Properties

Label 153.4.f.b.55.5
Level $153$
Weight $4$
Character 153.55
Analytic conductor $9.027$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(55,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3086 x^{12} + 54880 x^{10} + 516641 x^{8} + 2403800 x^{6} + 4378064 x^{4} + \cdots + 295936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 55.5
Root \(0.496675i\) of defining polynomial
Character \(\chi\) \(=\) 153.55
Dual form 153.4.f.b.64.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.49668i q^{2} +5.75996 q^{4} +(-0.574777 + 0.574777i) q^{5} +(2.73692 + 2.73692i) q^{7} +20.5942i q^{8} +(-0.860255 - 0.860255i) q^{10} +(14.2363 + 14.2363i) q^{11} +20.0363 q^{13} +(-4.09628 + 4.09628i) q^{14} +15.2569 q^{16} +(58.0925 - 39.2207i) q^{17} +123.098i q^{19} +(-3.31070 + 3.31070i) q^{20} +(-21.3072 + 21.3072i) q^{22} +(-29.6574 - 29.6574i) q^{23} +124.339i q^{25} +29.9879i q^{26} +(15.7646 + 15.7646i) q^{28} +(17.6364 - 17.6364i) q^{29} +(-54.0799 + 54.0799i) q^{31} +187.588i q^{32} +(58.7006 + 86.9456i) q^{34} -3.14624 q^{35} +(22.3384 - 22.3384i) q^{37} -184.238 q^{38} +(-11.8371 - 11.8371i) q^{40} +(76.6455 + 76.6455i) q^{41} -233.202i q^{43} +(82.0007 + 82.0007i) q^{44} +(44.3874 - 44.3874i) q^{46} -51.1712 q^{47} -328.019i q^{49} -186.095 q^{50} +115.409 q^{52} -1.55884i q^{53} -16.3654 q^{55} +(-56.3647 + 56.3647i) q^{56} +(26.3960 + 26.3960i) q^{58} -588.603i q^{59} +(-513.681 - 513.681i) q^{61} +(-80.9401 - 80.9401i) q^{62} -158.703 q^{64} +(-11.5164 + 11.5164i) q^{65} +266.752 q^{67} +(334.611 - 225.910i) q^{68} -4.70890i q^{70} +(621.733 - 621.733i) q^{71} +(236.509 - 236.509i) q^{73} +(33.4333 + 33.4333i) q^{74} +709.043i q^{76} +77.9274i q^{77} +(-582.906 - 582.906i) q^{79} +(-8.76932 + 8.76932i) q^{80} +(-114.713 + 114.713i) q^{82} +224.694i q^{83} +(-10.8471 + 55.9334i) q^{85} +349.028 q^{86} +(-293.186 + 293.186i) q^{88} -561.132 q^{89} +(54.8379 + 54.8379i) q^{91} +(-170.825 - 170.825i) q^{92} -76.5866i q^{94} +(-70.7542 - 70.7542i) q^{95} +(1257.15 - 1257.15i) q^{97} +490.937 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} + 32 q^{5} - 8 q^{7} - 20 q^{10} - 96 q^{11} + 120 q^{13} + 288 q^{14} - 200 q^{16} - 16 q^{17} - 384 q^{20} + 4 q^{22} - 208 q^{23} + 904 q^{28} - 320 q^{29} - 624 q^{31} - 788 q^{34} + 1184 q^{35}+ \cdots + 1208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.49668i 0.529155i 0.964364 + 0.264577i \(0.0852324\pi\)
−0.964364 + 0.264577i \(0.914768\pi\)
\(3\) 0 0
\(4\) 5.75996 0.719995
\(5\) −0.574777 + 0.574777i −0.0514096 + 0.0514096i −0.732344 0.680935i \(-0.761574\pi\)
0.680935 + 0.732344i \(0.261574\pi\)
\(6\) 0 0
\(7\) 2.73692 + 2.73692i 0.147780 + 0.147780i 0.777126 0.629346i \(-0.216677\pi\)
−0.629346 + 0.777126i \(0.716677\pi\)
\(8\) 20.5942i 0.910143i
\(9\) 0 0
\(10\) −0.860255 0.860255i −0.0272036 0.0272036i
\(11\) 14.2363 + 14.2363i 0.390219 + 0.390219i 0.874766 0.484546i \(-0.161015\pi\)
−0.484546 + 0.874766i \(0.661015\pi\)
\(12\) 0 0
\(13\) 20.0363 0.427468 0.213734 0.976892i \(-0.431437\pi\)
0.213734 + 0.976892i \(0.431437\pi\)
\(14\) −4.09628 + 4.09628i −0.0781984 + 0.0781984i
\(15\) 0 0
\(16\) 15.2569 0.238389
\(17\) 58.0925 39.2207i 0.828794 0.559554i
\(18\) 0 0
\(19\) 123.098i 1.48635i 0.669095 + 0.743177i \(0.266682\pi\)
−0.669095 + 0.743177i \(0.733318\pi\)
\(20\) −3.31070 + 3.31070i −0.0370147 + 0.0370147i
\(21\) 0 0
\(22\) −21.3072 + 21.3072i −0.206486 + 0.206486i
\(23\) −29.6574 29.6574i −0.268869 0.268869i 0.559775 0.828644i \(-0.310887\pi\)
−0.828644 + 0.559775i \(0.810887\pi\)
\(24\) 0 0
\(25\) 124.339i 0.994714i
\(26\) 29.9879i 0.226196i
\(27\) 0 0
\(28\) 15.7646 + 15.7646i 0.106401 + 0.106401i
\(29\) 17.6364 17.6364i 0.112931 0.112931i −0.648383 0.761314i \(-0.724555\pi\)
0.761314 + 0.648383i \(0.224555\pi\)
\(30\) 0 0
\(31\) −54.0799 + 54.0799i −0.313324 + 0.313324i −0.846196 0.532872i \(-0.821113\pi\)
0.532872 + 0.846196i \(0.321113\pi\)
\(32\) 187.588i 1.03629i
\(33\) 0 0
\(34\) 58.7006 + 86.9456i 0.296090 + 0.438560i
\(35\) −3.14624 −0.0151946
\(36\) 0 0
\(37\) 22.3384 22.3384i 0.0992543 0.0992543i −0.655736 0.754990i \(-0.727642\pi\)
0.754990 + 0.655736i \(0.227642\pi\)
\(38\) −184.238 −0.786511
\(39\) 0 0
\(40\) −11.8371 11.8371i −0.0467901 0.0467901i
\(41\) 76.6455 + 76.6455i 0.291952 + 0.291952i 0.837851 0.545899i \(-0.183812\pi\)
−0.545899 + 0.837851i \(0.683812\pi\)
\(42\) 0 0
\(43\) 233.202i 0.827047i −0.910493 0.413524i \(-0.864298\pi\)
0.910493 0.413524i \(-0.135702\pi\)
\(44\) 82.0007 + 82.0007i 0.280956 + 0.280956i
\(45\) 0 0
\(46\) 44.3874 44.3874i 0.142273 0.142273i
\(47\) −51.1712 −0.158810 −0.0794052 0.996842i \(-0.525302\pi\)
−0.0794052 + 0.996842i \(0.525302\pi\)
\(48\) 0 0
\(49\) 328.019i 0.956322i
\(50\) −186.095 −0.526357
\(51\) 0 0
\(52\) 115.409 0.307775
\(53\) 1.55884i 0.00404007i −0.999998 0.00202003i \(-0.999357\pi\)
0.999998 0.00202003i \(-0.000642997\pi\)
\(54\) 0 0
\(55\) −16.3654 −0.0401221
\(56\) −56.3647 + 56.3647i −0.134501 + 0.134501i
\(57\) 0 0
\(58\) 26.3960 + 26.3960i 0.0597580 + 0.0597580i
\(59\) 588.603i 1.29881i −0.760445 0.649403i \(-0.775019\pi\)
0.760445 0.649403i \(-0.224981\pi\)
\(60\) 0 0
\(61\) −513.681 513.681i −1.07820 1.07820i −0.996671 0.0815267i \(-0.974020\pi\)
−0.0815267 0.996671i \(-0.525980\pi\)
\(62\) −80.9401 80.9401i −0.165797 0.165797i
\(63\) 0 0
\(64\) −158.703 −0.309967
\(65\) −11.5164 + 11.5164i −0.0219760 + 0.0219760i
\(66\) 0 0
\(67\) 266.752 0.486403 0.243201 0.969976i \(-0.421802\pi\)
0.243201 + 0.969976i \(0.421802\pi\)
\(68\) 334.611 225.910i 0.596728 0.402876i
\(69\) 0 0
\(70\) 4.70890i 0.00804030i
\(71\) 621.733 621.733i 1.03924 1.03924i 0.0400429 0.999198i \(-0.487251\pi\)
0.999198 0.0400429i \(-0.0127495\pi\)
\(72\) 0 0
\(73\) 236.509 236.509i 0.379195 0.379195i −0.491617 0.870812i \(-0.663594\pi\)
0.870812 + 0.491617i \(0.163594\pi\)
\(74\) 33.4333 + 33.4333i 0.0525209 + 0.0525209i
\(75\) 0 0
\(76\) 709.043i 1.07017i
\(77\) 77.9274i 0.115333i
\(78\) 0 0
\(79\) −582.906 582.906i −0.830153 0.830153i 0.157384 0.987537i \(-0.449694\pi\)
−0.987537 + 0.157384i \(0.949694\pi\)
\(80\) −8.76932 + 8.76932i −0.0122555 + 0.0122555i
\(81\) 0 0
\(82\) −114.713 + 114.713i −0.154488 + 0.154488i
\(83\) 224.694i 0.297149i 0.988901 + 0.148574i \(0.0474684\pi\)
−0.988901 + 0.148574i \(0.952532\pi\)
\(84\) 0 0
\(85\) −10.8471 + 55.9334i −0.0138415 + 0.0713745i
\(86\) 349.028 0.437636
\(87\) 0 0
\(88\) −293.186 + 293.186i −0.355156 + 0.355156i
\(89\) −561.132 −0.668313 −0.334157 0.942518i \(-0.608451\pi\)
−0.334157 + 0.942518i \(0.608451\pi\)
\(90\) 0 0
\(91\) 54.8379 + 54.8379i 0.0631711 + 0.0631711i
\(92\) −170.825 170.825i −0.193584 0.193584i
\(93\) 0 0
\(94\) 76.5866i 0.0840352i
\(95\) −70.7542 70.7542i −0.0764129 0.0764129i
\(96\) 0 0
\(97\) 1257.15 1257.15i 1.31592 1.31592i 0.398938 0.916978i \(-0.369379\pi\)
0.916978 0.398938i \(-0.130621\pi\)
\(98\) 490.937 0.506042
\(99\) 0 0
\(100\) 716.190i 0.716190i
\(101\) −1943.41 −1.91462 −0.957310 0.289064i \(-0.906656\pi\)
−0.957310 + 0.289064i \(0.906656\pi\)
\(102\) 0 0
\(103\) −197.134 −0.188585 −0.0942923 0.995545i \(-0.530059\pi\)
−0.0942923 + 0.995545i \(0.530059\pi\)
\(104\) 412.632i 0.389057i
\(105\) 0 0
\(106\) 2.33308 0.00213782
\(107\) −1071.43 + 1071.43i −0.968033 + 0.968033i −0.999505 0.0314720i \(-0.989981\pi\)
0.0314720 + 0.999505i \(0.489981\pi\)
\(108\) 0 0
\(109\) −564.212 564.212i −0.495795 0.495795i 0.414331 0.910126i \(-0.364016\pi\)
−0.910126 + 0.414331i \(0.864016\pi\)
\(110\) 24.4937i 0.0212308i
\(111\) 0 0
\(112\) 41.7569 + 41.7569i 0.0352291 + 0.0352291i
\(113\) 1134.32 + 1134.32i 0.944317 + 0.944317i 0.998529 0.0542129i \(-0.0172650\pi\)
−0.0542129 + 0.998529i \(0.517265\pi\)
\(114\) 0 0
\(115\) 34.0927 0.0276449
\(116\) 101.585 101.585i 0.0813098 0.0813098i
\(117\) 0 0
\(118\) 880.947 0.687269
\(119\) 266.339 + 51.6506i 0.205170 + 0.0397883i
\(120\) 0 0
\(121\) 925.654i 0.695458i
\(122\) 768.813 768.813i 0.570533 0.570533i
\(123\) 0 0
\(124\) −311.499 + 311.499i −0.225592 + 0.225592i
\(125\) −143.315 143.315i −0.102548 0.102548i
\(126\) 0 0
\(127\) 2315.35i 1.61775i 0.587980 + 0.808876i \(0.299923\pi\)
−0.587980 + 0.808876i \(0.700077\pi\)
\(128\) 1263.18i 0.872267i
\(129\) 0 0
\(130\) −17.2363 17.2363i −0.0116287 0.0116287i
\(131\) 1255.78 1255.78i 0.837541 0.837541i −0.150994 0.988535i \(-0.548247\pi\)
0.988535 + 0.150994i \(0.0482474\pi\)
\(132\) 0 0
\(133\) −336.911 + 336.911i −0.219653 + 0.219653i
\(134\) 399.242i 0.257382i
\(135\) 0 0
\(136\) 807.719 + 1196.37i 0.509274 + 0.754321i
\(137\) −1489.27 −0.928736 −0.464368 0.885642i \(-0.653719\pi\)
−0.464368 + 0.885642i \(0.653719\pi\)
\(138\) 0 0
\(139\) −1739.62 + 1739.62i −1.06153 + 1.06153i −0.0635492 + 0.997979i \(0.520242\pi\)
−0.997979 + 0.0635492i \(0.979758\pi\)
\(140\) −18.1222 −0.0109401
\(141\) 0 0
\(142\) 930.532 + 930.532i 0.549919 + 0.549919i
\(143\) 285.244 + 285.244i 0.166806 + 0.166806i
\(144\) 0 0
\(145\) 20.2740i 0.0116115i
\(146\) 353.977 + 353.977i 0.200653 + 0.200653i
\(147\) 0 0
\(148\) 128.668 128.668i 0.0714627 0.0714627i
\(149\) 1981.35 1.08938 0.544692 0.838636i \(-0.316647\pi\)
0.544692 + 0.838636i \(0.316647\pi\)
\(150\) 0 0
\(151\) 1293.87i 0.697306i 0.937252 + 0.348653i \(0.113361\pi\)
−0.937252 + 0.348653i \(0.886639\pi\)
\(152\) −2535.11 −1.35280
\(153\) 0 0
\(154\) −116.632 −0.0610291
\(155\) 62.1678i 0.0322157i
\(156\) 0 0
\(157\) 3212.58 1.63307 0.816535 0.577296i \(-0.195892\pi\)
0.816535 + 0.577296i \(0.195892\pi\)
\(158\) 872.421 872.421i 0.439279 0.439279i
\(159\) 0 0
\(160\) −107.821 107.821i −0.0532752 0.0532752i
\(161\) 162.340i 0.0794669i
\(162\) 0 0
\(163\) 442.905 + 442.905i 0.212828 + 0.212828i 0.805468 0.592640i \(-0.201914\pi\)
−0.592640 + 0.805468i \(0.701914\pi\)
\(164\) 441.475 + 441.475i 0.210204 + 0.210204i
\(165\) 0 0
\(166\) −336.293 −0.157238
\(167\) 2645.12 2645.12i 1.22566 1.22566i 0.260072 0.965589i \(-0.416254\pi\)
0.965589 0.260072i \(-0.0837463\pi\)
\(168\) 0 0
\(169\) −1795.55 −0.817271
\(170\) −83.7141 16.2346i −0.0377681 0.00732431i
\(171\) 0 0
\(172\) 1343.24i 0.595470i
\(173\) 70.5192 70.5192i 0.0309912 0.0309912i −0.691441 0.722433i \(-0.743024\pi\)
0.722433 + 0.691441i \(0.243024\pi\)
\(174\) 0 0
\(175\) −340.307 + 340.307i −0.146999 + 0.146999i
\(176\) 217.202 + 217.202i 0.0930240 + 0.0930240i
\(177\) 0 0
\(178\) 839.832i 0.353641i
\(179\) 2170.40i 0.906275i 0.891441 + 0.453138i \(0.149695\pi\)
−0.891441 + 0.453138i \(0.850305\pi\)
\(180\) 0 0
\(181\) −1974.50 1974.50i −0.810848 0.810848i 0.173913 0.984761i \(-0.444359\pi\)
−0.984761 + 0.173913i \(0.944359\pi\)
\(182\) −82.0745 + 82.0745i −0.0334273 + 0.0334273i
\(183\) 0 0
\(184\) 610.769 610.769i 0.244709 0.244709i
\(185\) 25.6792i 0.0102053i
\(186\) 0 0
\(187\) 1385.38 + 268.665i 0.541760 + 0.105063i
\(188\) −294.744 −0.114343
\(189\) 0 0
\(190\) 105.896 105.896i 0.0404342 0.0404342i
\(191\) −3351.18 −1.26955 −0.634773 0.772699i \(-0.718906\pi\)
−0.634773 + 0.772699i \(0.718906\pi\)
\(192\) 0 0
\(193\) −1979.89 1979.89i −0.738423 0.738423i 0.233850 0.972273i \(-0.424868\pi\)
−0.972273 + 0.233850i \(0.924868\pi\)
\(194\) 1881.54 + 1881.54i 0.696323 + 0.696323i
\(195\) 0 0
\(196\) 1889.37i 0.688548i
\(197\) −1794.75 1794.75i −0.649088 0.649088i 0.303685 0.952773i \(-0.401783\pi\)
−0.952773 + 0.303685i \(0.901783\pi\)
\(198\) 0 0
\(199\) 1926.29 1926.29i 0.686186 0.686186i −0.275201 0.961387i \(-0.588744\pi\)
0.961387 + 0.275201i \(0.0887444\pi\)
\(200\) −2560.67 −0.905332
\(201\) 0 0
\(202\) 2908.65i 1.01313i
\(203\) 96.5390 0.0333779
\(204\) 0 0
\(205\) −88.1082 −0.0300183
\(206\) 295.046i 0.0997904i
\(207\) 0 0
\(208\) 305.692 0.101904
\(209\) −1752.47 + 1752.47i −0.580004 + 0.580004i
\(210\) 0 0
\(211\) 295.026 + 295.026i 0.0962581 + 0.0962581i 0.753596 0.657338i \(-0.228318\pi\)
−0.657338 + 0.753596i \(0.728318\pi\)
\(212\) 8.97888i 0.00290883i
\(213\) 0 0
\(214\) −1603.59 1603.59i −0.512239 0.512239i
\(215\) 134.039 + 134.039i 0.0425182 + 0.0425182i
\(216\) 0 0
\(217\) −296.025 −0.0926060
\(218\) 844.442 844.442i 0.262352 0.262352i
\(219\) 0 0
\(220\) −94.2643 −0.0288877
\(221\) 1163.96 785.839i 0.354283 0.239191i
\(222\) 0 0
\(223\) 1074.81i 0.322757i 0.986893 + 0.161379i \(0.0515940\pi\)
−0.986893 + 0.161379i \(0.948406\pi\)
\(224\) −513.414 + 513.414i −0.153143 + 0.153143i
\(225\) 0 0
\(226\) −1697.71 + 1697.71i −0.499689 + 0.499689i
\(227\) −2386.83 2386.83i −0.697884 0.697884i 0.266070 0.963954i \(-0.414275\pi\)
−0.963954 + 0.266070i \(0.914275\pi\)
\(228\) 0 0
\(229\) 2565.82i 0.740410i 0.928950 + 0.370205i \(0.120713\pi\)
−0.928950 + 0.370205i \(0.879287\pi\)
\(230\) 51.0258i 0.0146284i
\(231\) 0 0
\(232\) 363.208 + 363.208i 0.102783 + 0.102783i
\(233\) 150.071 150.071i 0.0421952 0.0421952i −0.685694 0.727890i \(-0.740501\pi\)
0.727890 + 0.685694i \(0.240501\pi\)
\(234\) 0 0
\(235\) 29.4120 29.4120i 0.00816438 0.00816438i
\(236\) 3390.33i 0.935134i
\(237\) 0 0
\(238\) −77.3042 + 398.622i −0.0210542 + 0.108567i
\(239\) 4285.84 1.15995 0.579975 0.814634i \(-0.303062\pi\)
0.579975 + 0.814634i \(0.303062\pi\)
\(240\) 0 0
\(241\) 781.219 781.219i 0.208808 0.208808i −0.594953 0.803761i \(-0.702829\pi\)
0.803761 + 0.594953i \(0.202829\pi\)
\(242\) 1385.40 0.368005
\(243\) 0 0
\(244\) −2958.78 2958.78i −0.776298 0.776298i
\(245\) 188.538 + 188.538i 0.0491642 + 0.0491642i
\(246\) 0 0
\(247\) 2466.44i 0.635368i
\(248\) −1113.73 1113.73i −0.285170 0.285170i
\(249\) 0 0
\(250\) 214.495 214.495i 0.0542635 0.0542635i
\(251\) 480.822 0.120913 0.0604566 0.998171i \(-0.480744\pi\)
0.0604566 + 0.998171i \(0.480744\pi\)
\(252\) 0 0
\(253\) 844.424i 0.209836i
\(254\) −3465.33 −0.856040
\(255\) 0 0
\(256\) −3160.19 −0.771532
\(257\) 4146.30i 1.00638i −0.864176 0.503189i \(-0.832160\pi\)
0.864176 0.503189i \(-0.167840\pi\)
\(258\) 0 0
\(259\) 122.277 0.0293356
\(260\) −66.3342 + 66.3342i −0.0158226 + 0.0158226i
\(261\) 0 0
\(262\) 1879.49 + 1879.49i 0.443188 + 0.443188i
\(263\) 8011.72i 1.87842i 0.343346 + 0.939209i \(0.388440\pi\)
−0.343346 + 0.939209i \(0.611560\pi\)
\(264\) 0 0
\(265\) 0.895988 + 0.895988i 0.000207698 + 0.000207698i
\(266\) −504.246 504.246i −0.116231 0.116231i
\(267\) 0 0
\(268\) 1536.48 0.350208
\(269\) 3943.92 3943.92i 0.893922 0.893922i −0.100968 0.994890i \(-0.532194\pi\)
0.994890 + 0.100968i \(0.0321940\pi\)
\(270\) 0 0
\(271\) −3089.50 −0.692524 −0.346262 0.938138i \(-0.612549\pi\)
−0.346262 + 0.938138i \(0.612549\pi\)
\(272\) 886.311 598.386i 0.197575 0.133391i
\(273\) 0 0
\(274\) 2228.95i 0.491445i
\(275\) −1770.13 + 1770.13i −0.388157 + 0.388157i
\(276\) 0 0
\(277\) −414.012 + 414.012i −0.0898036 + 0.0898036i −0.750581 0.660778i \(-0.770227\pi\)
0.660778 + 0.750581i \(0.270227\pi\)
\(278\) −2603.64 2603.64i −0.561712 0.561712i
\(279\) 0 0
\(280\) 64.7943i 0.0138293i
\(281\) 6399.58i 1.35860i 0.733860 + 0.679301i \(0.237717\pi\)
−0.733860 + 0.679301i \(0.762283\pi\)
\(282\) 0 0
\(283\) 4267.26 + 4267.26i 0.896333 + 0.896333i 0.995110 0.0987768i \(-0.0314930\pi\)
−0.0987768 + 0.995110i \(0.531493\pi\)
\(284\) 3581.16 3581.16i 0.748249 0.748249i
\(285\) 0 0
\(286\) −426.917 + 426.917i −0.0882662 + 0.0882662i
\(287\) 419.546i 0.0862892i
\(288\) 0 0
\(289\) 1836.47 4556.86i 0.373799 0.927510i
\(290\) −30.3436 −0.00614427
\(291\) 0 0
\(292\) 1362.28 1362.28i 0.273019 0.273019i
\(293\) 7539.51 1.50329 0.751643 0.659570i \(-0.229262\pi\)
0.751643 + 0.659570i \(0.229262\pi\)
\(294\) 0 0
\(295\) 338.315 + 338.315i 0.0667711 + 0.0667711i
\(296\) 460.041 + 460.041i 0.0903357 + 0.0903357i
\(297\) 0 0
\(298\) 2965.43i 0.576453i
\(299\) −594.225 594.225i −0.114933 0.114933i
\(300\) 0 0
\(301\) 638.257 638.257i 0.122221 0.122221i
\(302\) −1936.50 −0.368983
\(303\) 0 0
\(304\) 1878.10i 0.354330i
\(305\) 590.504 0.110860
\(306\) 0 0
\(307\) 5367.77 0.997899 0.498950 0.866631i \(-0.333719\pi\)
0.498950 + 0.866631i \(0.333719\pi\)
\(308\) 448.859i 0.0830394i
\(309\) 0 0
\(310\) 93.0450 0.0170471
\(311\) −6862.87 + 6862.87i −1.25131 + 1.25131i −0.296178 + 0.955133i \(0.595712\pi\)
−0.955133 + 0.296178i \(0.904288\pi\)
\(312\) 0 0
\(313\) 2021.32 + 2021.32i 0.365022 + 0.365022i 0.865658 0.500636i \(-0.166901\pi\)
−0.500636 + 0.865658i \(0.666901\pi\)
\(314\) 4808.19i 0.864146i
\(315\) 0 0
\(316\) −3357.52 3357.52i −0.597707 0.597707i
\(317\) −4064.38 4064.38i −0.720121 0.720121i 0.248509 0.968630i \(-0.420059\pi\)
−0.968630 + 0.248509i \(0.920059\pi\)
\(318\) 0 0
\(319\) 502.155 0.0881357
\(320\) 91.2191 91.2191i 0.0159353 0.0159353i
\(321\) 0 0
\(322\) 242.970 0.0420503
\(323\) 4828.01 + 7151.10i 0.831695 + 1.23188i
\(324\) 0 0
\(325\) 2491.30i 0.425208i
\(326\) −662.885 + 662.885i −0.112619 + 0.112619i
\(327\) 0 0
\(328\) −1578.45 + 1578.45i −0.265718 + 0.265718i
\(329\) −140.052 140.052i −0.0234690 0.0234690i
\(330\) 0 0
\(331\) 5525.96i 0.917626i 0.888533 + 0.458813i \(0.151725\pi\)
−0.888533 + 0.458813i \(0.848275\pi\)
\(332\) 1294.23i 0.213946i
\(333\) 0 0
\(334\) 3958.88 + 3958.88i 0.648564 + 0.648564i
\(335\) −153.323 + 153.323i −0.0250058 + 0.0250058i
\(336\) 0 0
\(337\) 3165.98 3165.98i 0.511757 0.511757i −0.403307 0.915065i \(-0.632139\pi\)
0.915065 + 0.403307i \(0.132139\pi\)
\(338\) 2687.35i 0.432463i
\(339\) 0 0
\(340\) −62.4788 + 322.174i −0.00996585 + 0.0513893i
\(341\) −1539.80 −0.244530
\(342\) 0 0
\(343\) 1836.53 1836.53i 0.289105 0.289105i
\(344\) 4802.62 0.752732
\(345\) 0 0
\(346\) 105.544 + 105.544i 0.0163991 + 0.0163991i
\(347\) 6954.35 + 6954.35i 1.07588 + 1.07588i 0.996874 + 0.0790022i \(0.0251734\pi\)
0.0790022 + 0.996874i \(0.474827\pi\)
\(348\) 0 0
\(349\) 9155.23i 1.40421i 0.712075 + 0.702104i \(0.247756\pi\)
−0.712075 + 0.702104i \(0.752244\pi\)
\(350\) −509.329 509.329i −0.0777851 0.0777851i
\(351\) 0 0
\(352\) −2670.57 + 2670.57i −0.404380 + 0.404380i
\(353\) −7025.07 −1.05923 −0.529613 0.848239i \(-0.677663\pi\)
−0.529613 + 0.848239i \(0.677663\pi\)
\(354\) 0 0
\(355\) 714.716i 0.106854i
\(356\) −3232.10 −0.481182
\(357\) 0 0
\(358\) −3248.38 −0.479560
\(359\) 8370.77i 1.23062i −0.788285 0.615310i \(-0.789031\pi\)
0.788285 0.615310i \(-0.210969\pi\)
\(360\) 0 0
\(361\) −8294.23 −1.20925
\(362\) 2955.19 2955.19i 0.429064 0.429064i
\(363\) 0 0
\(364\) 315.864 + 315.864i 0.0454829 + 0.0454829i
\(365\) 271.880i 0.0389886i
\(366\) 0 0
\(367\) 4661.47 + 4661.47i 0.663015 + 0.663015i 0.956090 0.293074i \(-0.0946783\pi\)
−0.293074 + 0.956090i \(0.594678\pi\)
\(368\) −452.479 452.479i −0.0640954 0.0640954i
\(369\) 0 0
\(370\) −38.4334 −0.00540016
\(371\) 4.26643 4.26643i 0.000597041 0.000597041i
\(372\) 0 0
\(373\) −10437.4 −1.44886 −0.724432 0.689347i \(-0.757898\pi\)
−0.724432 + 0.689347i \(0.757898\pi\)
\(374\) −402.104 + 2073.47i −0.0555944 + 0.286675i
\(375\) 0 0
\(376\) 1053.83i 0.144540i
\(377\) 353.369 353.369i 0.0482743 0.0482743i
\(378\) 0 0
\(379\) −1234.49 + 1234.49i −0.167313 + 0.167313i −0.785797 0.618484i \(-0.787747\pi\)
0.618484 + 0.785797i \(0.287747\pi\)
\(380\) −407.542 407.542i −0.0550169 0.0550169i
\(381\) 0 0
\(382\) 5015.63i 0.671786i
\(383\) 1031.82i 0.137660i 0.997628 + 0.0688298i \(0.0219266\pi\)
−0.997628 + 0.0688298i \(0.978073\pi\)
\(384\) 0 0
\(385\) −44.7909 44.7909i −0.00592924 0.00592924i
\(386\) 2963.25 2963.25i 0.390740 0.390740i
\(387\) 0 0
\(388\) 7241.12 7241.12i 0.947453 0.947453i
\(389\) 7514.99i 0.979499i −0.871863 0.489750i \(-0.837088\pi\)
0.871863 0.489750i \(-0.162912\pi\)
\(390\) 0 0
\(391\) −2886.05 559.688i −0.373284 0.0723903i
\(392\) 6755.28 0.870390
\(393\) 0 0
\(394\) 2686.15 2686.15i 0.343468 0.343468i
\(395\) 670.083 0.0853557
\(396\) 0 0
\(397\) −2133.89 2133.89i −0.269766 0.269766i 0.559240 0.829006i \(-0.311093\pi\)
−0.829006 + 0.559240i \(0.811093\pi\)
\(398\) 2883.03 + 2883.03i 0.363098 + 0.363098i
\(399\) 0 0
\(400\) 1897.03i 0.237129i
\(401\) −10503.3 10503.3i −1.30800 1.30800i −0.922856 0.385146i \(-0.874151\pi\)
−0.385146 0.922856i \(-0.625849\pi\)
\(402\) 0 0
\(403\) −1083.56 + 1083.56i −0.133936 + 0.133936i
\(404\) −11194.0 −1.37852
\(405\) 0 0
\(406\) 144.487i 0.0176621i
\(407\) 636.033 0.0774619
\(408\) 0 0
\(409\) 5721.53 0.691714 0.345857 0.938287i \(-0.387588\pi\)
0.345857 + 0.938287i \(0.387588\pi\)
\(410\) 131.869i 0.0158843i
\(411\) 0 0
\(412\) −1135.49 −0.135780
\(413\) 1610.96 1610.96i 0.191937 0.191937i
\(414\) 0 0
\(415\) −129.149 129.149i −0.0152763 0.0152763i
\(416\) 3758.58i 0.442980i
\(417\) 0 0
\(418\) −2622.88 2622.88i −0.306912 0.306912i
\(419\) −4335.25 4335.25i −0.505467 0.505467i 0.407665 0.913132i \(-0.366343\pi\)
−0.913132 + 0.407665i \(0.866343\pi\)
\(420\) 0 0
\(421\) −6388.31 −0.739542 −0.369771 0.929123i \(-0.620564\pi\)
−0.369771 + 0.929123i \(0.620564\pi\)
\(422\) −441.559 + 441.559i −0.0509354 + 0.0509354i
\(423\) 0 0
\(424\) 32.1031 0.00367704
\(425\) 4876.67 + 7223.18i 0.556596 + 0.824413i
\(426\) 0 0
\(427\) 2811.81i 0.318672i
\(428\) −6171.42 + 6171.42i −0.696979 + 0.696979i
\(429\) 0 0
\(430\) −200.613 + 200.613i −0.0224987 + 0.0224987i
\(431\) 604.177 + 604.177i 0.0675224 + 0.0675224i 0.740062 0.672539i \(-0.234796\pi\)
−0.672539 + 0.740062i \(0.734796\pi\)
\(432\) 0 0
\(433\) 10107.4i 1.12178i −0.827889 0.560892i \(-0.810458\pi\)
0.827889 0.560892i \(-0.189542\pi\)
\(434\) 443.054i 0.0490029i
\(435\) 0 0
\(436\) −3249.84 3249.84i −0.356970 0.356970i
\(437\) 3650.77 3650.77i 0.399634 0.399634i
\(438\) 0 0
\(439\) 11609.5 11609.5i 1.26217 1.26217i 0.312125 0.950041i \(-0.398959\pi\)
0.950041 0.312125i \(-0.101041\pi\)
\(440\) 337.033i 0.0365168i
\(441\) 0 0
\(442\) 1176.15 + 1742.07i 0.126569 + 0.187470i
\(443\) −5106.09 −0.547625 −0.273812 0.961783i \(-0.588285\pi\)
−0.273812 + 0.961783i \(0.588285\pi\)
\(444\) 0 0
\(445\) 322.526 322.526i 0.0343577 0.0343577i
\(446\) −1608.65 −0.170788
\(447\) 0 0
\(448\) −434.359 434.359i −0.0458070 0.0458070i
\(449\) 7972.68 + 7972.68i 0.837982 + 0.837982i 0.988593 0.150611i \(-0.0481240\pi\)
−0.150611 + 0.988593i \(0.548124\pi\)
\(450\) 0 0
\(451\) 2182.30i 0.227850i
\(452\) 6533.64 + 6533.64i 0.679904 + 0.679904i
\(453\) 0 0
\(454\) 3572.31 3572.31i 0.369289 0.369289i
\(455\) −63.0391 −0.00649521
\(456\) 0 0
\(457\) 13048.0i 1.33557i −0.744352 0.667787i \(-0.767242\pi\)
0.744352 0.667787i \(-0.232758\pi\)
\(458\) −3840.19 −0.391791
\(459\) 0 0
\(460\) 196.373 0.0199042
\(461\) 14147.2i 1.42929i −0.699487 0.714645i \(-0.746588\pi\)
0.699487 0.714645i \(-0.253412\pi\)
\(462\) 0 0
\(463\) −7778.27 −0.780749 −0.390375 0.920656i \(-0.627655\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(464\) 269.077 269.077i 0.0269215 0.0269215i
\(465\) 0 0
\(466\) 224.608 + 224.608i 0.0223278 + 0.0223278i
\(467\) 3546.16i 0.351384i 0.984445 + 0.175692i \(0.0562163\pi\)
−0.984445 + 0.175692i \(0.943784\pi\)
\(468\) 0 0
\(469\) 730.081 + 730.081i 0.0718806 + 0.0718806i
\(470\) 44.0203 + 44.0203i 0.00432022 + 0.00432022i
\(471\) 0 0
\(472\) 12121.8 1.18210
\(473\) 3319.95 3319.95i 0.322730 0.322730i
\(474\) 0 0
\(475\) −15306.0 −1.47850
\(476\) 1534.10 + 297.506i 0.147721 + 0.0286474i
\(477\) 0 0
\(478\) 6414.51i 0.613793i
\(479\) 1653.30 1653.30i 0.157706 0.157706i −0.623843 0.781550i \(-0.714430\pi\)
0.781550 + 0.623843i \(0.214430\pi\)
\(480\) 0 0
\(481\) 447.579 447.579i 0.0424280 0.0424280i
\(482\) 1169.23 + 1169.23i 0.110492 + 0.110492i
\(483\) 0 0
\(484\) 5331.73i 0.500726i
\(485\) 1445.16i 0.135302i
\(486\) 0 0
\(487\) −2352.91 2352.91i −0.218934 0.218934i 0.589115 0.808049i \(-0.299476\pi\)
−0.808049 + 0.589115i \(0.799476\pi\)
\(488\) 10578.8 10578.8i 0.981315 0.981315i
\(489\) 0 0
\(490\) −282.179 + 282.179i −0.0260154 + 0.0260154i
\(491\) 5511.23i 0.506554i 0.967394 + 0.253277i \(0.0815085\pi\)
−0.967394 + 0.253277i \(0.918492\pi\)
\(492\) 0 0
\(493\) 332.831 1716.26i 0.0304056 0.156788i
\(494\) −3691.46 −0.336208
\(495\) 0 0
\(496\) −825.092 + 825.092i −0.0746930 + 0.0746930i
\(497\) 3403.27 0.307158
\(498\) 0 0
\(499\) 10717.0 + 10717.0i 0.961438 + 0.961438i 0.999284 0.0378459i \(-0.0120496\pi\)
−0.0378459 + 0.999284i \(0.512050\pi\)
\(500\) −825.486 825.486i −0.0738338 0.0738338i
\(501\) 0 0
\(502\) 719.634i 0.0639817i
\(503\) −7580.21 7580.21i −0.671938 0.671938i 0.286225 0.958163i \(-0.407600\pi\)
−0.958163 + 0.286225i \(0.907600\pi\)
\(504\) 0 0
\(505\) 1117.03 1117.03i 0.0984299 0.0984299i
\(506\) 1263.83 0.111036
\(507\) 0 0
\(508\) 13336.4i 1.16477i
\(509\) −12724.1 −1.10803 −0.554013 0.832508i \(-0.686904\pi\)
−0.554013 + 0.832508i \(0.686904\pi\)
\(510\) 0 0
\(511\) 1294.61 0.112075
\(512\) 5375.64i 0.464008i
\(513\) 0 0
\(514\) 6205.67 0.532530
\(515\) 113.308 113.308i 0.00969506 0.00969506i
\(516\) 0 0
\(517\) −728.490 728.490i −0.0619709 0.0619709i
\(518\) 183.009i 0.0155231i
\(519\) 0 0
\(520\) −237.172 237.172i −0.0200013 0.0200013i
\(521\) −9567.51 9567.51i −0.804530 0.804530i 0.179270 0.983800i \(-0.442626\pi\)
−0.983800 + 0.179270i \(0.942626\pi\)
\(522\) 0 0
\(523\) −7104.82 −0.594019 −0.297010 0.954875i \(-0.595989\pi\)
−0.297010 + 0.954875i \(0.595989\pi\)
\(524\) 7233.24 7233.24i 0.603026 0.603026i
\(525\) 0 0
\(526\) −11990.9 −0.993973
\(527\) −1020.59 + 5262.69i −0.0843594 + 0.435003i
\(528\) 0 0
\(529\) 10407.9i 0.855419i
\(530\) −1.34100 + 1.34100i −0.000109905 + 0.000109905i
\(531\) 0 0
\(532\) −1940.59 + 1940.59i −0.158149 + 0.158149i
\(533\) 1535.69 + 1535.69i 0.124800 + 0.124800i
\(534\) 0 0
\(535\) 1231.67i 0.0995324i
\(536\) 5493.55i 0.442696i
\(537\) 0 0
\(538\) 5902.76 + 5902.76i 0.473023 + 0.473023i
\(539\) 4669.78 4669.78i 0.373175 0.373175i
\(540\) 0 0
\(541\) −11677.6 + 11677.6i −0.928023 + 0.928023i −0.997578 0.0695555i \(-0.977842\pi\)
0.0695555 + 0.997578i \(0.477842\pi\)
\(542\) 4623.98i 0.366452i
\(543\) 0 0
\(544\) 7357.34 + 10897.5i 0.579859 + 0.858869i
\(545\) 648.592 0.0509773
\(546\) 0 0
\(547\) 548.342 548.342i 0.0428618 0.0428618i −0.685351 0.728213i \(-0.740351\pi\)
0.728213 + 0.685351i \(0.240351\pi\)
\(548\) −8578.14 −0.668686
\(549\) 0 0
\(550\) −2649.32 2649.32i −0.205395 0.205395i
\(551\) 2171.01 + 2171.01i 0.167855 + 0.167855i
\(552\) 0 0
\(553\) 3190.74i 0.245360i
\(554\) −619.642 619.642i −0.0475200 0.0475200i
\(555\) 0 0
\(556\) −10020.1 + 10020.1i −0.764295 + 0.764295i
\(557\) 14283.2 1.08653 0.543267 0.839560i \(-0.317187\pi\)
0.543267 + 0.839560i \(0.317187\pi\)
\(558\) 0 0
\(559\) 4672.52i 0.353536i
\(560\) −48.0019 −0.00362223
\(561\) 0 0
\(562\) −9578.10 −0.718910
\(563\) 7158.60i 0.535877i 0.963436 + 0.267939i \(0.0863424\pi\)
−0.963436 + 0.267939i \(0.913658\pi\)
\(564\) 0 0
\(565\) −1303.96 −0.0970939
\(566\) −6386.70 + 6386.70i −0.474299 + 0.474299i
\(567\) 0 0
\(568\) 12804.1 + 12804.1i 0.945858 + 0.945858i
\(569\) 4328.74i 0.318929i 0.987204 + 0.159464i \(0.0509767\pi\)
−0.987204 + 0.159464i \(0.949023\pi\)
\(570\) 0 0
\(571\) 9148.34 + 9148.34i 0.670483 + 0.670483i 0.957827 0.287344i \(-0.0927723\pi\)
−0.287344 + 0.957827i \(0.592772\pi\)
\(572\) 1642.99 + 1642.99i 0.120100 + 0.120100i
\(573\) 0 0
\(574\) −627.923 −0.0456603
\(575\) 3687.57 3687.57i 0.267448 0.267448i
\(576\) 0 0
\(577\) 14654.1 1.05729 0.528645 0.848843i \(-0.322700\pi\)
0.528645 + 0.848843i \(0.322700\pi\)
\(578\) 6820.13 + 2748.61i 0.490796 + 0.197797i
\(579\) 0 0
\(580\) 116.778i 0.00836022i
\(581\) −614.969 + 614.969i −0.0439126 + 0.0439126i
\(582\) 0 0
\(583\) 22.1922 22.1922i 0.00157651 0.00157651i
\(584\) 4870.71 + 4870.71i 0.345122 + 0.345122i
\(585\) 0 0
\(586\) 11284.2i 0.795471i
\(587\) 12094.6i 0.850419i 0.905095 + 0.425209i \(0.139799\pi\)
−0.905095 + 0.425209i \(0.860201\pi\)
\(588\) 0 0
\(589\) −6657.16 6657.16i −0.465710 0.465710i
\(590\) −506.348 + 506.348i −0.0353322 + 0.0353322i
\(591\) 0 0
\(592\) 340.815 340.815i 0.0236611 0.0236611i
\(593\) 8913.39i 0.617249i 0.951184 + 0.308625i \(0.0998687\pi\)
−0.951184 + 0.308625i \(0.900131\pi\)
\(594\) 0 0
\(595\) −182.773 + 123.398i −0.0125932 + 0.00850221i
\(596\) 11412.5 0.784352
\(597\) 0 0
\(598\) 889.361 889.361i 0.0608172 0.0608172i
\(599\) −17664.7 −1.20494 −0.602470 0.798142i \(-0.705817\pi\)
−0.602470 + 0.798142i \(0.705817\pi\)
\(600\) 0 0
\(601\) −2346.22 2346.22i −0.159242 0.159242i 0.622989 0.782231i \(-0.285918\pi\)
−0.782231 + 0.622989i \(0.785918\pi\)
\(602\) 955.263 + 955.263i 0.0646738 + 0.0646738i
\(603\) 0 0
\(604\) 7452.62i 0.502057i
\(605\) 532.045 + 532.045i 0.0357532 + 0.0357532i
\(606\) 0 0
\(607\) 10813.0 10813.0i 0.723042 0.723042i −0.246182 0.969224i \(-0.579176\pi\)
0.969224 + 0.246182i \(0.0791761\pi\)
\(608\) −23091.8 −1.54029
\(609\) 0 0
\(610\) 883.792i 0.0586618i
\(611\) −1025.28 −0.0678863
\(612\) 0 0
\(613\) 13570.8 0.894160 0.447080 0.894494i \(-0.352464\pi\)
0.447080 + 0.894494i \(0.352464\pi\)
\(614\) 8033.81i 0.528043i
\(615\) 0 0
\(616\) −1604.85 −0.104970
\(617\) −12451.6 + 12451.6i −0.812450 + 0.812450i −0.985001 0.172551i \(-0.944799\pi\)
0.172551 + 0.985001i \(0.444799\pi\)
\(618\) 0 0
\(619\) 14955.7 + 14955.7i 0.971116 + 0.971116i 0.999594 0.0284784i \(-0.00906618\pi\)
−0.0284784 + 0.999594i \(0.509066\pi\)
\(620\) 358.084i 0.0231952i
\(621\) 0 0
\(622\) −10271.5 10271.5i −0.662137 0.662137i
\(623\) −1535.77 1535.77i −0.0987633 0.0987633i
\(624\) 0 0
\(625\) −15377.7 −0.984170
\(626\) −3025.26 + 3025.26i −0.193153 + 0.193153i
\(627\) 0 0
\(628\) 18504.4 1.17580
\(629\) 421.566 2173.82i 0.0267232 0.137800i
\(630\) 0 0
\(631\) 5652.30i 0.356600i 0.983976 + 0.178300i \(0.0570598\pi\)
−0.983976 + 0.178300i \(0.942940\pi\)
\(632\) 12004.5 12004.5i 0.755558 0.755558i
\(633\) 0 0
\(634\) 6083.05 6083.05i 0.381055 0.381055i
\(635\) −1330.81 1330.81i −0.0831680 0.0831680i
\(636\) 0 0
\(637\) 6572.29i 0.408797i
\(638\) 751.563i 0.0466374i
\(639\) 0 0
\(640\) −726.046 726.046i −0.0448429 0.0448429i
\(641\) −15125.0 + 15125.0i −0.931982 + 0.931982i −0.997830 0.0658478i \(-0.979025\pi\)
0.0658478 + 0.997830i \(0.479025\pi\)
\(642\) 0 0
\(643\) −4112.50 + 4112.50i −0.252226 + 0.252226i −0.821883 0.569657i \(-0.807076\pi\)
0.569657 + 0.821883i \(0.307076\pi\)
\(644\) 935.071i 0.0572158i
\(645\) 0 0
\(646\) −10702.9 + 7225.96i −0.651855 + 0.440095i
\(647\) 24007.9 1.45881 0.729404 0.684084i \(-0.239798\pi\)
0.729404 + 0.684084i \(0.239798\pi\)
\(648\) 0 0
\(649\) 8379.54 8379.54i 0.506819 0.506819i
\(650\) −3728.67 −0.225001
\(651\) 0 0
\(652\) 2551.12 + 2551.12i 0.153235 + 0.153235i
\(653\) −756.860 756.860i −0.0453572 0.0453572i 0.684064 0.729422i \(-0.260211\pi\)
−0.729422 + 0.684064i \(0.760211\pi\)
\(654\) 0 0
\(655\) 1443.59i 0.0861153i
\(656\) 1169.37 + 1169.37i 0.0695981 + 0.0695981i
\(657\) 0 0
\(658\) 209.612 209.612i 0.0124187 0.0124187i
\(659\) 12742.8 0.753245 0.376623 0.926367i \(-0.377085\pi\)
0.376623 + 0.926367i \(0.377085\pi\)
\(660\) 0 0
\(661\) 1443.34i 0.0849312i 0.999098 + 0.0424656i \(0.0135213\pi\)
−0.999098 + 0.0424656i \(0.986479\pi\)
\(662\) −8270.57 −0.485566
\(663\) 0 0
\(664\) −4627.38 −0.270448
\(665\) 387.297i 0.0225846i
\(666\) 0 0
\(667\) −1046.10 −0.0607273
\(668\) 15235.8 15235.8i 0.882471 0.882471i
\(669\) 0 0
\(670\) −229.475 229.475i −0.0132319 0.0132319i
\(671\) 14625.9i 0.841467i
\(672\) 0 0
\(673\) −3389.13 3389.13i −0.194118 0.194118i 0.603355 0.797473i \(-0.293830\pi\)
−0.797473 + 0.603355i \(0.793830\pi\)
\(674\) 4738.45 + 4738.45i 0.270799 + 0.270799i
\(675\) 0 0
\(676\) −10342.3 −0.588432
\(677\) 15674.7 15674.7i 0.889846 0.889846i −0.104662 0.994508i \(-0.533376\pi\)
0.994508 + 0.104662i \(0.0333759\pi\)
\(678\) 0 0
\(679\) 6881.42 0.388932
\(680\) −1151.90 223.387i −0.0649610 0.0125978i
\(681\) 0 0
\(682\) 2304.58i 0.129394i
\(683\) 21436.1 21436.1i 1.20092 1.20092i 0.227034 0.973887i \(-0.427097\pi\)
0.973887 0.227034i \(-0.0729029\pi\)
\(684\) 0 0
\(685\) 855.998 855.998i 0.0477460 0.0477460i
\(686\) 2748.68 + 2748.68i 0.152981 + 0.152981i
\(687\) 0 0
\(688\) 3557.94i 0.197159i
\(689\) 31.2335i 0.00172700i
\(690\) 0 0
\(691\) −18537.6 18537.6i −1.02056 1.02056i −0.999784 0.0207713i \(-0.993388\pi\)
−0.0207713 0.999784i \(-0.506612\pi\)
\(692\) 406.188 406.188i 0.0223135 0.0223135i
\(693\) 0 0
\(694\) −10408.4 + 10408.4i −0.569305 + 0.569305i
\(695\) 1999.78i 0.109146i
\(696\) 0 0
\(697\) 7458.62 + 1446.44i 0.405330 + 0.0786051i
\(698\) −13702.4 −0.743043
\(699\) 0 0
\(700\) −1960.16 + 1960.16i −0.105838 + 0.105838i
\(701\) −10843.2 −0.584228 −0.292114 0.956384i \(-0.594359\pi\)
−0.292114 + 0.956384i \(0.594359\pi\)
\(702\) 0 0
\(703\) 2749.82 + 2749.82i 0.147527 + 0.147527i
\(704\) −2259.35 2259.35i −0.120955 0.120955i
\(705\) 0 0
\(706\) 10514.3i 0.560494i
\(707\) −5318.96 5318.96i −0.282942 0.282942i
\(708\) 0 0
\(709\) 3788.77 3788.77i 0.200691 0.200691i −0.599605 0.800296i \(-0.704676\pi\)
0.800296 + 0.599605i \(0.204676\pi\)
\(710\) −1069.70 −0.0565423
\(711\) 0 0
\(712\) 11556.1i 0.608261i
\(713\) 3207.74 0.168486
\(714\) 0 0
\(715\) −327.903 −0.0171509
\(716\) 12501.4i 0.652514i
\(717\) 0 0
\(718\) 12528.3 0.651188
\(719\) 5780.09 5780.09i 0.299806 0.299806i −0.541132 0.840938i \(-0.682004\pi\)
0.840938 + 0.541132i \(0.182004\pi\)
\(720\) 0 0
\(721\) −539.541 539.541i −0.0278690 0.0278690i
\(722\) 12413.8i 0.639879i
\(723\) 0 0
\(724\) −11373.1 11373.1i −0.583807 0.583807i
\(725\) 2192.90 + 2192.90i 0.112334 + 0.112334i
\(726\) 0 0
\(727\) −22324.8 −1.13890 −0.569451 0.822026i \(-0.692844\pi\)
−0.569451 + 0.822026i \(0.692844\pi\)
\(728\) −1129.34 + 1129.34i −0.0574948 + 0.0574948i
\(729\) 0 0
\(730\) −406.915 −0.0206310
\(731\) −9146.36 13547.3i −0.462778 0.685452i
\(732\) 0 0
\(733\) 7293.42i 0.367515i −0.982972 0.183758i \(-0.941174\pi\)
0.982972 0.183758i \(-0.0588261\pi\)
\(734\) −6976.70 + 6976.70i −0.350838 + 0.350838i
\(735\) 0 0
\(736\) 5563.37 5563.37i 0.278626 0.278626i
\(737\) 3797.57 + 3797.57i 0.189804 + 0.189804i
\(738\) 0 0
\(739\) 12956.5i 0.644945i 0.946579 + 0.322472i \(0.104514\pi\)
−0.946579 + 0.322472i \(0.895486\pi\)
\(740\) 147.911i 0.00734774i
\(741\) 0 0
\(742\) 6.38547 + 6.38547i 0.000315927 + 0.000315927i
\(743\) −10116.8 + 10116.8i −0.499528 + 0.499528i −0.911291 0.411763i \(-0.864913\pi\)
0.411763 + 0.911291i \(0.364913\pi\)
\(744\) 0 0
\(745\) −1138.83 + 1138.83i −0.0560048 + 0.0560048i
\(746\) 15621.3i 0.766673i
\(747\) 0 0
\(748\) 7979.75 + 1547.50i 0.390065 + 0.0756447i
\(749\) −5864.87 −0.286112
\(750\) 0 0
\(751\) −16468.4 + 16468.4i −0.800189 + 0.800189i −0.983125 0.182936i \(-0.941440\pi\)
0.182936 + 0.983125i \(0.441440\pi\)
\(752\) −780.713 −0.0378586
\(753\) 0 0
\(754\) 528.878 + 528.878i 0.0255446 + 0.0255446i
\(755\) −743.684 743.684i −0.0358483 0.0358483i
\(756\) 0 0
\(757\) 615.306i 0.0295425i 0.999891 + 0.0147712i \(0.00470201\pi\)
−0.999891 + 0.0147712i \(0.995298\pi\)
\(758\) −1847.63 1847.63i −0.0885343 0.0885343i
\(759\) 0 0
\(760\) 1457.13 1457.13i 0.0695467 0.0695467i
\(761\) 2678.42 0.127586 0.0637928 0.997963i \(-0.479680\pi\)
0.0637928 + 0.997963i \(0.479680\pi\)
\(762\) 0 0
\(763\) 3088.41i 0.146537i
\(764\) −19302.7 −0.914067
\(765\) 0 0
\(766\) −1544.30 −0.0728432
\(767\) 11793.4i 0.555197i
\(768\) 0 0
\(769\) 8111.73 0.380385 0.190193 0.981747i \(-0.439089\pi\)
0.190193 + 0.981747i \(0.439089\pi\)
\(770\) 67.0374 67.0374i 0.00313748 0.00313748i
\(771\) 0 0
\(772\) −11404.1 11404.1i −0.531661 0.531661i
\(773\) 14345.3i 0.667481i −0.942665 0.333740i \(-0.891689\pi\)
0.942665 0.333740i \(-0.108311\pi\)
\(774\) 0 0
\(775\) −6724.26 6724.26i −0.311668 0.311668i
\(776\) 25889.9 + 25889.9i 1.19767 + 1.19767i
\(777\) 0 0
\(778\) 11247.5 0.518307
\(779\) −9434.94 + 9434.94i −0.433943 + 0.433943i
\(780\) 0 0
\(781\) 17702.4 0.811064
\(782\) 837.670 4319.48i 0.0383057 0.197525i
\(783\) 0 0
\(784\) 5004.54i 0.227977i
\(785\) −1846.52 + 1846.52i −0.0839555 + 0.0839555i
\(786\) 0 0
\(787\) −3820.33 + 3820.33i −0.173037 + 0.173037i −0.788312 0.615275i \(-0.789045\pi\)
0.615275 + 0.788312i \(0.289045\pi\)
\(788\) −10337.7 10337.7i −0.467340 0.467340i
\(789\) 0 0
\(790\) 1002.90i 0.0451664i
\(791\) 6209.09i 0.279102i
\(792\) 0 0
\(793\) −10292.3 10292.3i −0.460895 0.460895i
\(794\) 3193.74 3193.74i 0.142748 0.142748i
\(795\) 0 0
\(796\) 11095.4 11095.4i 0.494051 0.494051i
\(797\) 24962.7i 1.10944i 0.832038 + 0.554719i \(0.187174\pi\)
−0.832038 + 0.554719i \(0.812826\pi\)
\(798\) 0 0
\(799\) −2972.66 + 2006.97i −0.131621 + 0.0888629i
\(800\) −23324.6 −1.03081
\(801\) 0 0
\(802\) 15720.0 15720.0i 0.692135 0.692135i
\(803\) 6734.03 0.295939
\(804\) 0 0
\(805\) 93.3092 + 93.3092i 0.00408536 + 0.00408536i
\(806\) −1621.74 1621.74i −0.0708728 0.0708728i
\(807\) 0 0
\(808\) 40023.0i 1.74258i
\(809\) 22875.2 + 22875.2i 0.994126 + 0.994126i 0.999983 0.00585676i \(-0.00186427\pi\)
−0.00585676 + 0.999983i \(0.501864\pi\)
\(810\) 0 0
\(811\) −12837.7 + 12837.7i −0.555848 + 0.555848i −0.928123 0.372275i \(-0.878578\pi\)
0.372275 + 0.928123i \(0.378578\pi\)
\(812\) 556.061 0.0240319
\(813\) 0 0
\(814\) 951.935i 0.0409893i
\(815\) −509.143 −0.0218828
\(816\) 0 0
\(817\) 28706.9 1.22928
\(818\) 8563.26i 0.366024i
\(819\) 0 0
\(820\) −507.500 −0.0216130
\(821\) −22482.6 + 22482.6i −0.955721 + 0.955721i −0.999060 0.0433397i \(-0.986200\pi\)
0.0433397 + 0.999060i \(0.486200\pi\)
\(822\) 0 0
\(823\) −23777.0 23777.0i −1.00707 1.00707i −0.999975 0.00709128i \(-0.997743\pi\)
−0.00709128 0.999975i \(-0.502257\pi\)
\(824\) 4059.82i 0.171639i
\(825\) 0 0
\(826\) 2411.08 + 2411.08i 0.101565 + 0.101565i
\(827\) 3394.68 + 3394.68i 0.142738 + 0.142738i 0.774865 0.632127i \(-0.217818\pi\)
−0.632127 + 0.774865i \(0.717818\pi\)
\(828\) 0 0
\(829\) 4599.00 0.192678 0.0963389 0.995349i \(-0.469287\pi\)
0.0963389 + 0.995349i \(0.469287\pi\)
\(830\) 193.294 193.294i 0.00808352 0.00808352i
\(831\) 0 0
\(832\) −3179.83 −0.132501
\(833\) −12865.1 19055.4i −0.535114 0.792594i
\(834\) 0 0
\(835\) 3040.71i 0.126022i
\(836\) −10094.2 + 10094.2i −0.417600 + 0.417600i
\(837\) 0 0
\(838\) 6488.45 6488.45i 0.267470 0.267470i
\(839\) −21296.4 21296.4i −0.876321 0.876321i 0.116831 0.993152i \(-0.462726\pi\)
−0.993152 + 0.116831i \(0.962726\pi\)
\(840\) 0 0
\(841\) 23766.9i 0.974493i
\(842\) 9561.23i 0.391332i
\(843\) 0 0
\(844\) 1699.34 + 1699.34i 0.0693054 + 0.0693054i
\(845\) 1032.04 1032.04i 0.0420156 0.0420156i
\(846\) 0 0
\(847\) 2533.44 2533.44i 0.102775 0.102775i
\(848\) 23.7831i 0.000963108i
\(849\) 0 0
\(850\) −10810.7 + 7298.79i −0.436242 + 0.294525i
\(851\) −1325.00 −0.0533728
\(852\) 0 0
\(853\) −30470.1 + 30470.1i −1.22307 + 1.22307i −0.256531 + 0.966536i \(0.582579\pi\)
−0.966536 + 0.256531i \(0.917421\pi\)
\(854\) 4208.36 0.168627
\(855\) 0 0
\(856\) −22065.3 22065.3i −0.881049 0.881049i
\(857\) 8446.07 + 8446.07i 0.336654 + 0.336654i 0.855106 0.518453i \(-0.173492\pi\)
−0.518453 + 0.855106i \(0.673492\pi\)
\(858\) 0 0
\(859\) 11237.0i 0.446335i 0.974780 + 0.223168i \(0.0716397\pi\)
−0.974780 + 0.223168i \(0.928360\pi\)
\(860\) 772.062 + 772.062i 0.0306129 + 0.0306129i
\(861\) 0 0
\(862\) −904.256 + 904.256i −0.0357298 + 0.0357298i
\(863\) 22755.7 0.897583 0.448791 0.893637i \(-0.351855\pi\)
0.448791 + 0.893637i \(0.351855\pi\)
\(864\) 0 0
\(865\) 81.0656i 0.00318649i
\(866\) 15127.5 0.593597
\(867\) 0 0
\(868\) −1705.09 −0.0666759
\(869\) 16596.9i 0.647884i
\(870\) 0 0
\(871\) 5344.74 0.207921
\(872\) 11619.5 11619.5i 0.451245 0.451245i
\(873\) 0 0
\(874\) 5464.02 + 5464.02i 0.211468 + 0.211468i
\(875\) 784.481i 0.0303089i
\(876\) 0 0
\(877\) 25825.6 + 25825.6i 0.994378 + 0.994378i 0.999984 0.00560613i \(-0.00178450\pi\)
−0.00560613 + 0.999984i \(0.501784\pi\)
\(878\) 17375.6 + 17375.6i 0.667881 + 0.667881i
\(879\) 0 0
\(880\) −249.686 −0.00956466
\(881\) −13415.9 + 13415.9i −0.513045 + 0.513045i −0.915458 0.402413i \(-0.868171\pi\)
0.402413 + 0.915458i \(0.368171\pi\)
\(882\) 0 0
\(883\) 28154.1 1.07300 0.536501 0.843899i \(-0.319746\pi\)
0.536501 + 0.843899i \(0.319746\pi\)
\(884\) 6704.37 4526.40i 0.255082 0.172217i
\(885\) 0 0
\(886\) 7642.16i 0.289778i
\(887\) 10563.8 10563.8i 0.399884 0.399884i −0.478308 0.878192i \(-0.658750\pi\)
0.878192 + 0.478308i \(0.158750\pi\)
\(888\) 0 0
\(889\) −6336.94 + 6336.94i −0.239071 + 0.239071i
\(890\) 482.716 + 482.716i 0.0181805 + 0.0181805i
\(891\) 0 0
\(892\) 6190.89i 0.232384i
\(893\) 6299.09i 0.236048i
\(894\) 0 0
\(895\) −1247.50 1247.50i −0.0465913 0.0465913i
\(896\) −3457.22 + 3457.22i −0.128904 + 0.128904i
\(897\) 0 0
\(898\) −11932.5 + 11932.5i −0.443422 + 0.443422i
\(899\) 1907.55i 0.0707680i
\(900\) 0 0
\(901\) −61.1389 90.5571i −0.00226064 0.00334838i
\(902\) −3266.19 −0.120568
\(903\) 0 0
\(904\) −23360.4 + 23360.4i −0.859463 + 0.859463i
\(905\) 2269.80 0.0833708
\(906\) 0 0
\(907\) 36144.8 + 36144.8i 1.32323 + 1.32323i 0.911148 + 0.412080i \(0.135198\pi\)
0.412080 + 0.911148i \(0.364802\pi\)
\(908\) −13748.1 13748.1i −0.502474 0.502474i
\(909\) 0 0
\(910\) 94.3491i 0.00343697i
\(911\) 7029.06 + 7029.06i 0.255634 + 0.255634i 0.823276 0.567641i \(-0.192144\pi\)
−0.567641 + 0.823276i \(0.692144\pi\)
\(912\) 0 0
\(913\) −3198.81 + 3198.81i −0.115953 + 0.115953i
\(914\) 19528.5 0.706725
\(915\) 0 0
\(916\) 14779.0i 0.533092i
\(917\) 6873.93 0.247543
\(918\) 0 0
\(919\) −20224.2 −0.725937 −0.362968 0.931801i \(-0.618237\pi\)
−0.362968 + 0.931801i \(0.618237\pi\)
\(920\) 702.113i 0.0251608i
\(921\) 0 0
\(922\) 21173.8 0.756315
\(923\) 12457.2 12457.2i 0.444242 0.444242i
\(924\) 0 0
\(925\) 2777.54 + 2777.54i 0.0987297 + 0.0987297i
\(926\) 11641.5i 0.413137i
\(927\) 0 0
\(928\) 3308.38 + 3308.38i 0.117029 + 0.117029i
\(929\) 840.813 + 840.813i 0.0296945 + 0.0296945i 0.721798 0.692104i \(-0.243316\pi\)
−0.692104 + 0.721798i \(0.743316\pi\)
\(930\) 0 0
\(931\) 40378.6 1.42143
\(932\) 864.404 864.404i 0.0303804 0.0303804i
\(933\) 0 0
\(934\) −5307.44 −0.185937
\(935\) −950.709 + 641.863i −0.0332529 + 0.0224505i
\(936\) 0 0
\(937\) 37390.7i 1.30363i 0.758378 + 0.651815i \(0.225992\pi\)
−0.758378 + 0.651815i \(0.774008\pi\)
\(938\) −1092.69 + 1092.69i −0.0380359 + 0.0380359i
\(939\) 0 0
\(940\) 169.412 169.412i 0.00587832 0.00587832i
\(941\) 26248.6 + 26248.6i 0.909331 + 0.909331i 0.996218 0.0868875i \(-0.0276921\pi\)
−0.0868875 + 0.996218i \(0.527692\pi\)
\(942\) 0 0
\(943\) 4546.21i 0.156993i
\(944\) 8980.25i 0.309621i
\(945\) 0 0
\(946\) 4968.88 + 4968.88i 0.170774 + 0.170774i
\(947\) −36161.1 + 36161.1i −1.24084 + 1.24084i −0.281192 + 0.959651i \(0.590730\pi\)
−0.959651 + 0.281192i \(0.909270\pi\)
\(948\) 0 0
\(949\) 4738.77 4738.77i 0.162094 0.162094i
\(950\) 22908.1i 0.782353i
\(951\) 0 0
\(952\) −1063.70 + 5485.03i −0.0362131 + 0.186734i
\(953\) 1138.42 0.0386958 0.0193479 0.999813i \(-0.493841\pi\)
0.0193479 + 0.999813i \(0.493841\pi\)
\(954\) 0 0
\(955\) 1926.18 1926.18i 0.0652669 0.0652669i
\(956\) 24686.3 0.835159
\(957\) 0 0
\(958\) 2474.46 + 2474.46i 0.0834510 + 0.0834510i
\(959\) −4076.02 4076.02i −0.137249 0.137249i
\(960\) 0 0
\(961\) 23941.7i 0.803656i
\(962\) 669.881 + 669.881i 0.0224510 + 0.0224510i
\(963\) 0 0
\(964\) 4499.80 4499.80i 0.150341 0.150341i
\(965\) 2275.99 0.0759241
\(966\) 0 0
\(967\) 4270.42i 0.142014i −0.997476 0.0710070i \(-0.977379\pi\)
0.997476 0.0710070i \(-0.0226213\pi\)
\(968\) 19063.1 0.632966
\(969\) 0 0
\(970\) −2162.93 −0.0715954
\(971\) 8703.18i 0.287640i 0.989604 + 0.143820i \(0.0459386\pi\)
−0.989604 + 0.143820i \(0.954061\pi\)
\(972\) 0 0
\(973\) −9522.39 −0.313745
\(974\) 3521.55 3521.55i 0.115850 0.115850i
\(975\) 0 0
\(976\) −7837.17 7837.17i −0.257031 0.257031i
\(977\) 10690.5i 0.350072i 0.984562 + 0.175036i \(0.0560041\pi\)
−0.984562 + 0.175036i \(0.943996\pi\)
\(978\) 0 0
\(979\) −7988.46 7988.46i −0.260789 0.260789i
\(980\) 1085.97 + 1085.97i 0.0353980 + 0.0353980i
\(981\) 0 0
\(982\) −8248.51 −0.268045
\(983\) −31067.0 + 31067.0i −1.00802 + 1.00802i −0.00805257 + 0.999968i \(0.502563\pi\)
−0.999968 + 0.00805257i \(0.997437\pi\)
\(984\) 0 0
\(985\) 2063.16 0.0667387
\(986\) 2568.68 + 498.139i 0.0829648 + 0.0160892i
\(987\) 0 0
\(988\) 14206.6i 0.457462i
\(989\) −6916.17 + 6916.17i −0.222367 + 0.222367i
\(990\) 0 0
\(991\) 11977.7 11977.7i 0.383939 0.383939i −0.488580 0.872519i \(-0.662485\pi\)
0.872519 + 0.488580i \(0.162485\pi\)
\(992\) −10144.8 10144.8i −0.324694 0.324694i
\(993\) 0 0
\(994\) 5093.59i 0.162534i
\(995\) 2214.37i 0.0705531i
\(996\) 0 0
\(997\) 7884.24 + 7884.24i 0.250448 + 0.250448i 0.821154 0.570706i \(-0.193331\pi\)
−0.570706 + 0.821154i \(0.693331\pi\)
\(998\) −16039.8 + 16039.8i −0.508749 + 0.508749i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.f.b.55.5 16
3.2 odd 2 51.4.e.a.4.4 16
17.13 even 4 inner 153.4.f.b.64.4 16
51.8 odd 8 867.4.a.p.1.4 8
51.26 odd 8 867.4.a.q.1.4 8
51.47 odd 4 51.4.e.a.13.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.e.a.4.4 16 3.2 odd 2
51.4.e.a.13.5 yes 16 51.47 odd 4
153.4.f.b.55.5 16 1.1 even 1 trivial
153.4.f.b.64.4 16 17.13 even 4 inner
867.4.a.p.1.4 8 51.8 odd 8
867.4.a.q.1.4 8 51.26 odd 8