Properties

Label 816.2.a.g
Level $816$
Weight $2$
Character orbit 816.a
Self dual yes
Analytic conductor $6.516$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,2,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + 3 q^{5} + 4 q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{15} - q^{17} + q^{19} - 4 q^{21} - 9 q^{23} + 4 q^{25} - q^{27} + 6 q^{29} - 2 q^{31} - 3 q^{33} + 12 q^{35} - 4 q^{37} + q^{39}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 3.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.2.a.g 1
3.b odd 2 1 2448.2.a.c 1
4.b odd 2 1 51.2.a.a 1
8.b even 2 1 3264.2.a.r 1
8.d odd 2 1 3264.2.a.a 1
12.b even 2 1 153.2.a.b 1
20.d odd 2 1 1275.2.a.d 1
20.e even 4 2 1275.2.b.b 2
24.f even 2 1 9792.2.a.by 1
24.h odd 2 1 9792.2.a.cd 1
28.d even 2 1 2499.2.a.d 1
44.c even 2 1 6171.2.a.e 1
52.b odd 2 1 8619.2.a.g 1
60.h even 2 1 3825.2.a.i 1
68.d odd 2 1 867.2.a.c 1
68.f odd 4 2 867.2.d.a 2
68.g odd 8 4 867.2.e.e 4
68.i even 16 8 867.2.h.c 8
84.h odd 2 1 7497.2.a.j 1
204.h even 2 1 2601.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.a 1 4.b odd 2 1
153.2.a.b 1 12.b even 2 1
816.2.a.g 1 1.a even 1 1 trivial
867.2.a.c 1 68.d odd 2 1
867.2.d.a 2 68.f odd 4 2
867.2.e.e 4 68.g odd 8 4
867.2.h.c 8 68.i even 16 8
1275.2.a.d 1 20.d odd 2 1
1275.2.b.b 2 20.e even 4 2
2448.2.a.c 1 3.b odd 2 1
2499.2.a.d 1 28.d even 2 1
2601.2.a.f 1 204.h even 2 1
3264.2.a.a 1 8.d odd 2 1
3264.2.a.r 1 8.b even 2 1
3825.2.a.i 1 60.h even 2 1
6171.2.a.e 1 44.c even 2 1
7497.2.a.j 1 84.h odd 2 1
8619.2.a.g 1 52.b odd 2 1
9792.2.a.by 1 24.f even 2 1
9792.2.a.cd 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(816))\):

\( T_{5} - 3 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{19} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 9 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T + 4 \) Copy content Toggle raw display
$41$ \( T + 3 \) Copy content Toggle raw display
$43$ \( T - 7 \) Copy content Toggle raw display
$47$ \( T - 6 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 16 \) Copy content Toggle raw display
show more
show less