115398 + 0.199876i
\(265\) −3759.00 −0.871372
\(266\) −150.000 259.808i −0.0345755 0.0598866i
\(267\) −291.000 504.027i −0.0667000 0.115528i
\(268\) −1414.00 −0.322290
\(269\) −2773.00 4802.98i −0.628523 1.08863i −0.987848 0.155422i \(-0.950326\pi\)
0.359325 0.933213i \(-0.383007\pi\)
\(270\) 94.5000 163.679i 0.0213003 0.0368932i
\(271\) 1128.00 1953.75i 0.252845 0.437941i −0.711463 0.702724i \(-0.751967\pi\)
0.964308 + 0.264783i \(0.0853002\pi\)
\(272\) 1517.00 0.338168
\(273\) 1365.00 + 337.750i 0.302614 + 0.0748775i
\(274\) 519.000 0.114430
\(275\) −836.000 + 1447.99i −0.183319 + 0.317518i
\(276\) −1701.00 + 2946.22i −0.370972 + 0.642542i
\(277\) −1154.50 1999.65i −0.250423 0.433745i 0.713219 0.700941i \(-0.247236\pi\)
−0.963642 + 0.267196i \(0.913903\pi\)
\(278\) 348.000 0.0750779
\(279\) −882.000 1527.67i −0.189262 0.327811i
\(280\) 525.000 + 909.327i 0.112053 + 0.194081i
\(281\) 5833.00 1.23832 0.619159 0.785265i \(-0.287473\pi\)
0.619159 + 0.785265i \(0.287473\pi\)
\(282\) −693.000 1200.31i −0.146339 0.253466i
\(283\) −825.000 + 1428.94i −0.173290 + 0.300148i −0.939568 0.342362i \(-0.888773\pi\)
0.766278 + 0.642509i \(0.222107\pi\)
\(284\) −3801.00 + 6583.53i −0.794183 + 1.37556i
\(285\) 630.000 0.130940
\(286\) 286.000 + 990.733i 0.0591312 + 0.204837i
\(287\) −2850.00 −0.586168
\(288\) 724.500 1254.87i 0.148235 0.256750i
\(289\) 1772.00 3069.19i 0.360676 0.624709i
\(290\) −395.500 685.026i −0.0800847 0.138711i
\(291\) −3606.00 −0.726417
\(292\) −2817.50 4880.05i −0.564663 0.978026i
\(293\) −1495.50 2590.28i −0.298184 0.516471i 0.677536 0.735489i \(-0.263048\pi\)
−0.975721 + 0.219019i \(0.929714\pi\)
\(294\) 729.000 0.144613
\(295\) −2016.00 3491.81i −0.397885 0.689157i
\(296\) −97.5000 + 168.875i −0.0191455 + 0.0331610i
\(297\) 297.000 514.419i 0.0580259 0.100504i
\(298\) 645.000 0.125382
\(299\) −5265.00 + 5471.55i −1.01834 + 1.05829i
\(300\) 1596.00 0.307150
\(301\) −1230.00 + 2130.42i −0.235535 + 0.407959i
\(302\) 1457.00 2523.60i 0.277619 0.480850i
\(303\) 643.500 + 1114.57i 0.122007 + 0.211322i
\(304\) 1230.00 0.232057
\(305\) 2222.50 + 3849.48i 0.417246 + 0.722691i
\(306\) 166.500 + 288.386i 0.0311051 + 0.0538757i
\(307\) −2422.00 −0.450263 −0.225132 0.974328i \(-0.572281\pi\)
−0.225132 + 0.974328i \(0.572281\pi\)
\(308\) 770.000 + 1333.68i 0.142451 + 0.246732i
\(309\) 1953.00 3382.70i 0.359554 0.622766i
\(310\) 686.000 1188.19i 0.125684 0.217692i
\(311\) −3402.00 −0.620288 −0.310144 0.950690i \(-0.600377\pi\)
−0.310144 + 0.950690i \(0.600377\pi\)
\(312\) 1462.50 1519.87i 0.265377 0.275788i
\(313\) 2310.00 0.417153 0.208577 0.978006i \(-0.433117\pi\)
0.208577 + 0.978006i \(0.433117\pi\)
\(314\) −1039.50 + 1800.47i −0.186823 + 0.323587i
\(315\) 315.000 545.596i 0.0563436 0.0975900i
\(316\) 3094.00 + 5358.97i 0.550795 + 0.954004i
\(317\) −257.000 −0.0455349 −0.0227674 0.999741i \(-0.507248\pi\)
−0.0227674 + 0.999741i \(0.507248\pi\)
\(318\) −805.500 1395.17i −0.142045 0.246029i
\(319\) −1243.00 2152.94i −0.218165 0.377873i
\(320\) −1169.00 −0.204216
\(321\) 2007.00 + 3476.23i 0.348971 + 0.604436i
\(322\) 810.000 1402.96i 0.140185 0.242807i
\(323\) −555.000 + 961.288i −0.0956069 + 0.165596i
\(324\) −567.000 −0.0972222
\(325\) 3458.00 + 855.633i 0.590201 + 0.146037i
\(326\) −1700.00 −0.288817
\(327\) 1551.00 2686.41i 0.262295 0.454308i
\(328\) −2137.50 + 3702.26i −0.359828 + 0.623241i
\(329\) −2310.00 4001.04i −0.387096 0.670469i
\(330\) 462.000 0.0770675
\(331\) −514.000 890.274i −0.0853535 0.147837i 0.820188 0.572094i \(-0.193869\pi\)
−0.905542 + 0.424257i \(0.860535\pi\)
\(332\) 1813.00 + 3140.21i 0.299703 + 0.519100i
\(333\) 117.000 0.0192539
\(334\) 1840.00 + 3186.97i 0.301438 + 0.522106i
\(335\) −707.000 + 1224.56i −0.115306 + 0.199716i
\(336\) 615.000 1065.21i 0.0998542 0.172952i
\(337\) 2487.00 0.402005 0.201002 0.979591i \(-0.435580\pi\)
0.201002 + 0.979591i \(0.435580\pi\)
\(338\) 1859.00 1170.87i 0.299161 0.188422i
\(339\) 3231.00 0.517651
\(340\) 906.500 1570.10i 0.144594 0.250444i
\(341\) 2156.00 3734.30i 0.342387 0.593032i
\(342\) 135.000 + 233.827i 0.0213449 + 0.0369705i
\(343\) 5860.00 0.922479
\(344\) 1845.00 + 3195.63i 0.289174 + 0.500863i
\(345\) 1701.00 + 2946.22i 0.265446 + 0.459765i
\(346\) −4146.00 −0.644192
\(347\) 1425.00 + 2468.17i 0.220455 + 0.381840i 0.954946 0.296779i \(-0.0959123\pi\)
−0.734491 + 0.678618i \(0.762579\pi\)
\(348\) −1186.50 + 2055.08i −0.182767 + 0.316563i
\(349\) 1009.00 1747.64i 0.154758 0.268049i −0.778213 0.628001i \(-0.783874\pi\)
0.932971 + 0.359952i \(0.117207\pi\)
\(350\) −760.000 −0.116068
\(351\) −1228.50 303.975i −0.186816 0.0462250i
\(352\) 3542.00 0.536333
\(353\) 2643.50 4578.68i 0.398582 0.690364i −0.594970 0.803748i \(-0.702836\pi\)
0.993551 + 0.113385i \(0.0361692\pi\)
\(354\) 864.000 1496.49i 0.129721 0.224683i
\(355\) 3801.00 + 6583.53i 0.568271 + 0.984274i
\(356\) −1358.00 −0.202174
\(357\) 555.000 + 961.288i 0.0822793 + 0.142512i
\(358\) 1837.00 + 3181.78i 0.271197 + 0.469727i
\(359\) −7278.00 −1.06997 −0.534983 0.844863i \(-0.679682\pi\)
−0.534983 + 0.844863i \(0.679682\pi\)
\(360\) −472.500 818.394i −0.0691748 0.119814i
\(361\) 2979.50 5160.65i 0.434393 0.752390i
\(362\) −1641.50 + 2843.16i −0.238330 + 0.412799i
\(363\) −2541.00 −0.367405
\(364\) 2275.00 2364.25i 0.327589 0.340440i
\(365\) −5635.00 −0.808080
\(366\) −952.500 + 1649.78i −0.136033 + 0.235616i
\(367\) 2101.00 3639.04i 0.298832 0.517592i −0.677037 0.735949i \(-0.736736\pi\)
0.975869 + 0.218357i \(0.0700697\pi\)
\(368\) 3321.00 + 5752.14i 0.470432 + 0.814813i
\(369\) 2565.00 0.361866
\(370\) 45.5000 + 78.8083i 0.00639306 + 0.0110731i
\(371\) −2685.00 4650.56i −0.375737 0.650795i
\(372\) −4116.00 −0.573668
\(373\) 791.500 + 1370.92i 0.109872 + 0.190304i 0.915718 0.401821i \(-0.131623\pi\)
−0.805846 + 0.592125i \(0.798289\pi\)
\(374\) −407.000 + 704.945i −0.0562713 + 0.0974648i
\(375\) 2110.50 3655.49i 0.290629 0.503384i
\(376\) −6930.00 −0.950499
\(377\) −3672.50 + 3816.57i −0.501707 + 0.521389i
\(378\) 270.000 0.0367389
\(379\) 1026.00 1777.08i 0.139056 0.240851i −0.788084 0.615568i \(-0.788927\pi\)
0.927139 + 0.374717i \(0.122260\pi\)
\(380\) 735.000 1273.06i 0.0992229 0.171859i
\(381\) 1482.00 + 2566.90i 0.199279 + 0.345161i
\(382\) 596.000 0.0798273
\(383\) 3436.00 + 5951.33i 0.458411 + 0.793991i 0.998877 0.0473746i \(-0.0150855\pi\)
−0.540466 + 0.841366i \(0.681752\pi\)
\(384\) −2182.50 3780.20i −0.290040 0.502363i
\(385\) 1540.00 0.203859
\(386\) −196.500 340.348i −0.0259108 0.0448789i
\(387\) 1107.00 1917.38i 0.145406 0.251850i
\(388\) −4207.00 + 7286.74i −0.550459 + 0.953423i
\(389\) −11653.0 −1.51884 −0.759422 0.650598i \(-0.774518\pi\)
−0.759422 + 0.650598i \(0.774518\pi\)
\(390\) −273.000 945.700i −0.0354459 0.122788i
\(391\) −5994.00 −0.775268
\(392\) 1822.50 3156.66i 0.234822 0.406723i
\(393\) −840.000 + 1454.92i −0.107818 + 0.186746i
\(394\) −1761.00 3050.14i −0.225172 0.390010i
\(395\) 6188.00 0.788233
\(396\) −693.000 1200.31i −0.0879408 0.152318i
\(397\) −3067.00 5312.20i −0.387729 0.671566i 0.604415 0.796670i \(-0.293407\pi\)
−0.992144 + 0.125104i \(0.960074\pi\)
\(398\) −2018.00 −0.254154
\(399\) 450.000 + 779.423i 0.0564616 + 0.0977944i
\(400\) 1558.00 2698.54i 0.194750 0.337317i
\(401\) 5397.50 9348.74i 0.672165 1.16422i −0.305124 0.952313i \(-0.598698\pi\)
0.977289 0.211912i \(-0.0679689\pi\)
\(402\) −606.000 −0.0751854
\(403\) −8918.00 2206.63i −1.10233 0.272755i
\(404\) 3003.00 0.369814
\(405\) −283.500 + 491.036i −0.0347833 + 0.0602464i
\(406\) 565.000 978.609i 0.0690652 0.119624i
\(407\) 143.000 + 247.683i 0.0174158 + 0.0301651i
\(408\) 1665.00 0.202034
\(409\) 4244.50 + 7351.69i 0.513147 + 0.888796i 0.999884 + 0.0152477i \(0.00485367\pi\)
−0.486737 + 0.873549i \(0.661813\pi\)
\(410\) 997.500 + 1727.72i 0.120154 + 0.208112i
\(411\) −1557.00 −0.186864
\(412\) −4557.00 7892.96i −0.544921 0.943830i
\(413\) 2880.00 4988.31i 0.343137 0.594331i
\(414\) −729.000 + 1262.67i −0.0865420 + 0.149895i
\(415\) 3626.00 0.428900
\(416\) −2093.00 7250.36i −0.246677 0.854515i
\(417\) −1044.00 −0.122602
\(418\) −330.000 + 571.577i −0.0386144 + 0.0668821i
\(419\) −748.000 + 1295.57i −0.0872129 + 0.151057i −0.906332 0.422566i \(-0.861129\pi\)
0.819119 + 0.573623i \(0.194463\pi\)
\(420\) −735.000 1273.06i −0.0853913 0.147902i
\(421\) −11695.0 −1.35387 −0.676935 0.736043i \(-0.736692\pi\)
−0.676935 + 0.736043i \(0.736692\pi\)
\(422\) 80.0000 + 138.564i 0.00922829 + 0.0159839i
\(423\) 2079.00 + 3600.93i 0.238970 + 0.413909i
\(424\) −8055.00 −0.922607
\(425\) 1406.00 + 2435.26i 0.160473 + 0.277947i
\(426\) −1629.00 + 2821.51i −0.185271 + 0.320898i
\(427\) −3175.00 + 5499.26i −0.359834 + 0.623250i
\(428\) 9366.00 1.05776
\(429\) −858.000 2972.20i −0.0965609 0.334497i
\(430\) 1722.00 0.193121
\(431\) −5295.00 + 9171.21i −0.591766 + 1.02497i 0.402228 + 0.915539i \(0.368236\pi\)
−0.993995 + 0.109430i \(0.965098\pi\)
\(432\) −553.500 + 958.690i −0.0616442 + 0.106771i
\(433\) 6974.50 + 12080.2i 0.774072 + 1.34073i 0.935315 + 0.353817i \(0.115116\pi\)
−0.161243 + 0.986915i \(0.551550\pi\)
\(434\) 1960.00 0.216781
\(435\) 1186.50 + 2055.08i 0.130778 + 0.226514i
\(436\) −3619.00 6268.29i −0.397520 0.688525i
\(437\) −4860.00 −0.532003
\(438\) −1207.50 2091.45i −0.131727 0.228158i
\(439\) 5363.00 9288.99i 0.583057 1.00988i −0.412058 0.911158i \(-0.635190\pi\)
0.995115 0.0987266i \(-0.0314769\pi\)
\(440\) 1155.00 2000.52i 0.125142 0.216752i
\(441\) −2187.00 −0.236152
\(442\) 1683.50 + 416.558i 0.181167 + 0.0448273i
\(443\) 16228.0 1.74044 0.870221 0.492662i \(-0.163976\pi\)
0.870221 + 0.492662i \(0.163976\pi\)
\(444\) 136.500 236.425i 0.0145901 0.0252708i
\(445\) −679.000 + 1176.06i −0.0723319 + 0.125282i
\(446\) 2036.00 + 3526.46i 0.216160 + 0.374400i
\(447\) −1935.00 −0.204748
\(448\) −835.000 1446.26i −0.0880581 0.152521i
\(449\) −3769.00 6528.10i −0.396147 0.686147i 0.597100 0.802167i \(-0.296320\pi\)
−0.993247 + 0.116020i \(0.962986\pi\)
\(450\) 684.000 0.0716535
\(451\) 3135.00 + 5429.98i 0.327320 + 0.566935i
\(452\) 3769.50 6528.97i 0.392262 0.679417i
\(453\) −4371.00 + 7570.79i −0.453350 + 0.785225i
\(454\) 5794.00 0.598956
\(455\) −910.000 3152.33i −0.0937614 0.324799i
\(456\) 1350.00 0.138639
\(457\) −7769.50 + 13457.2i −0.795278 + 1.37746i 0.127385 + 0.991853i \(0.459342\pi\)
−0.922663 + 0.385608i \(0.873992\pi\)
\(458\) 3241.00 5613.58i 0.330659 0.572719i
\(459\) −499.500 865.159i −0.0507945 0.0879786i
\(460\) 7938.00 0.804589
\(461\) −2405.50 4166.45i −0.243027 0.420935i 0.718548 0.695477i \(-0.244807\pi\)
−0.961575 + 0.274543i \(0.911474\pi\)
\(462\) 330.000 + 571.577i 0.0332316 + 0.0575588i
\(463\) 562.000 0.0564111 0.0282056 0.999602i \(-0.491021\pi\)
0.0282056 + 0.999602i \(0.491021\pi\)
\(464\) 2316.50 + 4012.30i 0.231769 + 0.401436i
\(465\) −2058.00 + 3564.56i −0.205242 + 0.355489i
\(466\) 3445.00 5966.92i 0.342460 0.593159i
\(467\) 4914.00 0.486922 0.243461 0.969911i \(-0.421717\pi\)
0.243461 + 0.969911i \(0.421717\pi\)
\(468\) −2047.50 + 2127.82i −0.202234 + 0.210168i
\(469\) −2020.00 −0.198880
\(470\) −1617.00 + 2800.73i −0.158695 + 0.274868i
\(471\) 3118.50 5401.40i 0.305080 0.528415i
\(472\) −4320.00 7482.46i −0.421280 0.729678i
\(473\) 5412.00 0.526097
\(474\) 1326.00 + 2296.70i 0.128492 + 0.222555i
\(475\) 1140.00 + 1974.54i 0.110120 + 0.190733i
\(476\) 2590.00 0.249396
\(477\) 2416.50 + 4185.50i 0.231958 + 0.401763i
\(478\) 1233.00 2135.62i 0.117983 0.204353i
\(479\) 1800.00 3117.69i 0.171700 0.297392i −0.767315 0.641271i \(-0.778407\pi\)
0.939014 + 0.343878i \(0.111741\pi\)
\(480\) −3381.00 −0.321502
\(481\) 422.500 439.075i 0.0400506 0.0416218i
\(482\) 3617.00 0.341805
\(483\) −2430.00 + 4208.88i −0.228921 + 0.396503i
\(484\) −2964.50 + 5134.66i −0.278409 + 0.482219i
\(485\) 4207.00 + 7286.74i 0.393876 + 0.682214i
\(486\) −243.000 −0.0226805
\(487\) 8565.00 + 14835.0i 0.796955 + 1.38037i 0.921590 + 0.388164i \(0.126891\pi\)
−0.124635 + 0.992203i \(0.539776\pi\)
\(488\) 4762.50 + 8248.89i 0.441779 + 0.765184i
\(489\) 5100.00 0.471636
\(490\) −850.500 1473.11i −0.0784116 0.135813i
\(491\) 5919.00 10252.0i 0.544034 0.942295i −0.454633 0.890679i \(-0.650230\pi\)
0.998667 0.0516158i \(-0.0164371\pi\)
\(492\) 2992.50 5183.16i 0.274212 0.474949i
\(493\) −4181.00 −0.381953
\(494\) 1365.00 + 337.750i 0.124320 + 0.0307613i
\(495\) −1386.00 −0.125851
\(496\) −4018.00 + 6959.38i −0.363737 + 0.630011i
\(497\) −5430.00 + 9405.04i −0.490078 + 0.848840i
\(498\) 777.000 + 1345.80i 0.0699161 + 0.121098i
\(499\) 8976.00 0.805252 0.402626 0.915364i \(-0.368097\pi\)
0.402626 + 0.915364i \(0.368097\pi\)
\(500\) −4924.50 8529.48i −0.440461 0.762900i
\(501\) −5520.00 9560.92i −0.492246 0.852596i
\(502\) −4860.00 −0.432096
\(503\) −841.000 1456.65i −0.0745494 0.129123i 0.826341 0.563170i \(-0.190419\pi\)
−0.900890 + 0.434047i \(0.857085\pi\)
\(504\) 675.000 1169.13i 0.0596565 0.103328i
\(505\) 1501.50 2600.67i 0.132309 0.229165i
\(506\) −3564.00 −0.313121
\(507\) −5577.00 + 3512.60i −0.488527 + 0.307692i
\(508\) 6916.00 0.604031
\(509\) −7583.50 + 13135.0i −0.660379 + 1.14381i 0.320138 + 0.947371i \(0.396271\pi\)
−0.980516 + 0.196438i \(0.937062\pi\)
\(510\) 388.500 672.902i 0.0337315 0.0584247i
\(511\) −4025.00 6971.50i −0.348445 0.603525i
\(512\) −11521.0 −0.994455
\(513\) −405.000 701.481i −0.0348561 0.0603726i
\(514\) 282.500 + 489.304i 0.0242423 + 0.0419889i
\(515\) −9114.00 −0.779827
\(516\) −2583.00 4473.89i −0.220369 0.381690i
\(517\) −5082.00 + 8802.28i −0.432314 + 0.748789i
\(518\) −65.0000 + 112.583i −0.00551339 + 0.00954947i
\(519\) 12438.0 1.05196
\(520\) −4777.50 1182.12i −0.402899 0.0996915i
\(521\) −6783.00 −0.570381 −0.285191 0.958471i \(-0.592057\pi\)
−0.285191 + 0.958471i \(0.592057\pi\)
\(522\) −508.500 + 880.748i −0.0426369 + 0.0738492i
\(523\) 6959.00 12053.3i 0.581828 1.00775i −0.413435 0.910534i \(-0.635671\pi\)
0.995263 0.0972214i \(-0.0309955\pi\)
\(524\) 1960.00 + 3394.82i 0.163403 + 0.283022i
\(525\) 2280.00 0.189538
\(526\) −249.000 431.281i −0.0206405 0.0357504i
\(527\) −3626.00 6280.42i −0.299717 0.519126i
\(528\) −2706.00 −0.223037
\(529\) −7038.50 12191.0i −0.578491 1.00198i
\(530\) −1879.50 + 3255.39i −0.154038 + 0.266802i
\(531\) −2592.00 + 4489.48i −0.211833 + 0.366905i
\(532\) 2100.00 0.171140
\(533\) 9262.50 9625.87i 0.752727 0.782257i
\(534\) −582.000 −0.0471641
\(535\) 4683.00 8111.19i 0.378437 0.655472i
\(536\) −1515.00 + 2624.06i −0.122086 + 0.211459i
\(537\) −5511.00 9545.33i −0.442863 0.767060i
\(538\) −5546.00 −0.444433
\(539\) −2673.00 4629.77i −0.213607 0.369978i
\(540\) 661.500 + 1145.75i 0.0527156 + 0.0913061i
\(541\) −1335.00 −0.106093 −0.0530463 0.998592i \(-0.516893\pi\)
−0.0530463 + 0.998592i \(0.516893\pi\)
\(542\) −1128.00 1953.75i −0.0893944 0.154836i
\(543\) 4924.50 8529.48i 0.389191 0.674098i
\(544\) 2978.50 5158.91i 0.234747 0.406593i
\(545\) −7238.00 −0.568884
\(546\) 975.000 1013.25i 0.0764215 0.0794196i
\(547\) −3806.00 −0.297501 −0.148750 0.988875i \(-0.547525\pi\)
−0.148750 + 0.988875i \(0.547525\pi\)
\(548\) −1816.50 + 3146.27i −0.141600 + 0.245259i
\(549\) 2857.50 4949.34i 0.222140 0.384759i
\(550\) 836.000 + 1447.99i 0.0648130 + 0.112259i
\(551\) −3390.00 −0.262103
\(552\) 3645.00 + 6313.33i 0.281053 + 0.486799i
\(553\) 4420.00 + 7655.66i 0.339887 + 0.588702i
\(554\) −2309.00 −0.177076
\(555\) −136.500 236.425i −0.0104398 0.0180823i
\(556\) −1218.00 + 2109.64i −0.0929041 + 0.160915i
\(557\) 952.500 1649.78i 0.0724573 0.125500i −0.827520 0.561436i \(-0.810249\pi\)
0.899978 + 0.435936i \(0.143583\pi\)
\(558\) −1764.00 −0.133828
\(559\) −3198.00 11078.2i −0.241970 0.838207i
\(560\) −2870.00 −0.216571
\(561\) 1221.00 2114.83i 0.0918907 0.159159i
\(562\) 2916.50 5051.53i 0.218906 0.379156i
\(563\) 2400.00 + 4156.92i 0.179659 + 0.311178i 0.941764 0.336275i \(-0.109167\pi\)
−0.762105 + 0.647454i \(0.775834\pi\)
\(564\) 9702.00 0.724340
\(565\) −3769.50 6528.97i −0.280680 0.486152i
\(566\) 825.000 + 1428.94i 0.0612674 + 0.106118i
\(567\) −810.000 −0.0599944
\(568\) 8145.00 + 14107.6i 0.601684 + 1.04215i
\(569\) −7339.00 + 12711.5i −0.540715 + 0.936546i 0.458148 + 0.888876i \(0.348513\pi\)
−0.998863 + 0.0476701i \(0.984820\pi\)
\(570\) 315.000 545.596i 0.0231472 0.0400921i
\(571\) −586.000 −0.0429481 −0.0214740 0.999769i \(-0.506836\pi\)
−0.0214740 + 0.999769i \(0.506836\pi\)
\(572\) −7007.00 1733.78i −0.512198 0.126736i
\(573\) −1788.00 −0.130357
\(574\) −1425.00 + 2468.17i −0.103621 + 0.179477i
\(575\) −6156.00 + 10662.5i −0.446475 + 0.773317i
\(576\) 751.500 + 1301.64i 0.0543620 + 0.0941577i
\(577\) 8939.00 0.644949 0.322474 0.946578i \(-0.395485\pi\)
0.322474 + 0.946578i \(0.395485\pi\)
\(578\) −1772.00 3069.19i −0.127518 0.220868i
\(579\) 589.500 + 1021.04i 0.0423122 + 0.0732869i
\(580\) 5537.00 0.396399
\(581\) 2590.00 + 4486.01i 0.184942 + 0.320329i
\(582\) −1803.00 + 3122.89i −0.128414 + 0.222419i
\(583\) −5907.00 + 10231.2i −0.419628 + 0.726816i
\(584\) −12075.0 −0.855594
\(585\) 819.000 + 2837.10i 0.0578829 + 0.200512i
\(586\) −2991.00 −0.210848
\(587\) 6896.00 11944.2i 0.484887 0.839848i −0.514963 0.857213i \(-0.672194\pi\)
0.999849 + 0.0173645i \(0.00552757\pi\)
\(588\) −2551.50 + 4419.33i −0.178949 + 0.309949i
\(589\) −2940.00 5092.23i −0.205672 0.356234i
\(590\) −4032.00 −0.281347
\(591\) 5283.00 + 9150.42i 0.367705 + 0.636884i
\(592\) −266.500 461.592i −0.0185018 0.0320461i
\(593\) 9569.00 0.662650 0.331325 0.943517i \(-0.392504\pi\)
0.331325 + 0.943517i \(0.392504\pi\)
\(594\) −297.000 514.419i −0.0205152 0.0355335i
\(595\) 1295.00 2243.01i 0.0892266 0.154545i
\(596\) −2257.50 + 3910.10i −0.155152 + 0.268732i
\(597\) 6054.00 0.415031
\(598\) 2106.00 + 7295.40i 0.144015 + 0.498881i
\(599\) −5192.00 −0.354156 −0.177078 0.984197i \(-0.556664\pi\)
−0.177078 + 0.984197i \(0.556664\pi\)
\(600\) 1710.00 2961.81i 0.116351 0.201525i
\(601\) 1838.50 3184.38i 0.124782 0.216129i −0.796866 0.604156i \(-0.793510\pi\)
0.921648 + 0.388028i \(0.126844\pi\)
\(602\) 1230.00 + 2130.42i 0.0832742 + 0.144235i
\(603\) 1818.00 0.122777
\(604\) 10199.0 + 17665.2i 0.687072 + 1.19004i
\(605\) 2964.50 + 5134.66i 0.199213 + 0.345048i
\(606\) 1287.00 0.0862719
\(607\) 5480.00 + 9491.64i 0.366435 + 0.634685i 0.989005 0.147879i \(-0.0472447\pi\)
−0.622570 + 0.782564i \(0.713911\pi\)
\(608\) 2415.00 4182.90i 0.161087 0.279012i
\(609\) −1695.00 + 2935.83i −0.112783 + 0.195346i
\(610\) 4445.00 0.295037
\(611\) 21021.0 + 5201.35i 1.39185 + 0.344393i
\(612\) −2331.00 −0.153963
\(613\) 13013.5 22540.0i 0.857439 1.48513i −0.0169241 0.999857i \(-0.505387\pi\)
0.874363 0.485272i \(-0.161279\pi\)
\(614\) −1211.00 + 2097.51i −0.0795961 + 0.137864i
\(615\) −2992.50 5183.16i −0.196210 0.339846i
\(616\) 3300.00 0.215845
\(617\) −8840.50 15312.2i −0.576832 0.999102i −0.995840 0.0911193i \(-0.970956\pi\)
0.419008 0.907982i \(-0.362378\pi\)
\(618\) −1953.00 3382.70i −0.127122 0.220181i
\(619\) 3192.00 0.207265 0.103633 0.994616i \(-0.466953\pi\)
0.103633 + 0.994616i \(0.466953\pi\)
\(620\) 4802.00 + 8317.31i 0.311053 + 0.538760i
\(621\) 2187.00 3788.00i 0.141323 0.244778i
\(622\) −1701.00 + 2946.22i −0.109653 + 0.189924i
\(623\) −1940.00 −0.124758
\(624\) 1599.00 + 5539.10i 0.102582 + 0.355355i
\(625\) −349.000 −0.0223360
\(626\) 1155.00 2000.52i 0.0737429 0.127727i
\(627\) 990.000 1714.73i 0.0630571 0.109218i
\(628\) −7276.50 12603.3i −0.462363 0.800836i
\(629\) 481.000 0.0304908
\(630\) −315.000 545.596i −0.0199205 0.0345033i
\(631\) −3790.00 6564.47i −0.239109 0.414148i 0.721350 0.692571i \(-0.243522\pi\)
−0.960459 + 0.278422i \(0.910189\pi\)
\(632\) 13260.0 0.834580
\(633\) −240.000 415.692i −0.0150697 0.0261016i
\(634\) −128.500 + 222.569i −0.00804951 + 0.0139422i
\(635\) 3458.00 5989.43i 0.216105 0.374304i
\(636\) 11277.0 0.703085
\(637\) −7897.50 + 8207.32i −0.491225 + 0.510496i
\(638\) −2486.00 −0.154266
\(639\) 4887.00 8464.53i 0.302546 0.524025i
\(640\) −5092.50 + 8820.47i −0.314529 + 0.544781i
\(641\) 13853.5 + 23995.0i 0.853635 + 1.47854i 0.877905 + 0.478835i \(0.158941\pi\)
−0.0242696 + 0.999705i \(0.507726\pi\)
\(642\) 4014.00 0.246760
\(643\) −5608.00 9713.34i −0.343947 0.595734i 0.641215 0.767361i \(-0.278431\pi\)
−0.985162 + 0.171628i \(0.945097\pi\)
\(644\) 5670.00 + 9820.73i 0.346940 + 0.600918i
\(645\) −5166.00 −0.315366
\(646\) 555.000 + 961.288i 0.0338021 + 0.0585470i
\(647\) 1268.00 2196.24i 0.0770483 0.133452i −0.824927 0.565239i \(-0.808784\pi\)
0.901975 + 0.431788i \(0.142117\pi\)
\(648\) −607.500 + 1052.22i −0.0368285 + 0.0637888i
\(649\) −12672.0 −0.766440
\(650\) 2470.00 2566.90i 0.149048 0.154895i
\(651\) −5880.00 −0.354002
\(652\) 5950.00 10305.7i 0.357393 0.619022i
\(653\) −8865.00 + 15354.6i −0.531262 + 0.920173i 0.468072 + 0.883690i \(0.344949\pi\)
−0.999334 + 0.0364829i \(0.988385\pi\)
\(654\) −1551.00 2686.41i −0.0927353 0.160622i
\(655\) 3920.00 0.233843
\(656\) −5842.50 10119.5i −0.347731 0.602287i
\(657\) 3622.50 + 6274.35i 0.215110 + 0.372581i
\(658\) −4620.00 −0.273718
\(659\) −9460.00 16385.2i −0.559195 0.968554i −0.997564 0.0697586i \(-0.977777\pi\)
0.438369 0.898795i \(-0.355556\pi\)
\(660\) −1617.00 + 2800.73i −0.0953661 + 0.165179i
\(661\) −2620.50 + 4538.84i −0.154199 + 0.267081i −0.932767 0.360480i \(-0.882613\pi\)
0.778568 + 0.627560i \(0.215946\pi\)
\(662\) −1028.00 −0.0603540
\(663\) −5050.50 1249.67i −0.295845 0.0732026i
\(664\) 7770.00 0.454118
\(665\) 1050.00 1818.65i 0.0612290 0.106052i
\(666\) 58.5000 101.325i 0.00340365 0.00589529i
\(667\) −9153.00 15853.5i −0.531343 0.920313i
\(668\) −25760.0 −1.49204
\(669\) −6108.00 10579.4i −0.352988 0.611393i
\(670\) 707.000 + 1224.56i 0.0407669 + 0.0706103i
\(671\) 13970.0 0.803735
\(672\) −2415.00 4182.90i −0.138632 0.240118i
\(673\) −10233.5 + 17724.9i −0.586140 + 1.01522i 0.408592 + 0.912717i \(0.366020\pi\)
−0.994732 + 0.102508i \(0.967313\pi\)
\(674\) 1243.50 2153.81i 0.0710650 0.123088i
\(675\) −2052.00 −0.117010
\(676\) 591.500 + 15367.6i 0.0336538 + 0.874353i
\(677\) −70.0000 −0.00397388 −0.00198694 0.999998i \(-0.500632\pi\)
−0.00198694 + 0.999998i \(0.500632\pi\)
\(678\) 1615.50 2798.13i 0.0915087 0.158498i
\(679\) −6010.00 + 10409.6i −0.339680 + 0.588343i
\(680\) −1942.50 3364.51i −0.109546 0.189740i
\(681\) −17382.0 −0.978091
\(682\) −2156.00 3734.30i −0.121052 0.209668i
\(683\) −3216.00 5570.28i −0.180171 0.312065i 0.761768 0.647850i \(-0.224332\pi\)
−0.941939 + 0.335785i \(0.890998\pi\)
\(684\) −1890.00 −0.105652
\(685\) 1816.50 + 3146.27i 0.101321 + 0.175493i
\(686\) 2930.00 5074.91i 0.163073 0.282450i
\(687\) −9723.00 + 16840.7i −0.539964 + 0.935246i
\(688\) −10086.0 −0.558903
\(689\) 24433.5 + 6045.72i 1.35100 + 0.334287i
\(690\) 3402.00 0.187698
\(691\) 3333.00 5772.93i 0.183492 0.317818i −0.759575 0.650420i \(-0.774593\pi\)
0.943067 + 0.332601i \(0.107926\pi\)
\(692\) 14511.0 25133.8i 0.797147 1.38070i
\(693\) −990.000 1714.73i −0.0542669 0.0939931i
\(694\) 2850.00 0.155885
\(695\) 1218.00 + 2109.64i 0.0664768 + 0.115141i
\(696\) 2542.50 + 4403.74i 0.138467 + 0.239832i
\(697\) 10545.0 0.573056
\(698\) −1009.00 1747.64i −0.0547152 0.0947695i
\(699\) −10335.0 + 17900.7i −0.559235 + 0.968624i
\(700\) 2660.00 4607.26i 0.143626 0.248768i
\(701\) −14054.0 −0.757221 −0.378611 0.925556i \(-0.623598\pi\)
−0.378611 + 0.925556i \(0.623598\pi\)
\(702\) −877.500 + 911.925i −0.0471782 + 0.0490290i
\(703\) 390.000 0.0209234
\(704\) −1837.00 + 3181.78i −0.0983445 + 0.170338i
\(705\) 4851.00 8402.18i 0.259148 0.448857i
\(706\) −2643.50 4578.68i −0.140920 0.244080i
\(707\) 4290.00 0.228207
\(708\) 6048.00 + 10475.4i 0.321042 + 0.556061i
\(709\) 35.5000 + 61.4878i 0.00188044 + 0.00325701i 0.866964 0.498371i \(-0.166068\pi\)
−0.865084 + 0.501628i \(0.832735\pi\)
\(710\) 7602.00 0.401828
\(711\) −3978.00 6890.10i −0.209827 0.363430i
\(712\) −1455.00 + 2520.13i −0.0765849 + 0.132649i
\(713\) 15876.0 27498.0i 0.833886 1.44433i
\(714\) 1110.00 0.0581803
\(715\) −5005.00 + 5201.35i −0.261785 + 0.272055i
\(716\) −25718.0 −1.34236
\(717\) −3699.00 + 6406.86i −0.192666 + 0.333708i
\(718\) −3639.00 + 6302.93i −0.189145 + 0.327609i
\(719\) −1968.00 3408.68i −0.102078 0.176804i 0.810463 0.585790i \(-0.199216\pi\)
−0.912541 + 0.408986i \(0.865882\pi\)
\(720\) 2583.00 0.133698
\(721\) −6510.00 11275.7i −0.336262 0.582423i
\(722\) −2979.50 5160.65i −0.153581 0.266010i
\(723\) −10851.0 −0.558165
\(724\) −11490.5 19902.1i −0.589836 1.02163i
\(725\) −4294.00 + 7437.43i −0.219966 + 0.380992i
\(726\) −1270.50 + 2200.57i −0.0649486 + 0.112494i
\(727\) 34202.0 1.74482 0.872409 0.488777i \(-0.162557\pi\)
0.872409 + 0.488777i \(0.162557\pi\)
\(728\) −1950.00 6755.00i −0.0992745 0.343897i
\(729\) 729.000 0.0370370
\(730\) −2817.50 + 4880.05i −0.142850 + 0.247423i
\(731\) 4551.00 7882.56i 0.230267 0.398833i
\(732\) −6667.50 11548.4i −0.336664 0.583119i
\(733\) −27363.0 −1.37882 −0.689410 0.724371i \(-0.742130\pi\)
−0.689410 + 0.724371i \(0.742130\pi\)
\(734\) −2101.00 3639.04i −0.105653 0.182996i
\(735\) 2551.50 + 4419.33i 0.128046 + 0.221781i
\(736\) 26082.0 1.30624
\(737\) 2222.00 + 3848.62i 0.111056 + 0.192355i
\(738\) 1282.50 2221.36i 0.0639695 0.110798i
\(739\) −10888.0 + 18858.6i −0.541978 + 0.938733i 0.456813 + 0.889563i \(0.348991\pi\)
−0.998790 + 0.0491701i \(0.984342\pi\)
\(740\) −637.000 −0.0316440
\(741\) −4095.00 1013.25i −0.203014 0.0502330i
\(742\) −5370.00 −0.265686
\(743\) −1242.00 + 2151.21i −0.0613251 + 0.106218i −0.895058 0.445950i \(-0.852866\pi\)
0.833733 + 0.552168i \(0.186199\pi\)
\(744\) −4410.00 + 7638.34i −0.217310 + 0.376392i
\(745\) 2257.50 + 3910.10i 0.111018 + 0.192289i
\(746\) 1583.00 0.0776914
\(747\) −2331.00 4037.41i −0.114172 0.197753i
\(748\) −2849.00 4934.61i −0.139264 0.241213i
\(749\) 13380.0 0.652730
\(750\) −2110.50 3655.49i −0.102753 0.177973i
\(751\) −16453.0 + 28497.4i −0.799439 + 1.38467i 0.120543 + 0.992708i \(0.461536\pi\)
−0.919982 + 0.391960i \(0.871797\pi\)
\(752\) 9471.00 16404.3i 0.459271 0.795481i
\(753\) 14580.0 0.705611
\(754\) 1469.00 + 5088.77i 0.0709520 + 0.245785i
\(755\) 20398.0 0.983257
\(756\) −945.000 + 1636.79i −0.0454621 + 0.0787426i
\(757\) 1957.00 3389.62i 0.0939609 0.162745i −0.815214 0.579160i \(-0.803380\pi\)
0.909174 + 0.416415i \(0.136714\pi\)
\(758\) −1026.00 1777.08i −0.0491636 0.0851538i
\(759\) 10692.0 0.511324
\(760\) −1575.00 2727.98i −0.0751727 0.130203i
\(761\) 16519.0 + 28611.7i 0.786877 + 1.36291i 0.927871 + 0.372900i \(0.121637\pi\)
−0.140995 + 0.990010i \(0.545030\pi\)
\(762\) 2964.00 0.140911
\(763\) −5170.00 8954.70i −0.245303 0.424878i
\(764\) −2086.00 + 3613.06i −0.0987812 + 0.171094i
\(765\) −1165.50 + 2018.71i −0.0550833 + 0.0954071i
\(766\) 6872.00 0.324145
\(767\) 7488.00 + 25939.2i 0.352511 + 1.22113i
\(768\) −357.000 −0.0167736
\(769\) 8793.00 15229.9i 0.412332 0.714181i −0.582812 0.812607i \(-0.698048\pi\)
0.995144 + 0.0984263i \(0.0313809\pi\)
\(770\) 770.000 1333.68i 0.0360375 0.0624188i
\(771\) −847.500 1467.91i −0.0395875 0.0685676i
\(772\) 2751.00 0.128252
\(773\) −9157.00 15860.4i −0.426073 0.737980i 0.570447 0.821334i \(-0.306770\pi\)
−0.996520 + 0.0833544i \(0.973437\pi\)
\(774\) −1107.00 1917.38i −0.0514086 0.0890424i
\(775\) −14896.0 −0.690426
\(776\) 9015.00 + 15614.4i 0.417036 + 0.722327i
\(777\) 195.000 337.750i 0.00900333 0.0155942i
\(778\) −5826.50 + 10091.8i −0.268496 + 0.465049i
\(779\) 8550.00 0.393242
\(780\) 6688.50 + 1654.97i 0.307034 + 0.0759713i
\(781\) 23892.0 1.09465
\(782\) −2997.00 + 5190.96i −0.137049 + 0.237376i
\(783\) 1525.50 2642.24i 0.0696257 0.120595i
\(784\) 4981.50 + 8628.21i 0.226927 + 0.393049i
\(785\) −14553.0 −0.661680
\(786\) 840.000 + 1454.92i 0.0381193 + 0.0660246i
\(787\) 21034.0 + 36432.0i 0.952708 + 1.65014i 0.739528 + 0.673125i \(0.235049\pi\)
0.213180 + 0.977013i \(0.431618\pi\)
\(788\) 24654.0 1.11455
\(789\) 747.000 + 1293.84i 0.0337058 + 0.0583802i
\(790\) 3094.00 5358.97i 0.139341 0.241346i
\(791\) 5385.00 9327.09i 0.242059 0.419258i
\(792\) −2970.00 −0.133250
\(793\) −8255.00 28596.2i −0.369664 1.28055i
\(794\) −6134.00 −0.274166
\(795\) 5638.50 9766.17i 0.251543 0.435686i
\(796\) 7063.00 12233.5i 0.314499 0.544729i
\(797\) 2141.00 + 3708.32i 0.0951545 + 0.164812i 0.909673 0.415325i \(-0.136332\pi\)
−0.814519 + 0.580137i \(0.802999\pi\)
\(798\) 900.000 0.0399244
\(799\) 8547.00 + 14803.8i 0.378437 + 0.655472i
\(800\) −6118.00 10596.7i −0.270380 0.468312i
\(801\) 1746.00 0.0770186
\(802\) −5397.50 9348.74i −0.237646 0.411616i
\(803\) −8855.00 + 15337.3i −0.389148 + 0.674025i
\(804\) 2121.00 3673.68i 0.0930372 0.161145i
\(805\) 11340.0 0.496500
\(806\) −6370.00 + 6619.90i −0.278379 + 0.289300i
\(807\) 16638.0 0.725756
\(808\) 3217.50 5572.87i 0.140088 0.242640i
\(809\) −20110.5 + 34832.4i −0.873977 + 1.51377i −0.0161288 + 0.999870i \(0.505134\pi\)
−0.857848 + 0.513903i \(0.828199\pi\)
\(810\) 283.500 + 491.036i 0.0122977 + 0.0213003i
\(811\) −7084.00 −0.306724 −0.153362 0.988170i \(-0.549010\pi\)
−0.153362 + 0.988170i \(0.549010\pi\)
\(812\) 3955.00 + 6850.26i 0.170928 + 0.296055i
\(813\) 3384.00 + 5861.26i 0.145980 + 0.252845i
\(814\) 286.000 0.0123149
\(815\) −5950.00 10305.7i −0.255729 0.442936i
\(816\) −2275.50 + 3941.28i −0.0976206 + 0.169084i
\(817\) 3690.00 6391.27i 0.158013 0.273687i
\(818\) 8489.00 0.362850
\(819\) −2925.00 + 3039.75i −0.124796 + 0.129692i
\(820\) −13965.0 −0.594730
\(821\) −8669.00 + 15015.1i −0.368514 + 0.638285i −0.989333 0.145668i \(-0.953467\pi\)
0.620819 + 0.783954i \(0.286800\pi\)
\(822\) −778.500 + 1348.40i −0.0330332 + 0.0572152i
\(823\) −17748.0 30740.4i −0.751709 1.30200i −0.946994 0.321251i \(-0.895897\pi\)
0.195285 0.980747i \(-0.437437\pi\)
\(824\) −19530.0 −0.825679
\(825\) −2508.00 4343.98i −0.105839 0.183319i
\(826\) −2880.00 4988.31i −0.121317 0.210128i
\(827\) −14992.0 −0.630378 −0.315189 0.949029i \(-0.602068\pi\)
−0.315189 + 0.949029i \(0.602068\pi\)
\(828\) −5103.00 8838.66i −0.214181 0.370972i
\(829\) 10329.5 17891.2i 0.432760 0.749563i −0.564349 0.825536i \(-0.690873\pi\)
0.997110 + 0.0759730i \(0.0242063\pi\)
\(830\) 1813.00 3140.21i 0.0758195 0.131323i
\(831\) 6927.00 0.289164
\(832\) 7598.50 + 1880.14i 0.316623 + 0.0783440i
\(833\) −8991.00 −0.373973
\(834\) −522.000 + 904.131i −0.0216731 + 0.0375389i
\(835\) −12880.0 + 22308.8i −0.533809 + 0.924585i
\(836\) −2310.00 4001.04i −0.0955658 0.165525i
\(837\) 5292.00 0.218540
\(838\) 748.000 + 1295.57i 0.0308344 + 0.0534068i
\(839\) −14358.0 24868.8i −0.590814 1.02332i −0.994123 0.108256i \(-0.965473\pi\)
0.403309 0.915064i \(-0.367860\pi\)
\(840\) −3150.00 −0.129387
\(841\) 5810.00 + 10063.2i 0.238222 + 0.412613i
\(842\) −5847.50 + 10128.2i −0.239333 + 0.414536i
\(843\) −8749.50 + 15154.6i −0.357472 + 0.619159i
\(844\) −1120.00 −0.0456777
\(845\) 13604.5 + 7171.56i 0.553857 + 0.291963i
\(846\) 4158.00 0.168978
\(847\) −4235.00 + 7335.24i −0.171802 + 0.297570i
\(848\) 11008.5 19067.3i 0.445794 0.772138i
\(849\) −2475.00 4286.83i −0.100049 0.173290i
\(850\) 2812.00 0.113472
\(851\) 1053.00 + 1823.85i 0.0424164 + 0.0734674i
\(852\) −11403.0 19750.6i −0.458522 0.794183i
\(853\) 13377.0 0.536952 0.268476 0.963286i \(-0.413480\pi\)
0.268476 + 0.963286i \(0.413480\pi\)
\(854\) 3175.00 + 5499.26i 0.127220 + 0.220352i
\(855\) −945.000 + 1636.79i −0.0377992 + 0.0654701i
\(856\) 10035.0 17381.1i 0.400688 0.694013i
\(857\) −27419.0 −1.09290 −0.546450 0.837492i \(-0.684021\pi\)
−0.546450 + 0.837492i \(0.684021\pi\)
\(858\) −3003.00 743.050i −0.119488 0.0295656i
\(859\) 2422.00 0.0962021 0.0481010 0.998842i \(-0.484683\pi\)
0.0481010 + 0.998842i \(0.484683\pi\)
\(860\) −6027.00 + 10439.1i −0.238976 + 0.413918i
\(861\) 4275.00 7404.52i 0.169212 0.293084i
\(862\) 5295.00 + 9171.21i 0.209221 + 0.362381i
\(863\) −34522.0 −1.36169 −0.680847 0.732425i \(-0.738388\pi\)
−0.680847 + 0.732425i \(0.738388\pi\)
\(864\) 2173.50 + 3764.61i 0.0855833 + 0.148235i
\(865\) −14511.0 25133.8i −0.570392 0.987947i
\(866\) 13949.0 0.547351
\(867\) 5316.00 + 9207.58i 0.208236 + 0.360676i
\(868\) −6860.00 + 11881.9i −0.268253 + 0.464628i
\(869\) 9724.00 16842.5i 0.379590 0.657470i
\(870\) 2373.00 0.0924738
\(871\) 6565.00 6822.55i 0.255392 0.265411i
\(872\) −15510.0 −0.602334
\(873\) 5409.00 9368.66i 0.209699 0.363209i
\(874\) −2430.00 + 4208.88i −0.0940457 + 0.162892i
\(875\) −7035.00 12185.0i −0.271802 0.470774i
\(876\) 16905.0 0.652017
\(877\) −6866.50 11893.1i −0.264385 0.457927i 0.703018 0.711172i \(-0.251835\pi\)
−0.967402 + 0.253245i \(0.918502\pi\)
\(878\) −5363.00 9288.99i −0.206142 0.357048i
\(879\) 8973.00 0.344314
\(880\) 3157.00 + 5468.08i 0.120935 + 0.209465i
\(881\) 11379.5 19709.9i 0.435170 0.753737i −0.562139 0.827043i \(-0.690021\pi\)
0.997310 + 0.0733055i \(0.0233548\pi\)
\(882\) −1093.50 + 1894.00i −0.0417461 + 0.0723064i
\(883\) −2168.00 −0.0826263 −0.0413131 0.999146i \(-0.513154\pi\)
−0.0413131 + 0.999146i \(0.513154\pi\)
\(884\) −8417.50 + 8747.72i −0.320261 + 0.332826i
\(885\) 12096.0 0.459438
\(886\) 8114.00 14053.9i 0.307669 0.532899i
\(887\) −7944.00 + 13759.4i −0.300714 + 0.520852i −0.976298 0.216431i \(-0.930558\pi\)
0.675584 + 0.737283i \(0.263892\pi\)
\(888\) −292.500 506.625i −0.0110537 0.0191455i
\(889\) 9880.00 0.372739
\(890\) 679.000 + 1176.06i 0.0255732 + 0.0442941i
\(891\) 891.000 + 1543.26i 0.0335013 + 0.0580259i
\(892\) −28504.0 −1.06994
\(893\) 6930.00 + 12003.1i 0.259690 + 0.449797i
\(894\) −967.500 + 1675.76i −0.0361947 + 0.0626910i
\(895\) −12859.0 + 22272.4i −0.480256 + 0.831827i
\(896\) −14550.0 −0.542502
\(897\) −6318.00 21886.2i −0.235175 0.814670i
\(898\) −7538.00 −0.280118
\(899\) 11074.0 19180.7i 0.410833 0.711583i
\(900\) −2394.00 + 4146.53i −0.0886667 + 0.153575i
\(901\) 9934.50 + 17207.1i 0.367332 + 0.636238i
\(902\) 6270.00 0.231450
\(903\) −3690.00 6391.27i −0.135986 0.235535i
\(904\) −8077.50 13990.6i −0.297183 0.514736i
\(905\) −22981.0 −0.844104
\(906\) 4371.00 + 7570.79i 0.160283 + 0.277619i
\(907\) 5814.00 10070.1i 0.212845 0.368659i −0.739759 0.672872i \(-0.765060\pi\)
0.952604 + 0.304214i \(0.0983936\pi\)
\(908\) −20279.0 + 35124.3i −0.741170 + 1.28374i
\(909\) −3861.00 −0.140882
\(910\) −3185.00 788.083i −0.116024 0.0287085i
\(911\) −12584.0 −0.457658 −0.228829 0.973467i \(-0.573490\pi\)
−0.228829 + 0.973467i \(0.573490\pi\)
\(912\) −1845.00 + 3195.63i −0.0669891 + 0.116029i
\(913\) 5698.00 9869.23i 0.206546 0.357748i
\(914\) 7769.50 + 13457.2i 0.281173 + 0.487006i
\(915\) −13335.0 −0.481794
\(916\) 22687.0 + 39295.0i 0.818340 + 1.41741i
\(917\) 2800.00 + 4849.74i 0.100833 + 0.174648i
\(918\) −999.000 −0.0359171
\(919\) −8592.00 14881.8i −0.308405 0.534173i 0.669609 0.742714i \(-0.266462\pi\)
−0.978014 + 0.208541i \(0.933128\pi\)
\(920\) 8505.00 14731.1i 0.304784 0.527902i
\(921\) 3633.00 6292.54i 0.129980 0.225132i
\(922\) −4811.00 −0.171846
\(923\) −14118.0 48906.2i −0.503467 1.74406i
\(924\) −4620.00 −0.164488
\(925\) 494.000 855.633i 0.0175596 0.0304141i
\(926\) 281.000 486.706i 0.00997217 0.0172723i
\(927\) 5859.00 + 10148.1i 0.207589 + 0.359554i
\(928\) 18193.0 0.643550
\(929\) −6388.50 11065.2i −0.225619 0.390783i 0.730886 0.682499i \(-0.239107\pi\)
−0.956505 + 0.291716i \(0.905774\pi\)
\(930\) 2058.00 + 3564.56i 0.0725640 + 0.125684i
\(931\) −7290.00 −0.256627
\(932\) 24115.0 + 41768.4i 0.847546 + 1.46799i
\(933\) 5103.00 8838.66i 0.179062 0.310144i
\(934\) 2457.00 4255.65i 0.0860765 0.149089i
\(935\) −5698.00 −0.199299
\(936\) 1755.00 + 6079.50i 0.0612863 + 0.212302i
\(937\) 9191.00 0.320445 0.160222 0.987081i \(-0.448779\pi\)
0.160222 + 0.987081i \(0.448779\pi\)
\(938\) −1010.00 + 1749.37i −0.0351574 + 0.0608945i
\(939\) −3465.00 + 6001.56i −0.120422 + 0.208577i
\(940\) −11319.0 19605.1i −0.392750 0.680263i
\(941\) 50498.0 1.74940 0.874701 0.484662i \(-0.161058\pi\)
0.874701 + 0.484662i \(0.161058\pi\)
\(942\) −3118.50 5401.40i −0.107862 0.186823i
\(943\) 23085.0 + 39984.4i 0.797191 + 1.38078i
\(944\) 23616.0 0.814232
\(945\) 945.000 + 1636.79i 0.0325300 + 0.0563436i
\(946\) 2706.00 4686.93i 0.0930017 0.161084i
\(947\) −780.000 + 1351.00i −0.0267651 + 0.0463586i −0.879098 0.476642i \(-0.841854\pi\)
0.852333 + 0.523000i \(0.175187\pi\)
\(948\) −18564.0 −0.636003
\(949\) 36627.5 + 9062.96i 1.25288 + 0.310006i
\(950\) 2280.00 0.0778663
\(951\) 385.500 667.706i 0.0131448 0.0227674i
\(952\) 2775.00 4806.44i 0.0944730 0.163632i
\(953\) 10749.0 + 18617.8i 0.365366 + 0.632833i 0.988835 0.149015i \(-0.0476103\pi\)
−0.623468 + 0.781849i \(0.714277\pi\)
\(954\) 4833.00 0.164019
\(955\) 2086.00 + 3613.06i 0.0706821 + 0.122425i
\(956\) 8631.00 + 14949.3i 0.291994 + 0.505749i
\(957\) 7458.00 0.251915
\(958\) −1800.00 3117.69i −0.0607050 0.105144i
\(959\) −2595.00 + 4494.67i −0.0873795 + 0.151346i
\(960\) 1753.50 3037.15i 0.0589521 0.102108i
\(961\) 8625.00 0.289517
\(962\) −169.000 585.433i −0.00566401 0.0196207i
\(963\) −12042.0 −0.402957
\(964\) −12659.5 + 21926.9i −0.422962 + 0.732591i
\(965\) 1375.50 2382.44i 0.0458849 0.0794749i
\(966\) 2430.00 + 4208.88i 0.0809358 + 0.140185i
\(967\) −418.000 −0.0139007 −0.00695035 0.999976i \(-0.502212\pi\)
−0.00695035 + 0.999976i \(0.502212\pi\)
\(968\) 6352.50 + 11002.9i 0.210927 + 0.365336i
\(969\) −1665.00 2883.86i −0.0551987 0.0956069i
\(970\) 8414.00 0.278513
\(971\) −9066.00 15702.8i −0.299631 0.518976i 0.676420 0.736516i \(-0.263530\pi\)
−0.976052 + 0.217539i \(0.930197\pi\)
\(972\) 850.500 1473.11i 0.0280656 0.0486111i
\(973\) −1740.00 + 3013.77i −0.0573297 + 0.0992980i
\(974\) 17130.0 0.563532
\(975\) −7410.00 + 7700.70i −0.243395 + 0.252943i
\(976\) −26035.0 −0.853853
\(977\) −6250.50 + 10826.2i −0.204679 + 0.354514i −0.950030 0.312158i \(-0.898948\pi\)
0.745352 + 0.666672i \(0.232282\pi\)
\(978\) 2550.00 4416.73i 0.0833742 0.144408i
\(979\) 2134.00 + 3696.20i 0.0696659 + 0.120665i
\(980\) 11907.0 0.388118
\(981\) 4653.00 + 8059.23i 0.151436 + 0.262295i
\(982\) −5919.00 10252.0i −0.192345 0.333151i
\(983\) −43708.0 −1.41818 −0.709089 0.705119i \(-0.750894\pi\)
−0.709089 + 0.705119i \(0.750894\pi\)
\(984\) −6412.50 11106.8i −0.207747 0.359828i
\(985\) 12327.0 21351.0i 0.398752 0.690659i
\(986\) −2090.50 + 3620.85i −0.0675204 + 0.116949i
\(987\) 13860.0 0.446979
\(988\) −6825.00 + 7092.75i −0.219769 + 0.228391i
\(989\) 39852.0 1.28131
\(990\) −693.000 + 1200.31i −0.0222475 + 0.0385337i
\(991\) 19807.0 34306.7i 0.634904 1.09969i −0.351631 0.936139i \(-0.614373\pi\)
0.986535 0.163548i \(-0.0522938\pi\)
\(992\) 15778.0 + 27328.3i 0.504992 + 0.874672i
\(993\) 3084.00 0.0985577
\(994\) 5430.00 + 9405.04i 0.173269 + 0.300110i
\(995\) −7063.00 12233.5i −0.225037 0.389776i
\(996\) −10878.0 −0.346067
\(997\) 18251.5 + 31612.5i 0.579770 + 1.00419i 0.995505 + 0.0947056i \(0.0301910\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(998\) 4488.00 7773.44i 0.142350 0.246557i
\(999\) −175.500 + 303.975i −0.00555813 + 0.00962697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.4.e.b.22.1 yes 2
3.2 odd 2 117.4.g.a.100.1 2
4.3 odd 2 624.4.q.c.529.1 2
13.3 even 3 inner 39.4.e.b.16.1 2
13.4 even 6 507.4.a.d.1.1 1
13.6 odd 12 507.4.b.d.337.2 2
13.7 odd 12 507.4.b.d.337.1 2
13.9 even 3 507.4.a.b.1.1 1
39.17 odd 6 1521.4.a.e.1.1 1
39.29 odd 6 117.4.g.a.55.1 2
39.35 odd 6 1521.4.a.h.1.1 1
52.3 odd 6 624.4.q.c.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.e.b.16.1 2 13.3 even 3 inner
39.4.e.b.22.1 yes 2 1.1 even 1 trivial
117.4.g.a.55.1 2 39.29 odd 6
117.4.g.a.100.1 2 3.2 odd 2
507.4.a.b.1.1 1 13.9 even 3
507.4.a.d.1.1 1 13.4 even 6
507.4.b.d.337.1 2 13.7 odd 12
507.4.b.d.337.2 2 13.6 odd 12
624.4.q.c.289.1 2 52.3 odd 6
624.4.q.c.529.1 2 4.3 odd 2
1521.4.a.e.1.1 1 39.17 odd 6
1521.4.a.h.1.1 1 39.35 odd 6