Properties

Label 51.4.e.a.13.5
Level $51$
Weight $4$
Character 51.13
Analytic conductor $3.009$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,4,Mod(4,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 51.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.00909741029\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3086 x^{12} + 54880 x^{10} + 516641 x^{8} + 2403800 x^{6} + 4378064 x^{4} + \cdots + 295936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.5
Root \(0.496675i\) of defining polynomial
Character \(\chi\) \(=\) 51.13
Dual form 51.4.e.a.4.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.49668i q^{2} +(2.12132 + 2.12132i) q^{3} +5.75996 q^{4} +(0.574777 + 0.574777i) q^{5} +(-3.17493 + 3.17493i) q^{6} +(2.73692 - 2.73692i) q^{7} +20.5942i q^{8} +9.00000i q^{9} +(-0.860255 + 0.860255i) q^{10} +(-14.2363 + 14.2363i) q^{11} +(12.2187 + 12.2187i) q^{12} +20.0363 q^{13} +(4.09628 + 4.09628i) q^{14} +2.43857i q^{15} +15.2569 q^{16} +(-58.0925 - 39.2207i) q^{17} -13.4701 q^{18} -123.098i q^{19} +(3.31070 + 3.31070i) q^{20} +11.6118 q^{21} +(-21.3072 - 21.3072i) q^{22} +(29.6574 - 29.6574i) q^{23} +(-43.6869 + 43.6869i) q^{24} -124.339i q^{25} +29.9879i q^{26} +(-19.0919 + 19.0919i) q^{27} +(15.7646 - 15.7646i) q^{28} +(-17.6364 - 17.6364i) q^{29} -3.64975 q^{30} +(-54.0799 - 54.0799i) q^{31} +187.588i q^{32} -60.3996 q^{33} +(58.7006 - 86.9456i) q^{34} +3.14624 q^{35} +51.8397i q^{36} +(22.3384 + 22.3384i) q^{37} +184.238 q^{38} +(42.5035 + 42.5035i) q^{39} +(-11.8371 + 11.8371i) q^{40} +(-76.6455 + 76.6455i) q^{41} +17.3791i q^{42} +233.202i q^{43} +(-82.0007 + 82.0007i) q^{44} +(-5.17299 + 5.17299i) q^{45} +(44.3874 + 44.3874i) q^{46} +51.1712 q^{47} +(32.3648 + 32.3648i) q^{48} +328.019i q^{49} +186.095 q^{50} +(-40.0331 - 206.432i) q^{51} +115.409 q^{52} -1.55884i q^{53} +(-28.5743 - 28.5743i) q^{54} -16.3654 q^{55} +(56.3647 + 56.3647i) q^{56} +(261.131 - 261.131i) q^{57} +(26.3960 - 26.3960i) q^{58} -588.603i q^{59} +14.0461i q^{60} +(-513.681 + 513.681i) q^{61} +(80.9401 - 80.9401i) q^{62} +(24.6323 + 24.6323i) q^{63} -158.703 q^{64} +(11.5164 + 11.5164i) q^{65} -90.3986i q^{66} +266.752 q^{67} +(-334.611 - 225.910i) q^{68} +125.826 q^{69} +4.70890i q^{70} +(-621.733 - 621.733i) q^{71} -185.348 q^{72} +(236.509 + 236.509i) q^{73} +(-33.4333 + 33.4333i) q^{74} +(263.763 - 263.763i) q^{75} -709.043i q^{76} +77.9274i q^{77} +(-63.6139 + 63.6139i) q^{78} +(-582.906 + 582.906i) q^{79} +(8.76932 + 8.76932i) q^{80} -81.0000 q^{81} +(-114.713 - 114.713i) q^{82} +224.694i q^{83} +66.8834 q^{84} +(-10.8471 - 55.9334i) q^{85} -349.028 q^{86} -74.8250i q^{87} +(-293.186 - 293.186i) q^{88} +561.132 q^{89} +(-7.74229 - 7.74229i) q^{90} +(54.8379 - 54.8379i) q^{91} +(170.825 - 170.825i) q^{92} -229.442i q^{93} +76.5866i q^{94} +(70.7542 - 70.7542i) q^{95} +(-397.935 + 397.935i) q^{96} +(1257.15 + 1257.15i) q^{97} -490.937 q^{98} +(-128.127 - 128.127i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 32 q^{5} + 12 q^{6} - 8 q^{7} - 20 q^{10} + 96 q^{11} + 120 q^{13} - 288 q^{14} - 200 q^{16} + 16 q^{17} - 72 q^{18} + 384 q^{20} + 168 q^{21} + 4 q^{22} + 208 q^{23} + 312 q^{24} + 904 q^{28}+ \cdots + 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.49668i 0.529155i 0.964364 + 0.264577i \(0.0852324\pi\)
−0.964364 + 0.264577i \(0.914768\pi\)
\(3\) 2.12132 + 2.12132i 0.408248 + 0.408248i
\(4\) 5.75996 0.719995
\(5\) 0.574777 + 0.574777i 0.0514096 + 0.0514096i 0.732344 0.680935i \(-0.238426\pi\)
−0.680935 + 0.732344i \(0.738426\pi\)
\(6\) −3.17493 + 3.17493i −0.216026 + 0.216026i
\(7\) 2.73692 2.73692i 0.147780 0.147780i −0.629346 0.777126i \(-0.716677\pi\)
0.777126 + 0.629346i \(0.216677\pi\)
\(8\) 20.5942i 0.910143i
\(9\) 9.00000i 0.333333i
\(10\) −0.860255 + 0.860255i −0.0272036 + 0.0272036i
\(11\) −14.2363 + 14.2363i −0.390219 + 0.390219i −0.874766 0.484546i \(-0.838985\pi\)
0.484546 + 0.874766i \(0.338985\pi\)
\(12\) 12.2187 + 12.2187i 0.293937 + 0.293937i
\(13\) 20.0363 0.427468 0.213734 0.976892i \(-0.431437\pi\)
0.213734 + 0.976892i \(0.431437\pi\)
\(14\) 4.09628 + 4.09628i 0.0781984 + 0.0781984i
\(15\) 2.43857i 0.0419758i
\(16\) 15.2569 0.238389
\(17\) −58.0925 39.2207i −0.828794 0.559554i
\(18\) −13.4701 −0.176385
\(19\) 123.098i 1.48635i −0.669095 0.743177i \(-0.733318\pi\)
0.669095 0.743177i \(-0.266682\pi\)
\(20\) 3.31070 + 3.31070i 0.0370147 + 0.0370147i
\(21\) 11.6118 0.120662
\(22\) −21.3072 21.3072i −0.206486 0.206486i
\(23\) 29.6574 29.6574i 0.268869 0.268869i −0.559775 0.828644i \(-0.689113\pi\)
0.828644 + 0.559775i \(0.189113\pi\)
\(24\) −43.6869 + 43.6869i −0.371564 + 0.371564i
\(25\) 124.339i 0.994714i
\(26\) 29.9879i 0.226196i
\(27\) −19.0919 + 19.0919i −0.136083 + 0.136083i
\(28\) 15.7646 15.7646i 0.106401 0.106401i
\(29\) −17.6364 17.6364i −0.112931 0.112931i 0.648383 0.761314i \(-0.275445\pi\)
−0.761314 + 0.648383i \(0.775445\pi\)
\(30\) −3.64975 −0.0222117
\(31\) −54.0799 54.0799i −0.313324 0.313324i 0.532872 0.846196i \(-0.321113\pi\)
−0.846196 + 0.532872i \(0.821113\pi\)
\(32\) 187.588i 1.03629i
\(33\) −60.3996 −0.318613
\(34\) 58.7006 86.9456i 0.296090 0.438560i
\(35\) 3.14624 0.0151946
\(36\) 51.8397i 0.239998i
\(37\) 22.3384 + 22.3384i 0.0992543 + 0.0992543i 0.754990 0.655736i \(-0.227642\pi\)
−0.655736 + 0.754990i \(0.727642\pi\)
\(38\) 184.238 0.786511
\(39\) 42.5035 + 42.5035i 0.174513 + 0.174513i
\(40\) −11.8371 + 11.8371i −0.0467901 + 0.0467901i
\(41\) −76.6455 + 76.6455i −0.291952 + 0.291952i −0.837851 0.545899i \(-0.816188\pi\)
0.545899 + 0.837851i \(0.316188\pi\)
\(42\) 17.3791i 0.0638487i
\(43\) 233.202i 0.827047i 0.910493 + 0.413524i \(0.135702\pi\)
−0.910493 + 0.413524i \(0.864298\pi\)
\(44\) −82.0007 + 82.0007i −0.280956 + 0.280956i
\(45\) −5.17299 + 5.17299i −0.0171365 + 0.0171365i
\(46\) 44.3874 + 44.3874i 0.142273 + 0.142273i
\(47\) 51.1712 0.158810 0.0794052 0.996842i \(-0.474698\pi\)
0.0794052 + 0.996842i \(0.474698\pi\)
\(48\) 32.3648 + 32.3648i 0.0973219 + 0.0973219i
\(49\) 328.019i 0.956322i
\(50\) 186.095 0.526357
\(51\) −40.0331 206.432i −0.109917 0.566791i
\(52\) 115.409 0.307775
\(53\) 1.55884i 0.00404007i −0.999998 0.00202003i \(-0.999357\pi\)
0.999998 0.00202003i \(-0.000642997\pi\)
\(54\) −28.5743 28.5743i −0.0720088 0.0720088i
\(55\) −16.3654 −0.0401221
\(56\) 56.3647 + 56.3647i 0.134501 + 0.134501i
\(57\) 261.131 261.131i 0.606801 0.606801i
\(58\) 26.3960 26.3960i 0.0597580 0.0597580i
\(59\) 588.603i 1.29881i −0.760445 0.649403i \(-0.775019\pi\)
0.760445 0.649403i \(-0.224981\pi\)
\(60\) 14.0461i 0.0302224i
\(61\) −513.681 + 513.681i −1.07820 + 1.07820i −0.0815267 + 0.996671i \(0.525980\pi\)
−0.996671 + 0.0815267i \(0.974020\pi\)
\(62\) 80.9401 80.9401i 0.165797 0.165797i
\(63\) 24.6323 + 24.6323i 0.0492600 + 0.0492600i
\(64\) −158.703 −0.309967
\(65\) 11.5164 + 11.5164i 0.0219760 + 0.0219760i
\(66\) 90.3986i 0.168595i
\(67\) 266.752 0.486403 0.243201 0.969976i \(-0.421802\pi\)
0.243201 + 0.969976i \(0.421802\pi\)
\(68\) −334.611 225.910i −0.596728 0.402876i
\(69\) 125.826 0.219531
\(70\) 4.70890i 0.00804030i
\(71\) −621.733 621.733i −1.03924 1.03924i −0.999198 0.0400429i \(-0.987251\pi\)
−0.0400429 0.999198i \(-0.512749\pi\)
\(72\) −185.348 −0.303381
\(73\) 236.509 + 236.509i 0.379195 + 0.379195i 0.870812 0.491617i \(-0.163594\pi\)
−0.491617 + 0.870812i \(0.663594\pi\)
\(74\) −33.4333 + 33.4333i −0.0525209 + 0.0525209i
\(75\) 263.763 263.763i 0.406090 0.406090i
\(76\) 709.043i 1.07017i
\(77\) 77.9274i 0.115333i
\(78\) −63.6139 + 63.6139i −0.0923443 + 0.0923443i
\(79\) −582.906 + 582.906i −0.830153 + 0.830153i −0.987537 0.157384i \(-0.949694\pi\)
0.157384 + 0.987537i \(0.449694\pi\)
\(80\) 8.76932 + 8.76932i 0.0122555 + 0.0122555i
\(81\) −81.0000 −0.111111
\(82\) −114.713 114.713i −0.154488 0.154488i
\(83\) 224.694i 0.297149i 0.988901 + 0.148574i \(0.0474684\pi\)
−0.988901 + 0.148574i \(0.952532\pi\)
\(84\) 66.8834 0.0868760
\(85\) −10.8471 55.9334i −0.0138415 0.0713745i
\(86\) −349.028 −0.437636
\(87\) 74.8250i 0.0922078i
\(88\) −293.186 293.186i −0.355156 0.355156i
\(89\) 561.132 0.668313 0.334157 0.942518i \(-0.391549\pi\)
0.334157 + 0.942518i \(0.391549\pi\)
\(90\) −7.74229 7.74229i −0.00906788 0.00906788i
\(91\) 54.8379 54.8379i 0.0631711 0.0631711i
\(92\) 170.825 170.825i 0.193584 0.193584i
\(93\) 229.442i 0.255828i
\(94\) 76.5866i 0.0840352i
\(95\) 70.7542 70.7542i 0.0764129 0.0764129i
\(96\) −397.935 + 397.935i −0.423063 + 0.423063i
\(97\) 1257.15 + 1257.15i 1.31592 + 1.31592i 0.916978 + 0.398938i \(0.130621\pi\)
0.398938 + 0.916978i \(0.369379\pi\)
\(98\) −490.937 −0.506042
\(99\) −128.127 128.127i −0.130073 0.130073i
\(100\) 716.190i 0.716190i
\(101\) 1943.41 1.91462 0.957310 0.289064i \(-0.0933441\pi\)
0.957310 + 0.289064i \(0.0933441\pi\)
\(102\) 308.962 59.9166i 0.299920 0.0581630i
\(103\) −197.134 −0.188585 −0.0942923 0.995545i \(-0.530059\pi\)
−0.0942923 + 0.995545i \(0.530059\pi\)
\(104\) 412.632i 0.389057i
\(105\) 6.67419 + 6.67419i 0.00620318 + 0.00620318i
\(106\) 2.33308 0.00213782
\(107\) 1071.43 + 1071.43i 0.968033 + 0.968033i 0.999505 0.0314720i \(-0.0100195\pi\)
−0.0314720 + 0.999505i \(0.510019\pi\)
\(108\) −109.969 + 109.969i −0.0979790 + 0.0979790i
\(109\) −564.212 + 564.212i −0.495795 + 0.495795i −0.910126 0.414331i \(-0.864016\pi\)
0.414331 + 0.910126i \(0.364016\pi\)
\(110\) 24.4937i 0.0212308i
\(111\) 94.7738i 0.0810408i
\(112\) 41.7569 41.7569i 0.0352291 0.0352291i
\(113\) −1134.32 + 1134.32i −0.944317 + 0.944317i −0.998529 0.0542129i \(-0.982735\pi\)
0.0542129 + 0.998529i \(0.482735\pi\)
\(114\) 390.829 + 390.829i 0.321092 + 0.321092i
\(115\) 34.0927 0.0276449
\(116\) −101.585 101.585i −0.0813098 0.0813098i
\(117\) 180.327i 0.142489i
\(118\) 880.947 0.687269
\(119\) −266.339 + 51.6506i −0.205170 + 0.0397883i
\(120\) −50.2204 −0.0382040
\(121\) 925.654i 0.695458i
\(122\) −768.813 768.813i −0.570533 0.570533i
\(123\) −325.179 −0.238377
\(124\) −311.499 311.499i −0.225592 0.225592i
\(125\) 143.315 143.315i 0.102548 0.102548i
\(126\) −36.8666 + 36.8666i −0.0260661 + 0.0260661i
\(127\) 2315.35i 1.61775i −0.587980 0.808876i \(-0.700077\pi\)
0.587980 0.808876i \(-0.299923\pi\)
\(128\) 1263.18i 0.872267i
\(129\) −494.697 + 494.697i −0.337641 + 0.337641i
\(130\) −17.2363 + 17.2363i −0.0116287 + 0.0116287i
\(131\) −1255.78 1255.78i −0.837541 0.837541i 0.150994 0.988535i \(-0.451753\pi\)
−0.988535 + 0.150994i \(0.951753\pi\)
\(132\) −347.900 −0.229400
\(133\) −336.911 336.911i −0.219653 0.219653i
\(134\) 399.242i 0.257382i
\(135\) −21.9472 −0.0139919
\(136\) 807.719 1196.37i 0.509274 0.754321i
\(137\) 1489.27 0.928736 0.464368 0.885642i \(-0.346281\pi\)
0.464368 + 0.885642i \(0.346281\pi\)
\(138\) 188.320i 0.116166i
\(139\) −1739.62 1739.62i −1.06153 1.06153i −0.997979 0.0635492i \(-0.979758\pi\)
−0.0635492 0.997979i \(-0.520242\pi\)
\(140\) 18.1222 0.0109401
\(141\) 108.550 + 108.550i 0.0648340 + 0.0648340i
\(142\) 930.532 930.532i 0.549919 0.549919i
\(143\) −285.244 + 285.244i −0.166806 + 0.166806i
\(144\) 137.312i 0.0794630i
\(145\) 20.2740i 0.0116115i
\(146\) −353.977 + 353.977i −0.200653 + 0.200653i
\(147\) −695.832 + 695.832i −0.390417 + 0.390417i
\(148\) 128.668 + 128.668i 0.0714627 + 0.0714627i
\(149\) −1981.35 −1.08938 −0.544692 0.838636i \(-0.683353\pi\)
−0.544692 + 0.838636i \(0.683353\pi\)
\(150\) 394.768 + 394.768i 0.214885 + 0.214885i
\(151\) 1293.87i 0.697306i −0.937252 0.348653i \(-0.886639\pi\)
0.937252 0.348653i \(-0.113361\pi\)
\(152\) 2535.11 1.35280
\(153\) 352.986 522.832i 0.186518 0.276265i
\(154\) −116.632 −0.0610291
\(155\) 62.1678i 0.0322157i
\(156\) 244.818 + 244.818i 0.125649 + 0.125649i
\(157\) 3212.58 1.63307 0.816535 0.577296i \(-0.195892\pi\)
0.816535 + 0.577296i \(0.195892\pi\)
\(158\) −872.421 872.421i −0.439279 0.439279i
\(159\) 3.30681 3.30681i 0.00164935 0.00164935i
\(160\) −107.821 + 107.821i −0.0532752 + 0.0532752i
\(161\) 162.340i 0.0794669i
\(162\) 121.231i 0.0587949i
\(163\) 442.905 442.905i 0.212828 0.212828i −0.592640 0.805468i \(-0.701914\pi\)
0.805468 + 0.592640i \(0.201914\pi\)
\(164\) −441.475 + 441.475i −0.210204 + 0.210204i
\(165\) −34.7163 34.7163i −0.0163798 0.0163798i
\(166\) −336.293 −0.157238
\(167\) −2645.12 2645.12i −1.22566 1.22566i −0.965589 0.260072i \(-0.916254\pi\)
−0.260072 0.965589i \(-0.583746\pi\)
\(168\) 239.135i 0.109820i
\(169\) −1795.55 −0.817271
\(170\) 83.7141 16.2346i 0.0377681 0.00732431i
\(171\) 1107.89 0.495451
\(172\) 1343.24i 0.595470i
\(173\) −70.5192 70.5192i −0.0309912 0.0309912i 0.691441 0.722433i \(-0.256976\pi\)
−0.722433 + 0.691441i \(0.756976\pi\)
\(174\) 111.989 0.0487922
\(175\) −340.307 340.307i −0.146999 0.146999i
\(176\) −217.202 + 217.202i −0.0930240 + 0.0930240i
\(177\) 1248.61 1248.61i 0.530235 0.530235i
\(178\) 839.832i 0.353641i
\(179\) 2170.40i 0.906275i 0.891441 + 0.453138i \(0.149695\pi\)
−0.891441 + 0.453138i \(0.850305\pi\)
\(180\) −29.7963 + 29.7963i −0.0123382 + 0.0123382i
\(181\) −1974.50 + 1974.50i −0.810848 + 0.810848i −0.984761 0.173913i \(-0.944359\pi\)
0.173913 + 0.984761i \(0.444359\pi\)
\(182\) 82.0745 + 82.0745i 0.0334273 + 0.0334273i
\(183\) −2179.36 −0.880345
\(184\) 610.769 + 610.769i 0.244709 + 0.244709i
\(185\) 25.6792i 0.0102053i
\(186\) 343.400 0.135373
\(187\) 1385.38 268.665i 0.541760 0.105063i
\(188\) 294.744 0.114343
\(189\) 104.506i 0.0402206i
\(190\) 105.896 + 105.896i 0.0404342 + 0.0404342i
\(191\) 3351.18 1.26955 0.634773 0.772699i \(-0.281094\pi\)
0.634773 + 0.772699i \(0.281094\pi\)
\(192\) −336.661 336.661i −0.126544 0.126544i
\(193\) −1979.89 + 1979.89i −0.738423 + 0.738423i −0.972273 0.233850i \(-0.924868\pi\)
0.233850 + 0.972273i \(0.424868\pi\)
\(194\) −1881.54 + 1881.54i −0.696323 + 0.696323i
\(195\) 48.8601i 0.0179433i
\(196\) 1889.37i 0.688548i
\(197\) 1794.75 1794.75i 0.649088 0.649088i −0.303685 0.952773i \(-0.598217\pi\)
0.952773 + 0.303685i \(0.0982169\pi\)
\(198\) 191.764 191.764i 0.0688288 0.0688288i
\(199\) 1926.29 + 1926.29i 0.686186 + 0.686186i 0.961387 0.275201i \(-0.0887444\pi\)
−0.275201 + 0.961387i \(0.588744\pi\)
\(200\) 2560.67 0.905332
\(201\) 565.867 + 565.867i 0.198573 + 0.198573i
\(202\) 2908.65i 1.01313i
\(203\) −96.5390 −0.0333779
\(204\) −230.589 1189.04i −0.0791396 0.408087i
\(205\) −88.1082 −0.0300183
\(206\) 295.046i 0.0997904i
\(207\) 266.916 + 266.916i 0.0896230 + 0.0896230i
\(208\) 305.692 0.101904
\(209\) 1752.47 + 1752.47i 0.580004 + 0.580004i
\(210\) −9.98909 + 9.98909i −0.00328244 + 0.00328244i
\(211\) 295.026 295.026i 0.0962581 0.0962581i −0.657338 0.753596i \(-0.728318\pi\)
0.753596 + 0.657338i \(0.228318\pi\)
\(212\) 8.97888i 0.00290883i
\(213\) 2637.79i 0.848537i
\(214\) −1603.59 + 1603.59i −0.512239 + 0.512239i
\(215\) −134.039 + 134.039i −0.0425182 + 0.0425182i
\(216\) −393.182 393.182i −0.123855 0.123855i
\(217\) −296.025 −0.0926060
\(218\) −844.442 844.442i −0.262352 0.262352i
\(219\) 1003.42i 0.309612i
\(220\) −94.2643 −0.0288877
\(221\) −1163.96 785.839i −0.354283 0.239191i
\(222\) −141.846 −0.0428831
\(223\) 1074.81i 0.322757i −0.986893 0.161379i \(-0.948406\pi\)
0.986893 0.161379i \(-0.0515940\pi\)
\(224\) 513.414 + 513.414i 0.153143 + 0.153143i
\(225\) 1119.05 0.331571
\(226\) −1697.71 1697.71i −0.499689 0.499689i
\(227\) 2386.83 2386.83i 0.697884 0.697884i −0.266070 0.963954i \(-0.585725\pi\)
0.963954 + 0.266070i \(0.0857251\pi\)
\(228\) 1504.11 1504.11i 0.436894 0.436894i
\(229\) 2565.82i 0.740410i −0.928950 0.370205i \(-0.879287\pi\)
0.928950 0.370205i \(-0.120713\pi\)
\(230\) 51.0258i 0.0146284i
\(231\) −165.309 + 165.309i −0.0470846 + 0.0470846i
\(232\) 363.208 363.208i 0.102783 0.102783i
\(233\) −150.071 150.071i −0.0421952 0.0421952i 0.685694 0.727890i \(-0.259499\pi\)
−0.727890 + 0.685694i \(0.759499\pi\)
\(234\) −269.891 −0.0753988
\(235\) 29.4120 + 29.4120i 0.00816438 + 0.00816438i
\(236\) 3390.33i 0.935134i
\(237\) −2473.06 −0.677817
\(238\) −77.3042 398.622i −0.0210542 0.108567i
\(239\) −4285.84 −1.15995 −0.579975 0.814634i \(-0.696938\pi\)
−0.579975 + 0.814634i \(0.696938\pi\)
\(240\) 37.2051i 0.0100066i
\(241\) 781.219 + 781.219i 0.208808 + 0.208808i 0.803761 0.594953i \(-0.202829\pi\)
−0.594953 + 0.803761i \(0.702829\pi\)
\(242\) −1385.40 −0.368005
\(243\) −171.827 171.827i −0.0453609 0.0453609i
\(244\) −2958.78 + 2958.78i −0.776298 + 0.776298i
\(245\) −188.538 + 188.538i −0.0491642 + 0.0491642i
\(246\) 486.688i 0.126139i
\(247\) 2466.44i 0.635368i
\(248\) 1113.73 1113.73i 0.285170 0.285170i
\(249\) −476.647 + 476.647i −0.121310 + 0.121310i
\(250\) 214.495 + 214.495i 0.0542635 + 0.0542635i
\(251\) −480.822 −0.120913 −0.0604566 0.998171i \(-0.519256\pi\)
−0.0604566 + 0.998171i \(0.519256\pi\)
\(252\) 141.881 + 141.881i 0.0354670 + 0.0354670i
\(253\) 844.424i 0.209836i
\(254\) 3465.33 0.856040
\(255\) 95.6425 141.663i 0.0234877 0.0347893i
\(256\) −3160.19 −0.771532
\(257\) 4146.30i 1.00638i −0.864176 0.503189i \(-0.832160\pi\)
0.864176 0.503189i \(-0.167840\pi\)
\(258\) −740.401 740.401i −0.178664 0.178664i
\(259\) 122.277 0.0293356
\(260\) 66.3342 + 66.3342i 0.0158226 + 0.0158226i
\(261\) 158.728 158.728i 0.0376437 0.0376437i
\(262\) 1879.49 1879.49i 0.443188 0.443188i
\(263\) 8011.72i 1.87842i 0.343346 + 0.939209i \(0.388440\pi\)
−0.343346 + 0.939209i \(0.611560\pi\)
\(264\) 1243.88i 0.289983i
\(265\) 0.895988 0.895988i 0.000207698 0.000207698i
\(266\) 504.246 504.246i 0.116231 0.116231i
\(267\) 1190.34 + 1190.34i 0.272838 + 0.272838i
\(268\) 1536.48 0.350208
\(269\) −3943.92 3943.92i −0.893922 0.893922i 0.100968 0.994890i \(-0.467806\pi\)
−0.994890 + 0.100968i \(0.967806\pi\)
\(270\) 32.8478i 0.00740389i
\(271\) −3089.50 −0.692524 −0.346262 0.938138i \(-0.612549\pi\)
−0.346262 + 0.938138i \(0.612549\pi\)
\(272\) −886.311 598.386i −0.197575 0.133391i
\(273\) 232.657 0.0515790
\(274\) 2228.95i 0.491445i
\(275\) 1770.13 + 1770.13i 0.388157 + 0.388157i
\(276\) 724.750 0.158061
\(277\) −414.012 414.012i −0.0898036 0.0898036i 0.660778 0.750581i \(-0.270227\pi\)
−0.750581 + 0.660778i \(0.770227\pi\)
\(278\) 2603.64 2603.64i 0.561712 0.561712i
\(279\) 486.720 486.720i 0.104441 0.104441i
\(280\) 64.7943i 0.0138293i
\(281\) 6399.58i 1.35860i 0.733860 + 0.679301i \(0.237717\pi\)
−0.733860 + 0.679301i \(0.762283\pi\)
\(282\) −162.465 + 162.465i −0.0343072 + 0.0343072i
\(283\) 4267.26 4267.26i 0.896333 0.896333i −0.0987768 0.995110i \(-0.531493\pi\)
0.995110 + 0.0987768i \(0.0314930\pi\)
\(284\) −3581.16 3581.16i −0.748249 0.748249i
\(285\) 300.185 0.0623909
\(286\) −426.917 426.917i −0.0882662 0.0882662i
\(287\) 419.546i 0.0862892i
\(288\) −1688.29 −0.345429
\(289\) 1836.47 + 4556.86i 0.373799 + 0.927510i
\(290\) 30.3436 0.00614427
\(291\) 5333.62i 1.07444i
\(292\) 1362.28 + 1362.28i 0.273019 + 0.273019i
\(293\) −7539.51 −1.50329 −0.751643 0.659570i \(-0.770738\pi\)
−0.751643 + 0.659570i \(0.770738\pi\)
\(294\) −1041.43 1041.43i −0.206591 0.206591i
\(295\) 338.315 338.315i 0.0667711 0.0667711i
\(296\) −460.041 + 460.041i −0.0903357 + 0.0903357i
\(297\) 543.597i 0.106204i
\(298\) 2965.43i 0.576453i
\(299\) 594.225 594.225i 0.114933 0.114933i
\(300\) 1519.27 1519.27i 0.292383 0.292383i
\(301\) 638.257 + 638.257i 0.122221 + 0.122221i
\(302\) 1936.50 0.368983
\(303\) 4122.60 + 4122.60i 0.781640 + 0.781640i
\(304\) 1878.10i 0.354330i
\(305\) −590.504 −0.110860
\(306\) 782.510 + 528.306i 0.146187 + 0.0986968i
\(307\) 5367.77 0.997899 0.498950 0.866631i \(-0.333719\pi\)
0.498950 + 0.866631i \(0.333719\pi\)
\(308\) 448.859i 0.0830394i
\(309\) −418.185 418.185i −0.0769893 0.0769893i
\(310\) 93.0450 0.0170471
\(311\) 6862.87 + 6862.87i 1.25131 + 1.25131i 0.955133 + 0.296178i \(0.0957123\pi\)
0.296178 + 0.955133i \(0.404288\pi\)
\(312\) −875.325 + 875.325i −0.158832 + 0.158832i
\(313\) 2021.32 2021.32i 0.365022 0.365022i −0.500636 0.865658i \(-0.666901\pi\)
0.865658 + 0.500636i \(0.166901\pi\)
\(314\) 4808.19i 0.864146i
\(315\) 28.3162i 0.00506487i
\(316\) −3357.52 + 3357.52i −0.597707 + 0.597707i
\(317\) 4064.38 4064.38i 0.720121 0.720121i −0.248509 0.968630i \(-0.579941\pi\)
0.968630 + 0.248509i \(0.0799405\pi\)
\(318\) 4.94921 + 4.94921i 0.000872762 + 0.000872762i
\(319\) 502.155 0.0881357
\(320\) −91.2191 91.2191i −0.0159353 0.0159353i
\(321\) 4545.71i 0.790395i
\(322\) 242.970 0.0420503
\(323\) −4828.01 + 7151.10i −0.831695 + 1.23188i
\(324\) −466.557 −0.0799995
\(325\) 2491.30i 0.425208i
\(326\) 662.885 + 662.885i 0.112619 + 0.112619i
\(327\) −2393.75 −0.404815
\(328\) −1578.45 1578.45i −0.265718 0.265718i
\(329\) 140.052 140.052i 0.0234690 0.0234690i
\(330\) 51.9590 51.9590i 0.00866743 0.00866743i
\(331\) 5525.96i 0.917626i −0.888533 0.458813i \(-0.848275\pi\)
0.888533 0.458813i \(-0.151725\pi\)
\(332\) 1294.23i 0.213946i
\(333\) −201.046 + 201.046i −0.0330848 + 0.0330848i
\(334\) 3958.88 3958.88i 0.648564 0.648564i
\(335\) 153.323 + 153.323i 0.0250058 + 0.0250058i
\(336\) 177.160 0.0287644
\(337\) 3165.98 + 3165.98i 0.511757 + 0.511757i 0.915065 0.403307i \(-0.132139\pi\)
−0.403307 + 0.915065i \(0.632139\pi\)
\(338\) 2687.35i 0.432463i
\(339\) −4812.51 −0.771031
\(340\) −62.4788 322.174i −0.00996585 0.0513893i
\(341\) 1539.80 0.244530
\(342\) 1658.15i 0.262170i
\(343\) 1836.53 + 1836.53i 0.289105 + 0.289105i
\(344\) −4802.62 −0.752732
\(345\) 72.3216 + 72.3216i 0.0112860 + 0.0112860i
\(346\) 105.544 105.544i 0.0163991 0.0163991i
\(347\) −6954.35 + 6954.35i −1.07588 + 1.07588i −0.0790022 + 0.996874i \(0.525173\pi\)
−0.996874 + 0.0790022i \(0.974827\pi\)
\(348\) 430.989i 0.0663892i
\(349\) 9155.23i 1.40421i −0.712075 0.702104i \(-0.752244\pi\)
0.712075 0.702104i \(-0.247756\pi\)
\(350\) 509.329 509.329i 0.0777851 0.0777851i
\(351\) −382.531 + 382.531i −0.0581710 + 0.0581710i
\(352\) −2670.57 2670.57i −0.404380 0.404380i
\(353\) 7025.07 1.05923 0.529613 0.848239i \(-0.322337\pi\)
0.529613 + 0.848239i \(0.322337\pi\)
\(354\) 1868.77 + 1868.77i 0.280576 + 0.280576i
\(355\) 714.716i 0.106854i
\(356\) 3232.10 0.481182
\(357\) −674.557 455.422i −0.100004 0.0675168i
\(358\) −3248.38 −0.479560
\(359\) 8370.77i 1.23062i −0.788285 0.615310i \(-0.789031\pi\)
0.788285 0.615310i \(-0.210969\pi\)
\(360\) −106.534 106.534i −0.0155967 0.0155967i
\(361\) −8294.23 −1.20925
\(362\) −2955.19 2955.19i −0.429064 0.429064i
\(363\) −1963.61 + 1963.61i −0.283919 + 0.283919i
\(364\) 315.864 315.864i 0.0454829 0.0454829i
\(365\) 271.880i 0.0389886i
\(366\) 3261.80i 0.465838i
\(367\) 4661.47 4661.47i 0.663015 0.663015i −0.293074 0.956090i \(-0.594678\pi\)
0.956090 + 0.293074i \(0.0946783\pi\)
\(368\) 452.479 452.479i 0.0640954 0.0640954i
\(369\) −689.809 689.809i −0.0973172 0.0973172i
\(370\) −38.4334 −0.00540016
\(371\) −4.26643 4.26643i −0.000597041 0.000597041i
\(372\) 1321.58i 0.184195i
\(373\) −10437.4 −1.44886 −0.724432 0.689347i \(-0.757898\pi\)
−0.724432 + 0.689347i \(0.757898\pi\)
\(374\) 402.104 + 2073.47i 0.0555944 + 0.286675i
\(375\) 608.032 0.0837297
\(376\) 1053.83i 0.144540i
\(377\) −353.369 353.369i −0.0482743 0.0482743i
\(378\) −156.412 −0.0212829
\(379\) −1234.49 1234.49i −0.167313 0.167313i 0.618484 0.785797i \(-0.287747\pi\)
−0.785797 + 0.618484i \(0.787747\pi\)
\(380\) 407.542 407.542i 0.0550169 0.0550169i
\(381\) 4911.61 4911.61i 0.660444 0.660444i
\(382\) 5015.63i 0.671786i
\(383\) 1031.82i 0.137660i 0.997628 + 0.0688298i \(0.0219266\pi\)
−0.997628 + 0.0688298i \(0.978073\pi\)
\(384\) −2679.61 + 2679.61i −0.356102 + 0.356102i
\(385\) −44.7909 + 44.7909i −0.00592924 + 0.00592924i
\(386\) −2963.25 2963.25i −0.390740 0.390740i
\(387\) −2098.82 −0.275682
\(388\) 7241.12 + 7241.12i 0.947453 + 0.947453i
\(389\) 7514.99i 0.979499i −0.871863 0.489750i \(-0.837088\pi\)
0.871863 0.489750i \(-0.162912\pi\)
\(390\) −73.1276 −0.00949477
\(391\) −2886.05 + 559.688i −0.373284 + 0.0723903i
\(392\) −6755.28 −0.870390
\(393\) 5327.81i 0.683849i
\(394\) 2686.15 + 2686.15i 0.343468 + 0.343468i
\(395\) −670.083 −0.0853557
\(396\) −738.006 738.006i −0.0936521 0.0936521i
\(397\) −2133.89 + 2133.89i −0.269766 + 0.269766i −0.829006 0.559240i \(-0.811093\pi\)
0.559240 + 0.829006i \(0.311093\pi\)
\(398\) −2883.03 + 2883.03i −0.363098 + 0.363098i
\(399\) 1429.39i 0.179346i
\(400\) 1897.03i 0.237129i
\(401\) 10503.3 10503.3i 1.30800 1.30800i 0.385146 0.922856i \(-0.374151\pi\)
0.922856 0.385146i \(-0.125849\pi\)
\(402\) −846.919 + 846.919i −0.105076 + 0.105076i
\(403\) −1083.56 1083.56i −0.133936 0.133936i
\(404\) 11194.0 1.37852
\(405\) −46.5570 46.5570i −0.00571218 0.00571218i
\(406\) 144.487i 0.0176621i
\(407\) −636.033 −0.0774619
\(408\) 4251.31 824.450i 0.515861 0.100040i
\(409\) 5721.53 0.691714 0.345857 0.938287i \(-0.387588\pi\)
0.345857 + 0.938287i \(0.387588\pi\)
\(410\) 131.869i 0.0158843i
\(411\) 3159.22 + 3159.22i 0.379155 + 0.379155i
\(412\) −1135.49 −0.135780
\(413\) −1610.96 1610.96i −0.191937 0.191937i
\(414\) −399.487 + 399.487i −0.0474244 + 0.0474244i
\(415\) −129.149 + 129.149i −0.0152763 + 0.0152763i
\(416\) 3758.58i 0.442980i
\(417\) 7380.57i 0.866734i
\(418\) −2622.88 + 2622.88i −0.306912 + 0.306912i
\(419\) 4335.25 4335.25i 0.505467 0.505467i −0.407665 0.913132i \(-0.633657\pi\)
0.913132 + 0.407665i \(0.133657\pi\)
\(420\) 38.4431 + 38.4431i 0.00446626 + 0.00446626i
\(421\) −6388.31 −0.739542 −0.369771 0.929123i \(-0.620564\pi\)
−0.369771 + 0.929123i \(0.620564\pi\)
\(422\) 441.559 + 441.559i 0.0509354 + 0.0509354i
\(423\) 460.541i 0.0529368i
\(424\) 32.1031 0.00367704
\(425\) −4876.67 + 7223.18i −0.556596 + 0.824413i
\(426\) 3947.91 0.449007
\(427\) 2811.81i 0.318672i
\(428\) 6171.42 + 6171.42i 0.696979 + 0.696979i
\(429\) −1210.19 −0.136197
\(430\) −200.613 200.613i −0.0224987 0.0224987i
\(431\) −604.177 + 604.177i −0.0675224 + 0.0675224i −0.740062 0.672539i \(-0.765204\pi\)
0.672539 + 0.740062i \(0.265204\pi\)
\(432\) −291.283 + 291.283i −0.0324406 + 0.0324406i
\(433\) 10107.4i 1.12178i 0.827889 + 0.560892i \(0.189542\pi\)
−0.827889 + 0.560892i \(0.810458\pi\)
\(434\) 443.054i 0.0490029i
\(435\) 43.0077 43.0077i 0.00474037 0.00474037i
\(436\) −3249.84 + 3249.84i −0.356970 + 0.356970i
\(437\) −3650.77 3650.77i −0.399634 0.399634i
\(438\) −1501.80 −0.163832
\(439\) 11609.5 + 11609.5i 1.26217 + 1.26217i 0.950041 + 0.312125i \(0.101041\pi\)
0.312125 + 0.950041i \(0.398959\pi\)
\(440\) 337.033i 0.0365168i
\(441\) −2952.17 −0.318774
\(442\) 1176.15 1742.07i 0.126569 0.187470i
\(443\) 5106.09 0.547625 0.273812 0.961783i \(-0.411715\pi\)
0.273812 + 0.961783i \(0.411715\pi\)
\(444\) 545.894i 0.0583490i
\(445\) 322.526 + 322.526i 0.0343577 + 0.0343577i
\(446\) 1608.65 0.170788
\(447\) −4203.07 4203.07i −0.444739 0.444739i
\(448\) −434.359 + 434.359i −0.0458070 + 0.0458070i
\(449\) −7972.68 + 7972.68i −0.837982 + 0.837982i −0.988593 0.150611i \(-0.951876\pi\)
0.150611 + 0.988593i \(0.451876\pi\)
\(450\) 1674.86i 0.175452i
\(451\) 2182.30i 0.227850i
\(452\) −6533.64 + 6533.64i −0.679904 + 0.679904i
\(453\) 2744.70 2744.70i 0.284674 0.284674i
\(454\) 3572.31 + 3572.31i 0.369289 + 0.369289i
\(455\) 63.0391 0.00649521
\(456\) 5377.79 + 5377.79i 0.552276 + 0.552276i
\(457\) 13048.0i 1.33557i 0.744352 + 0.667787i \(0.232758\pi\)
−0.744352 + 0.667787i \(0.767242\pi\)
\(458\) 3840.19 0.391791
\(459\) 1857.89 360.298i 0.188930 0.0366389i
\(460\) 196.373 0.0199042
\(461\) 14147.2i 1.42929i −0.699487 0.714645i \(-0.746588\pi\)
0.699487 0.714645i \(-0.253412\pi\)
\(462\) −247.414 247.414i −0.0249150 0.0249150i
\(463\) −7778.27 −0.780749 −0.390375 0.920656i \(-0.627655\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(464\) −269.077 269.077i −0.0269215 0.0269215i
\(465\) 131.878 131.878i 0.0131520 0.0131520i
\(466\) 224.608 224.608i 0.0223278 0.0223278i
\(467\) 3546.16i 0.351384i 0.984445 + 0.175692i \(0.0562163\pi\)
−0.984445 + 0.175692i \(0.943784\pi\)
\(468\) 1038.68i 0.102592i
\(469\) 730.081 730.081i 0.0718806 0.0718806i
\(470\) −44.0203 + 44.0203i −0.00432022 + 0.00432022i
\(471\) 6814.91 + 6814.91i 0.666698 + 0.666698i
\(472\) 12121.8 1.18210
\(473\) −3319.95 3319.95i −0.322730 0.322730i
\(474\) 3701.37i 0.358670i
\(475\) −15306.0 −1.47850
\(476\) −1534.10 + 297.506i −0.147721 + 0.0286474i
\(477\) 14.0296 0.00134669
\(478\) 6414.51i 0.613793i
\(479\) −1653.30 1653.30i −0.157706 0.157706i 0.623843 0.781550i \(-0.285570\pi\)
−0.781550 + 0.623843i \(0.785570\pi\)
\(480\) −457.447 −0.0434990
\(481\) 447.579 + 447.579i 0.0424280 + 0.0424280i
\(482\) −1169.23 + 1169.23i −0.110492 + 0.110492i
\(483\) 344.375 344.375i 0.0324422 0.0324422i
\(484\) 5331.73i 0.500726i
\(485\) 1445.16i 0.135302i
\(486\) 257.169 257.169i 0.0240029 0.0240029i
\(487\) −2352.91 + 2352.91i −0.218934 + 0.218934i −0.808049 0.589115i \(-0.799476\pi\)
0.589115 + 0.808049i \(0.299476\pi\)
\(488\) −10578.8 10578.8i −0.981315 0.981315i
\(489\) 1879.09 0.173773
\(490\) −282.179 282.179i −0.0260154 0.0260154i
\(491\) 5511.23i 0.506554i 0.967394 + 0.253277i \(0.0815085\pi\)
−0.967394 + 0.253277i \(0.918492\pi\)
\(492\) −1873.02 −0.171631
\(493\) 332.831 + 1716.26i 0.0304056 + 0.156788i
\(494\) 3691.46 0.336208
\(495\) 147.289i 0.0133740i
\(496\) −825.092 825.092i −0.0746930 0.0746930i
\(497\) −3403.27 −0.307158
\(498\) −713.386 713.386i −0.0641919 0.0641919i
\(499\) 10717.0 10717.0i 0.961438 0.961438i −0.0378459 0.999284i \(-0.512050\pi\)
0.999284 + 0.0378459i \(0.0120496\pi\)
\(500\) 825.486 825.486i 0.0738338 0.0738338i
\(501\) 11222.3i 1.00075i
\(502\) 719.634i 0.0639817i
\(503\) 7580.21 7580.21i 0.671938 0.671938i −0.286225 0.958163i \(-0.592400\pi\)
0.958163 + 0.286225i \(0.0924003\pi\)
\(504\) −507.282 + 507.282i −0.0448336 + 0.0448336i
\(505\) 1117.03 + 1117.03i 0.0984299 + 0.0984299i
\(506\) −1263.83 −0.111036
\(507\) −3808.93 3808.93i −0.333650 0.333650i
\(508\) 13336.4i 1.16477i
\(509\) 12724.1 1.10803 0.554013 0.832508i \(-0.313096\pi\)
0.554013 + 0.832508i \(0.313096\pi\)
\(510\) 212.023 + 143.146i 0.0184089 + 0.0124286i
\(511\) 1294.61 0.112075
\(512\) 5375.64i 0.464008i
\(513\) 2350.18 + 2350.18i 0.202267 + 0.202267i
\(514\) 6205.67 0.532530
\(515\) −113.308 113.308i −0.00969506 0.00969506i
\(516\) −2849.44 + 2849.44i −0.243100 + 0.243100i
\(517\) −728.490 + 728.490i −0.0619709 + 0.0619709i
\(518\) 183.009i 0.0155231i
\(519\) 299.188i 0.0253042i
\(520\) −237.172 + 237.172i −0.0200013 + 0.0200013i
\(521\) 9567.51 9567.51i 0.804530 0.804530i −0.179270 0.983800i \(-0.557374\pi\)
0.983800 + 0.179270i \(0.0573735\pi\)
\(522\) 237.564 + 237.564i 0.0199193 + 0.0199193i
\(523\) −7104.82 −0.594019 −0.297010 0.954875i \(-0.595989\pi\)
−0.297010 + 0.954875i \(0.595989\pi\)
\(524\) −7233.24 7233.24i −0.603026 0.603026i
\(525\) 1443.80i 0.120024i
\(526\) −11990.9 −0.993973
\(527\) 1020.59 + 5262.69i 0.0843594 + 0.435003i
\(528\) −921.511 −0.0759538
\(529\) 10407.9i 0.855419i
\(530\) 1.34100 + 1.34100i 0.000109905 + 0.000109905i
\(531\) 5297.42 0.432935
\(532\) −1940.59 1940.59i −0.158149 0.158149i
\(533\) −1535.69 + 1535.69i −0.124800 + 0.124800i
\(534\) −1781.55 + 1781.55i −0.144373 + 0.144373i
\(535\) 1231.67i 0.0995324i
\(536\) 5493.55i 0.442696i
\(537\) −4604.11 + 4604.11i −0.369985 + 0.369985i
\(538\) 5902.76 5902.76i 0.473023 0.473023i
\(539\) −4669.78 4669.78i −0.373175 0.373175i
\(540\) −126.415 −0.0100741
\(541\) −11677.6 11677.6i −0.928023 0.928023i 0.0695555 0.997578i \(-0.477842\pi\)
−0.997578 + 0.0695555i \(0.977842\pi\)
\(542\) 4623.98i 0.366452i
\(543\) −8377.10 −0.662055
\(544\) 7357.34 10897.5i 0.579859 0.858869i
\(545\) −648.592 −0.0509773
\(546\) 348.213i 0.0272933i
\(547\) 548.342 + 548.342i 0.0428618 + 0.0428618i 0.728213 0.685351i \(-0.240351\pi\)
−0.685351 + 0.728213i \(0.740351\pi\)
\(548\) 8578.14 0.668686
\(549\) −4623.13 4623.13i −0.359399 0.359399i
\(550\) −2649.32 + 2649.32i −0.205395 + 0.205395i
\(551\) −2171.01 + 2171.01i −0.167855 + 0.167855i
\(552\) 2591.27i 0.199804i
\(553\) 3190.74i 0.245360i
\(554\) 619.642 619.642i 0.0475200 0.0475200i
\(555\) −54.4738 + 54.4738i −0.00416628 + 0.00416628i
\(556\) −10020.1 10020.1i −0.764295 0.764295i
\(557\) −14283.2 −1.08653 −0.543267 0.839560i \(-0.682813\pi\)
−0.543267 + 0.839560i \(0.682813\pi\)
\(558\) 728.461 + 728.461i 0.0552656 + 0.0552656i
\(559\) 4672.52i 0.353536i
\(560\) 48.0019 0.00362223
\(561\) 3508.76 + 2368.91i 0.264064 + 0.178281i
\(562\) −9578.10 −0.718910
\(563\) 7158.60i 0.535877i 0.963436 + 0.267939i \(0.0863424\pi\)
−0.963436 + 0.267939i \(0.913658\pi\)
\(564\) 625.247 + 625.247i 0.0466802 + 0.0466802i
\(565\) −1303.96 −0.0970939
\(566\) 6386.70 + 6386.70i 0.474299 + 0.474299i
\(567\) −221.691 + 221.691i −0.0164200 + 0.0164200i
\(568\) 12804.1 12804.1i 0.945858 0.945858i
\(569\) 4328.74i 0.318929i 0.987204 + 0.159464i \(0.0509767\pi\)
−0.987204 + 0.159464i \(0.949023\pi\)
\(570\) 449.279i 0.0330144i
\(571\) 9148.34 9148.34i 0.670483 0.670483i −0.287344 0.957827i \(-0.592772\pi\)
0.957827 + 0.287344i \(0.0927723\pi\)
\(572\) −1642.99 + 1642.99i −0.120100 + 0.120100i
\(573\) 7108.94 + 7108.94i 0.518290 + 0.518290i
\(574\) −627.923 −0.0456603
\(575\) −3687.57 3687.57i −0.267448 0.267448i
\(576\) 1428.33i 0.103322i
\(577\) 14654.1 1.05729 0.528645 0.848843i \(-0.322700\pi\)
0.528645 + 0.848843i \(0.322700\pi\)
\(578\) −6820.13 + 2748.61i −0.490796 + 0.197797i
\(579\) −8399.97 −0.602920
\(580\) 116.778i 0.00836022i
\(581\) 614.969 + 614.969i 0.0439126 + 0.0439126i
\(582\) −7982.69 −0.568545
\(583\) 22.1922 + 22.1922i 0.00157651 + 0.00157651i
\(584\) −4870.71 + 4870.71i −0.345122 + 0.345122i
\(585\) −103.648 + 103.648i −0.00732532 + 0.00732532i
\(586\) 11284.2i 0.795471i
\(587\) 12094.6i 0.850419i 0.905095 + 0.425209i \(0.139799\pi\)
−0.905095 + 0.425209i \(0.860201\pi\)
\(588\) −4007.97 + 4007.97i −0.281098 + 0.281098i
\(589\) −6657.16 + 6657.16i −0.465710 + 0.465710i
\(590\) 506.348 + 506.348i 0.0353322 + 0.0353322i
\(591\) 7614.46 0.529978
\(592\) 340.815 + 340.815i 0.0236611 + 0.0236611i
\(593\) 8913.39i 0.617249i 0.951184 + 0.308625i \(0.0998687\pi\)
−0.951184 + 0.308625i \(0.900131\pi\)
\(594\) 813.587 0.0561985
\(595\) −182.773 123.398i −0.0125932 0.00850221i
\(596\) −11412.5 −0.784352
\(597\) 8172.55i 0.560268i
\(598\) 889.361 + 889.361i 0.0608172 + 0.0608172i
\(599\) 17664.7 1.20494 0.602470 0.798142i \(-0.294183\pi\)
0.602470 + 0.798142i \(0.294183\pi\)
\(600\) 5431.99 + 5431.99i 0.369600 + 0.369600i
\(601\) −2346.22 + 2346.22i −0.159242 + 0.159242i −0.782231 0.622989i \(-0.785918\pi\)
0.622989 + 0.782231i \(0.285918\pi\)
\(602\) −955.263 + 955.263i −0.0646738 + 0.0646738i
\(603\) 2400.77i 0.162134i
\(604\) 7452.62i 0.502057i
\(605\) −532.045 + 532.045i −0.0357532 + 0.0357532i
\(606\) −6170.19 + 6170.19i −0.413608 + 0.413608i
\(607\) 10813.0 + 10813.0i 0.723042 + 0.723042i 0.969224 0.246182i \(-0.0791761\pi\)
−0.246182 + 0.969224i \(0.579176\pi\)
\(608\) 23091.8 1.54029
\(609\) −204.790 204.790i −0.0136265 0.0136265i
\(610\) 883.792i 0.0586618i
\(611\) 1025.28 0.0678863
\(612\) 2033.19 3011.50i 0.134292 0.198909i
\(613\) 13570.8 0.894160 0.447080 0.894494i \(-0.352464\pi\)
0.447080 + 0.894494i \(0.352464\pi\)
\(614\) 8033.81i 0.528043i
\(615\) −186.906 186.906i −0.0122549 0.0122549i
\(616\) −1604.85 −0.104970
\(617\) 12451.6 + 12451.6i 0.812450 + 0.812450i 0.985001 0.172551i \(-0.0552009\pi\)
−0.172551 + 0.985001i \(0.555201\pi\)
\(618\) 625.887 625.887i 0.0407393 0.0407393i
\(619\) 14955.7 14955.7i 0.971116 0.971116i −0.0284784 0.999594i \(-0.509066\pi\)
0.999594 + 0.0284784i \(0.00906618\pi\)
\(620\) 358.084i 0.0231952i
\(621\) 1132.43i 0.0731769i
\(622\) −10271.5 + 10271.5i −0.662137 + 0.662137i
\(623\) 1535.77 1535.77i 0.0987633 0.0987633i
\(624\) 648.471 + 648.471i 0.0416020 + 0.0416020i
\(625\) −15377.7 −0.984170
\(626\) 3025.26 + 3025.26i 0.193153 + 0.193153i
\(627\) 7435.10i 0.473571i
\(628\) 18504.4 1.17580
\(629\) −421.566 2173.82i −0.0267232 0.137800i
\(630\) −42.3801 −0.00268010
\(631\) 5652.30i 0.356600i −0.983976 0.178300i \(-0.942940\pi\)
0.983976 0.178300i \(-0.0570598\pi\)
\(632\) −12004.5 12004.5i −0.755558 0.755558i
\(633\) 1251.69 0.0785944
\(634\) 6083.05 + 6083.05i 0.381055 + 0.381055i
\(635\) 1330.81 1330.81i 0.0831680 0.0831680i
\(636\) 19.0471 19.0471i 0.00118753 0.00118753i
\(637\) 6572.29i 0.408797i
\(638\) 751.563i 0.0466374i
\(639\) 5595.59 5595.59i 0.346414 0.346414i
\(640\) −726.046 + 726.046i −0.0448429 + 0.0448429i
\(641\) 15125.0 + 15125.0i 0.931982 + 0.931982i 0.997830 0.0658478i \(-0.0209752\pi\)
−0.0658478 + 0.997830i \(0.520975\pi\)
\(642\) −6803.45 −0.418241
\(643\) −4112.50 4112.50i −0.252226 0.252226i 0.569657 0.821883i \(-0.307076\pi\)
−0.821883 + 0.569657i \(0.807076\pi\)
\(644\) 935.071i 0.0572158i
\(645\) −568.681 −0.0347160
\(646\) −10702.9 7225.96i −0.651855 0.440095i
\(647\) −24007.9 −1.45881 −0.729404 0.684084i \(-0.760202\pi\)
−0.729404 + 0.684084i \(0.760202\pi\)
\(648\) 1668.13i 0.101127i
\(649\) 8379.54 + 8379.54i 0.506819 + 0.506819i
\(650\) 3728.67 0.225001
\(651\) −627.964 627.964i −0.0378062 0.0378062i
\(652\) 2551.12 2551.12i 0.153235 0.153235i
\(653\) 756.860 756.860i 0.0453572 0.0453572i −0.684064 0.729422i \(-0.739789\pi\)
0.729422 + 0.684064i \(0.239789\pi\)
\(654\) 3582.66i 0.214210i
\(655\) 1443.59i 0.0861153i
\(656\) −1169.37 + 1169.37i −0.0695981 + 0.0695981i
\(657\) −2128.58 + 2128.58i −0.126398 + 0.126398i
\(658\) 209.612 + 209.612i 0.0124187 + 0.0124187i
\(659\) −12742.8 −0.753245 −0.376623 0.926367i \(-0.622915\pi\)
−0.376623 + 0.926367i \(0.622915\pi\)
\(660\) −199.965 199.965i −0.0117934 0.0117934i
\(661\) 1443.34i 0.0849312i −0.999098 0.0424656i \(-0.986479\pi\)
0.999098 0.0424656i \(-0.0135213\pi\)
\(662\) 8270.57 0.485566
\(663\) −802.117 4136.15i −0.0469859 0.242285i
\(664\) −4627.38 −0.270448
\(665\) 387.297i 0.0225846i
\(666\) −300.900 300.900i −0.0175070 0.0175070i
\(667\) −1046.10 −0.0607273
\(668\) −15235.8 15235.8i −0.882471 0.882471i
\(669\) 2280.02 2280.02i 0.131765 0.131765i
\(670\) −229.475 + 229.475i −0.0132319 + 0.0132319i
\(671\) 14625.9i 0.841467i
\(672\) 2178.23i 0.125040i
\(673\) −3389.13 + 3389.13i −0.194118 + 0.194118i −0.797473 0.603355i \(-0.793830\pi\)
0.603355 + 0.797473i \(0.293830\pi\)
\(674\) −4738.45 + 4738.45i −0.270799 + 0.270799i
\(675\) 2373.87 + 2373.87i 0.135363 + 0.135363i
\(676\) −10342.3 −0.588432
\(677\) −15674.7 15674.7i −0.889846 0.889846i 0.104662 0.994508i \(-0.466624\pi\)
−0.994508 + 0.104662i \(0.966624\pi\)
\(678\) 7202.76i 0.407995i
\(679\) 6881.42 0.388932
\(680\) 1151.90 223.387i 0.0649610 0.0125978i
\(681\) 10126.5 0.569820
\(682\) 2304.58i 0.129394i
\(683\) −21436.1 21436.1i −1.20092 1.20092i −0.973887 0.227034i \(-0.927097\pi\)
−0.227034 0.973887i \(-0.572903\pi\)
\(684\) 6381.38 0.356723
\(685\) 855.998 + 855.998i 0.0477460 + 0.0477460i
\(686\) −2748.68 + 2748.68i −0.152981 + 0.152981i
\(687\) 5442.92 5442.92i 0.302271 0.302271i
\(688\) 3557.94i 0.197159i
\(689\) 31.2335i 0.00172700i
\(690\) −108.242 + 108.242i −0.00597203 + 0.00597203i
\(691\) −18537.6 + 18537.6i −1.02056 + 1.02056i −0.0207713 + 0.999784i \(0.506612\pi\)
−0.999784 + 0.0207713i \(0.993388\pi\)
\(692\) −406.188 406.188i −0.0223135 0.0223135i
\(693\) −701.347 −0.0384444
\(694\) −10408.4 10408.4i −0.569305 0.569305i
\(695\) 1999.78i 0.109146i
\(696\) 1540.96 0.0839223
\(697\) 7458.62 1446.44i 0.405330 0.0786051i
\(698\) 13702.4 0.743043
\(699\) 636.698i 0.0344522i
\(700\) −1960.16 1960.16i −0.105838 0.105838i
\(701\) 10843.2 0.584228 0.292114 0.956384i \(-0.405641\pi\)
0.292114 + 0.956384i \(0.405641\pi\)
\(702\) −572.525 572.525i −0.0307814 0.0307814i
\(703\) 2749.82 2749.82i 0.147527 0.147527i
\(704\) 2259.35 2259.35i 0.120955 0.120955i
\(705\) 124.785i 0.00666619i
\(706\) 10514.3i 0.560494i
\(707\) 5318.96 5318.96i 0.282942 0.282942i
\(708\) 7191.98 7191.98i 0.381767 0.381767i
\(709\) 3788.77 + 3788.77i 0.200691 + 0.200691i 0.800296 0.599605i \(-0.204676\pi\)
−0.599605 + 0.800296i \(0.704676\pi\)
\(710\) 1069.70 0.0565423
\(711\) −5246.16 5246.16i −0.276718 0.276718i
\(712\) 11556.1i 0.608261i
\(713\) −3207.74 −0.168486
\(714\) 681.619 1009.59i 0.0357268 0.0529175i
\(715\) −327.903 −0.0171509
\(716\) 12501.4i 0.652514i
\(717\) −9091.65 9091.65i −0.473548 0.473548i
\(718\) 12528.3 0.651188
\(719\) −5780.09 5780.09i −0.299806 0.299806i 0.541132 0.840938i \(-0.317996\pi\)
−0.840938 + 0.541132i \(0.817996\pi\)
\(720\) −78.9238 + 78.9238i −0.00408516 + 0.00408516i
\(721\) −539.541 + 539.541i −0.0278690 + 0.0278690i
\(722\) 12413.8i 0.639879i
\(723\) 3314.43i 0.170491i
\(724\) −11373.1 + 11373.1i −0.583807 + 0.583807i
\(725\) −2192.90 + 2192.90i −0.112334 + 0.112334i
\(726\) −2938.88 2938.88i −0.150237 0.150237i
\(727\) −22324.8 −1.13890 −0.569451 0.822026i \(-0.692844\pi\)
−0.569451 + 0.822026i \(0.692844\pi\)
\(728\) 1129.34 + 1129.34i 0.0574948 + 0.0574948i
\(729\) 729.000i 0.0370370i
\(730\) −406.915 −0.0206310
\(731\) 9146.36 13547.3i 0.462778 0.685452i
\(732\) −12553.0 −0.633844
\(733\) 7293.42i 0.367515i 0.982972 + 0.183758i \(0.0588261\pi\)
−0.982972 + 0.183758i \(0.941174\pi\)
\(734\) 6976.70 + 6976.70i 0.350838 + 0.350838i
\(735\) −799.897 −0.0401424
\(736\) 5563.37 + 5563.37i 0.278626 + 0.278626i
\(737\) −3797.57 + 3797.57i −0.189804 + 0.189804i
\(738\) 1032.42 1032.42i 0.0514958 0.0514958i
\(739\) 12956.5i 0.644945i −0.946579 0.322472i \(-0.895486\pi\)
0.946579 0.322472i \(-0.104514\pi\)
\(740\) 147.911i 0.00734774i
\(741\) 5232.11 5232.11i 0.259388 0.259388i
\(742\) 6.38547 6.38547i 0.000315927 0.000315927i
\(743\) 10116.8 + 10116.8i 0.499528 + 0.499528i 0.911291 0.411763i \(-0.135087\pi\)
−0.411763 + 0.911291i \(0.635087\pi\)
\(744\) 4725.17 0.232840
\(745\) −1138.83 1138.83i −0.0560048 0.0560048i
\(746\) 15621.3i 0.766673i
\(747\) −2022.24 −0.0990495
\(748\) 7979.75 1547.50i 0.390065 0.0756447i
\(749\) 5864.87 0.286112
\(750\) 910.026i 0.0443059i
\(751\) −16468.4 16468.4i −0.800189 0.800189i 0.182936 0.983125i \(-0.441440\pi\)
−0.983125 + 0.182936i \(0.941440\pi\)
\(752\) 780.713 0.0378586
\(753\) −1019.98 1019.98i −0.0493626 0.0493626i
\(754\) 528.878 528.878i 0.0255446 0.0255446i
\(755\) 743.684 743.684i 0.0358483 0.0358483i
\(756\) 601.951i 0.0289587i
\(757\) 615.306i 0.0295425i −0.999891 0.0147712i \(-0.995298\pi\)
0.999891 0.0147712i \(-0.00470201\pi\)
\(758\) 1847.63 1847.63i 0.0885343 0.0885343i
\(759\) −1791.29 + 1791.29i −0.0856651 + 0.0856651i
\(760\) 1457.13 + 1457.13i 0.0695467 + 0.0695467i
\(761\) −2678.42 −0.127586 −0.0637928 0.997963i \(-0.520320\pi\)
−0.0637928 + 0.997963i \(0.520320\pi\)
\(762\) 7351.08 + 7351.08i 0.349477 + 0.349477i
\(763\) 3088.41i 0.146537i
\(764\) 19302.7 0.914067
\(765\) 503.401 97.6237i 0.0237915 0.00461385i
\(766\) −1544.30 −0.0728432
\(767\) 11793.4i 0.555197i
\(768\) −6703.78 6703.78i −0.314976 0.314976i
\(769\) 8111.73 0.380385 0.190193 0.981747i \(-0.439089\pi\)
0.190193 + 0.981747i \(0.439089\pi\)
\(770\) −67.0374 67.0374i −0.00313748 0.00313748i
\(771\) 8795.64 8795.64i 0.410852 0.410852i
\(772\) −11404.1 + 11404.1i −0.531661 + 0.531661i
\(773\) 14345.3i 0.667481i −0.942665 0.333740i \(-0.891689\pi\)
0.942665 0.333740i \(-0.108311\pi\)
\(774\) 3141.25i 0.145879i
\(775\) −6724.26 + 6724.26i −0.311668 + 0.311668i
\(776\) −25889.9 + 25889.9i −1.19767 + 1.19767i
\(777\) 259.389 + 259.389i 0.0119762 + 0.0119762i
\(778\) 11247.5 0.518307
\(779\) 9434.94 + 9434.94i 0.433943 + 0.433943i
\(780\) 281.432i 0.0129191i
\(781\) 17702.4 0.811064
\(782\) −837.670 4319.48i −0.0383057 0.197525i
\(783\) 673.425 0.0307359
\(784\) 5004.54i 0.227977i
\(785\) 1846.52 + 1846.52i 0.0839555 + 0.0839555i
\(786\) 7974.01 0.361862
\(787\) −3820.33 3820.33i −0.173037 0.173037i 0.615275 0.788312i \(-0.289045\pi\)
−0.788312 + 0.615275i \(0.789045\pi\)
\(788\) 10337.7 10337.7i 0.467340 0.467340i
\(789\) −16995.4 + 16995.4i −0.766861 + 0.766861i
\(790\) 1002.90i 0.0451664i
\(791\) 6209.09i 0.279102i
\(792\) 2638.67 2638.67i 0.118385 0.118385i
\(793\) −10292.3 + 10292.3i −0.460895 + 0.460895i
\(794\) −3193.74 3193.74i −0.142748 0.142748i
\(795\) 3.80135 0.000169585
\(796\) 11095.4 + 11095.4i 0.494051 + 0.494051i
\(797\) 24962.7i 1.10944i 0.832038 + 0.554719i \(0.187174\pi\)
−0.832038 + 0.554719i \(0.812826\pi\)
\(798\) 2139.34 0.0949018
\(799\) −2972.66 2006.97i −0.131621 0.0888629i
\(800\) 23324.6 1.03081
\(801\) 5050.19i 0.222771i
\(802\) 15720.0 + 15720.0i 0.692135 + 0.692135i
\(803\) −6734.03 −0.295939
\(804\) 3259.37 + 3259.37i 0.142972 + 0.142972i
\(805\) 93.3092 93.3092i 0.00408536 0.00408536i
\(806\) 1621.74 1621.74i 0.0708728 0.0708728i
\(807\) 16732.6i 0.729884i
\(808\) 40023.0i 1.74258i
\(809\) −22875.2 + 22875.2i −0.994126 + 0.994126i −0.999983 0.00585676i \(-0.998136\pi\)
0.00585676 + 0.999983i \(0.498136\pi\)
\(810\) 69.6806 69.6806i 0.00302263 0.00302263i
\(811\) −12837.7 12837.7i −0.555848 0.555848i 0.372275 0.928123i \(-0.378578\pi\)
−0.928123 + 0.372275i \(0.878578\pi\)
\(812\) −556.061 −0.0240319
\(813\) −6553.83 6553.83i −0.282722 0.282722i
\(814\) 951.935i 0.0409893i
\(815\) 509.143 0.0218828
\(816\) −610.781 3149.52i −0.0262030 0.135117i
\(817\) 28706.9 1.22928
\(818\) 8563.26i 0.366024i
\(819\) 493.541 + 493.541i 0.0210570 + 0.0210570i
\(820\) −507.500 −0.0216130
\(821\) 22482.6 + 22482.6i 0.955721 + 0.955721i 0.999060 0.0433397i \(-0.0137998\pi\)
−0.0433397 + 0.999060i \(0.513800\pi\)
\(822\) −4728.32 + 4728.32i −0.200632 + 0.200632i
\(823\) −23777.0 + 23777.0i −1.00707 + 1.00707i −0.00709128 + 0.999975i \(0.502257\pi\)
−0.999975 + 0.00709128i \(0.997743\pi\)
\(824\) 4059.82i 0.171639i
\(825\) 7510.04i 0.316929i
\(826\) 2411.08 2411.08i 0.101565 0.101565i
\(827\) −3394.68 + 3394.68i −0.142738 + 0.142738i −0.774865 0.632127i \(-0.782182\pi\)
0.632127 + 0.774865i \(0.282182\pi\)
\(828\) 1537.43 + 1537.43i 0.0645281 + 0.0645281i
\(829\) 4599.00 0.192678 0.0963389 0.995349i \(-0.469287\pi\)
0.0963389 + 0.995349i \(0.469287\pi\)
\(830\) −193.294 193.294i −0.00808352 0.00808352i
\(831\) 1756.51i 0.0733243i
\(832\) −3179.83 −0.132501
\(833\) 12865.1 19055.4i 0.535114 0.792594i
\(834\) 11046.3 0.458636
\(835\) 3040.71i 0.126022i
\(836\) 10094.2 + 10094.2i 0.417600 + 0.417600i
\(837\) 2064.98 0.0852760
\(838\) 6488.45 + 6488.45i 0.267470 + 0.267470i
\(839\) 21296.4 21296.4i 0.876321 0.876321i −0.116831 0.993152i \(-0.537274\pi\)
0.993152 + 0.116831i \(0.0372737\pi\)
\(840\) −137.449 + 137.449i −0.00564578 + 0.00564578i
\(841\) 23766.9i 0.974493i
\(842\) 9561.23i 0.391332i
\(843\) −13575.6 + 13575.6i −0.554647 + 0.554647i
\(844\) 1699.34 1699.34i 0.0693054 0.0693054i
\(845\) −1032.04 1032.04i −0.0420156 0.0420156i
\(846\) −689.280 −0.0280117
\(847\) 2533.44 + 2533.44i 0.102775 + 0.102775i
\(848\) 23.7831i 0.000963108i
\(849\) 18104.4 0.731853
\(850\) −10810.7 7298.79i −0.436242 0.294525i
\(851\) 1325.00 0.0533728
\(852\) 15193.6i 0.610943i
\(853\) −30470.1 30470.1i −1.22307 1.22307i −0.966536 0.256531i \(-0.917421\pi\)
−0.256531 0.966536i \(-0.582579\pi\)
\(854\) −4208.36 −0.168627
\(855\) 636.788 + 636.788i 0.0254710 + 0.0254710i
\(856\) −22065.3 + 22065.3i −0.881049 + 0.881049i
\(857\) −8446.07 + 8446.07i −0.336654 + 0.336654i −0.855106 0.518453i \(-0.826508\pi\)
0.518453 + 0.855106i \(0.326508\pi\)
\(858\) 1811.26i 0.0720691i
\(859\) 11237.0i 0.446335i −0.974780 0.223168i \(-0.928360\pi\)
0.974780 0.223168i \(-0.0716397\pi\)
\(860\) −772.062 + 772.062i −0.0306129 + 0.0306129i
\(861\) −889.991 + 889.991i −0.0352274 + 0.0352274i
\(862\) −904.256 904.256i −0.0357298 0.0357298i
\(863\) −22755.7 −0.897583 −0.448791 0.893637i \(-0.648145\pi\)
−0.448791 + 0.893637i \(0.648145\pi\)
\(864\) −3581.41 3581.41i −0.141021 0.141021i
\(865\) 81.0656i 0.00318649i
\(866\) −15127.5 −0.593597
\(867\) −5770.80 + 13562.3i −0.226051 + 0.531257i
\(868\) −1705.09 −0.0666759
\(869\) 16596.9i 0.647884i
\(870\) 64.3685 + 64.3685i 0.00250839 + 0.00250839i
\(871\) 5344.74 0.207921
\(872\) −11619.5 11619.5i −0.451245 0.451245i
\(873\) −11314.3 + 11314.3i −0.438639 + 0.438639i
\(874\) 5464.02 5464.02i 0.211468 0.211468i
\(875\) 784.481i 0.0303089i
\(876\) 5779.67i 0.222919i
\(877\) 25825.6 25825.6i 0.994378 0.994378i −0.00560613 0.999984i \(-0.501784\pi\)
0.999984 + 0.00560613i \(0.00178450\pi\)
\(878\) −17375.6 + 17375.6i −0.667881 + 0.667881i
\(879\) −15993.7 15993.7i −0.613714 0.613714i
\(880\) −249.686 −0.00956466
\(881\) 13415.9 + 13415.9i 0.513045 + 0.513045i 0.915458 0.402413i \(-0.131829\pi\)
−0.402413 + 0.915458i \(0.631829\pi\)
\(882\) 4418.43i 0.168681i
\(883\) 28154.1 1.07300 0.536501 0.843899i \(-0.319746\pi\)
0.536501 + 0.843899i \(0.319746\pi\)
\(884\) −6704.37 4526.40i −0.255082 0.172217i
\(885\) 1435.35 0.0545184
\(886\) 7642.16i 0.289778i
\(887\) −10563.8 10563.8i −0.399884 0.399884i 0.478308 0.878192i \(-0.341250\pi\)
−0.878192 + 0.478308i \(0.841250\pi\)
\(888\) −1951.79 −0.0737588
\(889\) −6336.94 6336.94i −0.239071 0.239071i
\(890\) −482.716 + 482.716i −0.0181805 + 0.0181805i
\(891\) 1153.14 1153.14i 0.0433577 0.0433577i
\(892\) 6190.89i 0.232384i
\(893\) 6299.09i 0.236048i
\(894\) 6290.63 6290.63i 0.235336 0.235336i
\(895\) −1247.50 + 1247.50i −0.0465913 + 0.0465913i
\(896\) 3457.22 + 3457.22i 0.128904 + 0.128904i
\(897\) 2521.08 0.0938422
\(898\) −11932.5 11932.5i −0.443422 0.443422i
\(899\) 1907.55i 0.0707680i
\(900\) 6445.71 0.238730
\(901\) −61.1389 + 90.5571i −0.00226064 + 0.00334838i
\(902\) 3266.19 0.120568
\(903\) 2707.89i 0.0997930i
\(904\) −23360.4 23360.4i −0.859463 0.859463i
\(905\) −2269.80 −0.0833708
\(906\) 4107.93 + 4107.93i 0.150637 + 0.150637i
\(907\) 36144.8 36144.8i 1.32323 1.32323i 0.412080 0.911148i \(-0.364802\pi\)
0.911148 0.412080i \(-0.135198\pi\)
\(908\) 13748.1 13748.1i 0.502474 0.502474i
\(909\) 17490.7i 0.638206i
\(910\) 94.3491i 0.00343697i
\(911\) −7029.06 + 7029.06i −0.255634 + 0.255634i −0.823276 0.567641i \(-0.807856\pi\)
0.567641 + 0.823276i \(0.307856\pi\)
\(912\) 3984.05 3984.05i 0.144655 0.144655i
\(913\) −3198.81 3198.81i −0.115953 0.115953i
\(914\) −19528.5 −0.706725
\(915\) −1252.65 1252.65i −0.0452582 0.0452582i
\(916\) 14779.0i 0.533092i
\(917\) −6873.93 −0.247543
\(918\) 539.249 + 2780.66i 0.0193877 + 0.0999733i
\(919\) −20224.2 −0.725937 −0.362968 0.931801i \(-0.618237\pi\)
−0.362968 + 0.931801i \(0.618237\pi\)
\(920\) 702.113i 0.0251608i
\(921\) 11386.8 + 11386.8i 0.407391 + 0.407391i
\(922\) 21173.8 0.756315
\(923\) −12457.2 12457.2i −0.444242 0.444242i
\(924\) −952.174 + 952.174i −0.0339007 + 0.0339007i
\(925\) 2777.54 2777.54i 0.0987297 0.0987297i
\(926\) 11641.5i 0.413137i
\(927\) 1774.21i 0.0628615i
\(928\) 3308.38 3308.38i 0.117029 0.117029i
\(929\) −840.813 + 840.813i −0.0296945 + 0.0296945i −0.721798 0.692104i \(-0.756684\pi\)
0.692104 + 0.721798i \(0.256684\pi\)
\(930\) 197.378 + 197.378i 0.00695945 + 0.00695945i
\(931\) 40378.6 1.42143
\(932\) −864.404 864.404i −0.0303804 0.0303804i
\(933\) 29116.7i 1.02169i
\(934\) −5307.44 −0.185937
\(935\) 950.709 + 641.863i 0.0332529 + 0.0224505i
\(936\) −3713.69 −0.129686
\(937\) 37390.7i 1.30363i −0.758378 0.651815i \(-0.774008\pi\)
0.758378 0.651815i \(-0.225992\pi\)
\(938\) 1092.69 + 1092.69i 0.0380359 + 0.0380359i
\(939\) 8575.73 0.298039
\(940\) 169.412 + 169.412i 0.00587832 + 0.00587832i
\(941\) −26248.6 + 26248.6i −0.909331 + 0.909331i −0.996218 0.0868875i \(-0.972308\pi\)
0.0868875 + 0.996218i \(0.472308\pi\)
\(942\) −10199.7 + 10199.7i −0.352786 + 0.352786i
\(943\) 4546.21i 0.156993i
\(944\) 8980.25i 0.309621i
\(945\) −60.0677 + 60.0677i −0.00206773 + 0.00206773i
\(946\) 4968.88 4968.88i 0.170774 0.170774i
\(947\) 36161.1 + 36161.1i 1.24084 + 1.24084i 0.959651 + 0.281192i \(0.0907299\pi\)
0.281192 + 0.959651i \(0.409270\pi\)
\(948\) −14244.8 −0.488025
\(949\) 4738.77 + 4738.77i 0.162094 + 0.162094i
\(950\) 22908.1i 0.782353i
\(951\) 17243.7 0.587976
\(952\) −1063.70 5485.03i −0.0362131 0.186734i
\(953\) −1138.42 −0.0386958 −0.0193479 0.999813i \(-0.506159\pi\)
−0.0193479 + 0.999813i \(0.506159\pi\)
\(954\) 20.9977i 0.000712607i
\(955\) 1926.18 + 1926.18i 0.0652669 + 0.0652669i
\(956\) −24686.3 −0.835159
\(957\) 1065.23 + 1065.23i 0.0359813 + 0.0359813i
\(958\) 2474.46 2474.46i 0.0834510 0.0834510i
\(959\) 4076.02 4076.02i 0.137249 0.137249i
\(960\) 387.010i 0.0130111i
\(961\) 23941.7i 0.803656i
\(962\) −669.881 + 669.881i −0.0224510 + 0.0224510i
\(963\) −9642.91 + 9642.91i −0.322678 + 0.322678i
\(964\) 4499.80 + 4499.80i 0.150341 + 0.150341i
\(965\) −2275.99 −0.0759241
\(966\) 515.417 + 515.417i 0.0171669 + 0.0171669i
\(967\) 4270.42i 0.142014i 0.997476 + 0.0710070i \(0.0226213\pi\)
−0.997476 + 0.0710070i \(0.977379\pi\)
\(968\) −19063.1 −0.632966
\(969\) −25411.5 + 4928.02i −0.842451 + 0.163375i
\(970\) −2162.93 −0.0715954
\(971\) 8703.18i 0.287640i 0.989604 + 0.143820i \(0.0459386\pi\)
−0.989604 + 0.143820i \(0.954061\pi\)
\(972\) −989.717 989.717i −0.0326597 0.0326597i
\(973\) −9522.39 −0.313745
\(974\) −3521.55 3521.55i −0.115850 0.115850i
\(975\) 5284.85 5284.85i 0.173590 0.173590i
\(976\) −7837.17 + 7837.17i −0.257031 + 0.257031i
\(977\) 10690.5i 0.350072i 0.984562 + 0.175036i \(0.0560041\pi\)
−0.984562 + 0.175036i \(0.943996\pi\)
\(978\) 2812.38i 0.0919530i
\(979\) −7988.46 + 7988.46i −0.260789 + 0.260789i
\(980\) −1085.97 + 1085.97i −0.0353980 + 0.0353980i
\(981\) −5077.91 5077.91i −0.165265 0.165265i
\(982\) −8248.51 −0.268045
\(983\) 31067.0 + 31067.0i 1.00802 + 1.00802i 0.999968 + 0.00805257i \(0.00256324\pi\)
0.00805257 + 0.999968i \(0.497437\pi\)
\(984\) 6696.81i 0.216958i
\(985\) 2063.16 0.0667387
\(986\) −2568.68 + 498.139i −0.0829648 + 0.0160892i
\(987\) 594.189 0.0191623
\(988\) 14206.6i 0.457462i
\(989\) 6916.17 + 6916.17i 0.222367 + 0.222367i
\(990\) 220.444 0.00707693
\(991\) 11977.7 + 11977.7i 0.383939 + 0.383939i 0.872519 0.488580i \(-0.162485\pi\)
−0.488580 + 0.872519i \(0.662485\pi\)
\(992\) 10144.8 10144.8i 0.324694 0.324694i
\(993\) 11722.3 11722.3i 0.374619 0.374619i
\(994\) 5093.59i 0.162534i
\(995\) 2214.37i 0.0705531i
\(996\) −2745.47 + 2745.47i −0.0873429 + 0.0873429i
\(997\) 7884.24 7884.24i 0.250448 0.250448i −0.570706 0.821154i \(-0.693331\pi\)
0.821154 + 0.570706i \(0.193331\pi\)
\(998\) 16039.8 + 16039.8i 0.508749 + 0.508749i
\(999\) −852.964 −0.0270136
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.4.e.a.13.5 yes 16
3.2 odd 2 153.4.f.b.64.4 16
17.2 even 8 867.4.a.q.1.4 8
17.4 even 4 inner 51.4.e.a.4.4 16
17.15 even 8 867.4.a.p.1.4 8
51.38 odd 4 153.4.f.b.55.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.e.a.4.4 16 17.4 even 4 inner
51.4.e.a.13.5 yes 16 1.1 even 1 trivial
153.4.f.b.55.5 16 51.38 odd 4
153.4.f.b.64.4 16 3.2 odd 2
867.4.a.p.1.4 8 17.15 even 8
867.4.a.q.1.4 8 17.2 even 8