Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [153,2,Mod(1,153)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(153, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("153.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 153.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 51) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.2.a.b | 1 | |
3.b | odd | 2 | 1 | 51.2.a.a | ✓ | 1 | |
4.b | odd | 2 | 1 | 2448.2.a.c | 1 | ||
5.b | even | 2 | 1 | 3825.2.a.i | 1 | ||
7.b | odd | 2 | 1 | 7497.2.a.j | 1 | ||
8.b | even | 2 | 1 | 9792.2.a.by | 1 | ||
8.d | odd | 2 | 1 | 9792.2.a.cd | 1 | ||
12.b | even | 2 | 1 | 816.2.a.g | 1 | ||
15.d | odd | 2 | 1 | 1275.2.a.d | 1 | ||
15.e | even | 4 | 2 | 1275.2.b.b | 2 | ||
17.b | even | 2 | 1 | 2601.2.a.f | 1 | ||
21.c | even | 2 | 1 | 2499.2.a.d | 1 | ||
24.f | even | 2 | 1 | 3264.2.a.r | 1 | ||
24.h | odd | 2 | 1 | 3264.2.a.a | 1 | ||
33.d | even | 2 | 1 | 6171.2.a.e | 1 | ||
39.d | odd | 2 | 1 | 8619.2.a.g | 1 | ||
51.c | odd | 2 | 1 | 867.2.a.c | 1 | ||
51.f | odd | 4 | 2 | 867.2.d.a | 2 | ||
51.g | odd | 8 | 4 | 867.2.e.e | 4 | ||
51.i | even | 16 | 8 | 867.2.h.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.2.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
153.2.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
816.2.a.g | 1 | 12.b | even | 2 | 1 | ||
867.2.a.c | 1 | 51.c | odd | 2 | 1 | ||
867.2.d.a | 2 | 51.f | odd | 4 | 2 | ||
867.2.e.e | 4 | 51.g | odd | 8 | 4 | ||
867.2.h.c | 8 | 51.i | even | 16 | 8 | ||
1275.2.a.d | 1 | 15.d | odd | 2 | 1 | ||
1275.2.b.b | 2 | 15.e | even | 4 | 2 | ||
2448.2.a.c | 1 | 4.b | odd | 2 | 1 | ||
2499.2.a.d | 1 | 21.c | even | 2 | 1 | ||
2601.2.a.f | 1 | 17.b | even | 2 | 1 | ||
3264.2.a.a | 1 | 24.h | odd | 2 | 1 | ||
3264.2.a.r | 1 | 24.f | even | 2 | 1 | ||
3825.2.a.i | 1 | 5.b | even | 2 | 1 | ||
6171.2.a.e | 1 | 33.d | even | 2 | 1 | ||
7497.2.a.j | 1 | 7.b | odd | 2 | 1 | ||
8619.2.a.g | 1 | 39.d | odd | 2 | 1 | ||
9792.2.a.by | 1 | 8.b | even | 2 | 1 | ||
9792.2.a.cd | 1 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .