Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [153,4,Mod(19,153)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(153, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("153.19");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.l (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.02729223088\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{8})\) |
Twist minimal: | no (minimal twist has level 51) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −3.75396 | − | 3.75396i | 0 | 20.1845i | 0.615614 | + | 1.48622i | 0 | 8.32655 | − | 20.1021i | 45.7401 | − | 45.7401i | 0 | 3.26824 | − | 7.89022i | ||||||||
19.2 | −3.18525 | − | 3.18525i | 0 | 12.2916i | 0.657844 | + | 1.58818i | 0 | −2.66469 | + | 6.43312i | 13.6698 | − | 13.6698i | 0 | 2.96334 | − | 7.15413i | ||||||||
19.3 | −1.98341 | − | 1.98341i | 0 | − | 0.132152i | −6.98831 | − | 16.8713i | 0 | −9.61579 | + | 23.2146i | −16.1294 | + | 16.1294i | 0 | −19.6020 | + | 47.3234i | |||||||
19.4 | −0.865877 | − | 0.865877i | 0 | − | 6.50051i | −6.89196 | − | 16.6387i | 0 | 6.38012 | − | 15.4030i | −12.5557 | + | 12.5557i | 0 | −8.43944 | + | 20.3746i | |||||||
19.5 | −0.511853 | − | 0.511853i | 0 | − | 7.47601i | 6.64023 | + | 16.0309i | 0 | −5.63793 | + | 13.6112i | −7.92144 | + | 7.92144i | 0 | 4.80665 | − | 11.6043i | |||||||
19.6 | −0.320127 | − | 0.320127i | 0 | − | 7.79504i | 2.81499 | + | 6.79598i | 0 | 6.62120 | − | 15.9850i | −5.05641 | + | 5.05641i | 0 | 1.27442 | − | 3.07673i | |||||||
19.7 | 1.89364 | + | 1.89364i | 0 | − | 0.828264i | 1.56537 | + | 3.77915i | 0 | −11.5719 | + | 27.9371i | 16.7175 | − | 16.7175i | 0 | −4.19208 | + | 10.1206i | |||||||
19.8 | 2.07008 | + | 2.07008i | 0 | 0.570424i | 1.15618 | + | 2.79128i | 0 | 7.11409 | − | 17.1749i | 15.3798 | − | 15.3798i | 0 | −3.38476 | + | 8.17154i | ||||||||
19.9 | 2.85730 | + | 2.85730i | 0 | 8.32833i | −7.19045 | − | 17.3593i | 0 | 10.1833 | − | 24.5847i | −0.938143 | + | 0.938143i | 0 | 29.0554 | − | 70.1460i | ||||||||
19.10 | 3.79946 | + | 3.79946i | 0 | 20.8719i | −4.62215 | − | 11.1589i | 0 | −11.9634 | + | 28.8822i | −48.9062 | + | 48.9062i | 0 | 24.8360 | − | 59.9594i | ||||||||
100.1 | −3.81517 | − | 3.81517i | 0 | 21.1111i | −1.33820 | + | 0.554300i | 0 | 8.84293 | + | 3.66286i | 50.0210 | − | 50.0210i | 0 | 7.22021 | + | 2.99071i | ||||||||
100.2 | −3.10148 | − | 3.10148i | 0 | 11.2384i | −14.1902 | + | 5.87778i | 0 | −30.3663 | − | 12.5781i | 10.0437 | − | 10.0437i | 0 | 62.2405 | + | 25.7809i | ||||||||
100.3 | −2.73634 | − | 2.73634i | 0 | 6.97513i | 12.5970 | − | 5.21785i | 0 | 19.5561 | + | 8.10040i | −2.80440 | + | 2.80440i | 0 | −48.7476 | − | 20.1919i | ||||||||
100.4 | −1.41071 | − | 1.41071i | 0 | − | 4.01979i | −9.58757 | + | 3.97130i | 0 | 5.26522 | + | 2.18092i | −16.9564 | + | 16.9564i | 0 | 19.1277 | + | 7.92293i | |||||||
100.5 | −0.378339 | − | 0.378339i | 0 | − | 7.71372i | −7.33680 | + | 3.03900i | 0 | 24.6775 | + | 10.2218i | −5.94511 | + | 5.94511i | 0 | 3.92557 | + | 1.62602i | |||||||
100.6 | 0.0147863 | + | 0.0147863i | 0 | − | 7.99956i | 18.9786 | − | 7.86121i | 0 | −5.95742 | − | 2.46764i | 0.236574 | − | 0.236574i | 0 | 0.396861 | + | 0.164385i | |||||||
100.7 | 2.15816 | + | 2.15816i | 0 | 1.31528i | −13.0882 | + | 5.42131i | 0 | −26.4168 | − | 10.9422i | 14.4267 | − | 14.4267i | 0 | −39.9464 | − | 16.5464i | ||||||||
100.8 | 2.21747 | + | 2.21747i | 0 | 1.83439i | 12.9753 | − | 5.37456i | 0 | −7.27652 | − | 3.01403i | 13.6721 | − | 13.6721i | 0 | 40.6904 | + | 16.8545i | ||||||||
100.9 | 3.45749 | + | 3.45749i | 0 | 15.9085i | −13.3151 | + | 5.51528i | 0 | 7.75774 | + | 3.21336i | −27.3435 | + | 27.3435i | 0 | −65.1057 | − | 26.9677i | ||||||||
100.10 | 3.59414 | + | 3.59414i | 0 | 17.8356i | 10.5477 | − | 4.36900i | 0 | 6.74598 | + | 2.79428i | −35.3506 | + | 35.3506i | 0 | 53.6127 | + | 22.2071i | ||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.4.l.c | 40 | |
3.b | odd | 2 | 1 | 51.4.h.a | ✓ | 40 | |
17.d | even | 8 | 1 | inner | 153.4.l.c | 40 | |
51.g | odd | 8 | 1 | 51.4.h.a | ✓ | 40 | |
51.i | even | 16 | 1 | 867.4.a.v | 20 | ||
51.i | even | 16 | 1 | 867.4.a.w | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.4.h.a | ✓ | 40 | 3.b | odd | 2 | 1 | |
51.4.h.a | ✓ | 40 | 51.g | odd | 8 | 1 | |
153.4.l.c | 40 | 1.a | even | 1 | 1 | trivial | |
153.4.l.c | 40 | 17.d | even | 8 | 1 | inner | |
867.4.a.v | 20 | 51.i | even | 16 | 1 | ||
867.4.a.w | 20 | 51.i | even | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{40} + 2688 T_{2}^{36} - 192 T_{2}^{35} + 5184 T_{2}^{33} + 2794362 T_{2}^{32} + \cdots + 4964982194176 \) acting on \(S_{4}^{\mathrm{new}}(153, [\chi])\).