Properties

Label 153.4.l.c.100.7
Level $153$
Weight $4$
Character 153.100
Analytic conductor $9.027$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(19,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 100.7
Character \(\chi\) \(=\) 153.100
Dual form 153.4.l.c.127.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.15816 + 2.15816i) q^{2} +1.31528i q^{4} +(-13.0882 + 5.42131i) q^{5} +(-26.4168 - 10.9422i) q^{7} +(14.4267 - 14.4267i) q^{8} +(-39.9464 - 16.5464i) q^{10} +(9.48236 - 22.8924i) q^{11} -31.8846i q^{13} +(-33.3966 - 80.6266i) q^{14} +72.7923 q^{16} +(-59.1905 + 37.5432i) q^{17} +(-66.3298 - 66.3298i) q^{19} +(-7.13054 - 17.2146i) q^{20} +(69.8699 - 28.9410i) q^{22} +(-23.6243 + 57.0340i) q^{23} +(53.5222 - 53.5222i) q^{25} +(68.8119 - 68.8119i) q^{26} +(14.3920 - 34.7454i) q^{28} +(-238.832 + 98.9273i) q^{29} +(73.8065 + 178.185i) q^{31} +(41.6837 + 41.6837i) q^{32} +(-208.766 - 46.7182i) q^{34} +405.070 q^{35} +(-130.945 - 316.128i) q^{37} -286.300i q^{38} +(-110.608 + 267.031i) q^{40} +(250.006 + 103.556i) q^{41} +(242.000 - 242.000i) q^{43} +(30.1099 + 12.4719i) q^{44} +(-174.073 + 72.1034i) q^{46} +47.9808i q^{47} +(335.578 + 335.578i) q^{49} +231.019 q^{50} +41.9371 q^{52} +(-157.349 - 157.349i) q^{53} +351.028i q^{55} +(-538.966 + 223.247i) q^{56} +(-728.937 - 301.935i) q^{58} +(-135.454 + 135.454i) q^{59} +(441.840 + 183.016i) q^{61} +(-225.265 + 543.837i) q^{62} -402.418i q^{64} +(172.856 + 417.312i) q^{65} +254.007 q^{67} +(-49.3797 - 77.8519i) q^{68} +(874.204 + 874.204i) q^{70} +(-364.361 - 879.646i) q^{71} +(-1058.45 + 438.426i) q^{73} +(399.656 - 964.854i) q^{74} +(87.2421 - 87.2421i) q^{76} +(-500.987 + 500.987i) q^{77} +(-76.8385 + 185.504i) q^{79} +(-952.720 + 394.630i) q^{80} +(316.063 + 763.043i) q^{82} +(169.307 + 169.307i) q^{83} +(571.164 - 812.263i) q^{85} +1044.55 q^{86} +(-193.463 - 467.061i) q^{88} -627.144i q^{89} +(-348.887 + 842.289i) q^{91} +(-75.0156 - 31.0725i) q^{92} +(-103.550 + 103.550i) q^{94} +(1227.73 + 508.544i) q^{95} +(1165.39 - 482.720i) q^{97} +1448.46i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 32 q^{5} + 128 q^{10} - 112 q^{11} - 256 q^{14} - 1024 q^{16} + 112 q^{17} - 32 q^{19} + 640 q^{20} + 728 q^{22} - 208 q^{23} + 296 q^{25} - 1472 q^{26} - 328 q^{28} + 1272 q^{29} - 192 q^{31} + 960 q^{32}+ \cdots + 1008 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15816 + 2.15816i 0.763024 + 0.763024i 0.976868 0.213844i \(-0.0685985\pi\)
−0.213844 + 0.976868i \(0.568599\pi\)
\(3\) 0 0
\(4\) 1.31528i 0.164410i
\(5\) −13.0882 + 5.42131i −1.17064 + 0.484897i −0.881406 0.472360i \(-0.843402\pi\)
−0.289239 + 0.957257i \(0.593402\pi\)
\(6\) 0 0
\(7\) −26.4168 10.9422i −1.42637 0.590823i −0.469920 0.882709i \(-0.655717\pi\)
−0.956453 + 0.291886i \(0.905717\pi\)
\(8\) 14.4267 14.4267i 0.637575 0.637575i
\(9\) 0 0
\(10\) −39.9464 16.5464i −1.26322 0.523242i
\(11\) 9.48236 22.8924i 0.259913 0.627484i −0.739020 0.673684i \(-0.764711\pi\)
0.998932 + 0.0461995i \(0.0147110\pi\)
\(12\) 0 0
\(13\) 31.8846i 0.680245i −0.940381 0.340123i \(-0.889531\pi\)
0.940381 0.340123i \(-0.110469\pi\)
\(14\) −33.3966 80.6266i −0.637544 1.53917i
\(15\) 0 0
\(16\) 72.7923 1.13738
\(17\) −59.1905 + 37.5432i −0.844459 + 0.535621i
\(18\) 0 0
\(19\) −66.3298 66.3298i −0.800900 0.800900i 0.182336 0.983236i \(-0.441634\pi\)
−0.983236 + 0.182336i \(0.941634\pi\)
\(20\) −7.13054 17.2146i −0.0797218 0.192465i
\(21\) 0 0
\(22\) 69.8699 28.9410i 0.677105 0.280466i
\(23\) −23.6243 + 57.0340i −0.214174 + 0.517061i −0.994057 0.108864i \(-0.965279\pi\)
0.779883 + 0.625926i \(0.215279\pi\)
\(24\) 0 0
\(25\) 53.5222 53.5222i 0.428178 0.428178i
\(26\) 68.8119 68.8119i 0.519043 0.519043i
\(27\) 0 0
\(28\) 14.3920 34.7454i 0.0971371 0.234510i
\(29\) −238.832 + 98.9273i −1.52931 + 0.633460i −0.979430 0.201785i \(-0.935326\pi\)
−0.549878 + 0.835245i \(0.685326\pi\)
\(30\) 0 0
\(31\) 73.8065 + 178.185i 0.427614 + 1.03235i 0.980042 + 0.198791i \(0.0637017\pi\)
−0.552427 + 0.833561i \(0.686298\pi\)
\(32\) 41.6837 + 41.6837i 0.230272 + 0.230272i
\(33\) 0 0
\(34\) −208.766 46.7182i −1.05303 0.235650i
\(35\) 405.070 1.95627
\(36\) 0 0
\(37\) −130.945 316.128i −0.581816 1.40463i −0.891165 0.453679i \(-0.850111\pi\)
0.309350 0.950948i \(-0.399889\pi\)
\(38\) 286.300i 1.22221i
\(39\) 0 0
\(40\) −110.608 + 267.031i −0.437216 + 1.05553i
\(41\) 250.006 + 103.556i 0.952304 + 0.394457i 0.804096 0.594499i \(-0.202650\pi\)
0.148208 + 0.988956i \(0.452650\pi\)
\(42\) 0 0
\(43\) 242.000 242.000i 0.858249 0.858249i −0.132882 0.991132i \(-0.542423\pi\)
0.991132 + 0.132882i \(0.0424233\pi\)
\(44\) 30.1099 + 12.4719i 0.103165 + 0.0427322i
\(45\) 0 0
\(46\) −174.073 + 72.1034i −0.557950 + 0.231110i
\(47\) 47.9808i 0.148909i 0.997224 + 0.0744544i \(0.0237215\pi\)
−0.997224 + 0.0744544i \(0.976278\pi\)
\(48\) 0 0
\(49\) 335.578 + 335.578i 0.978362 + 0.978362i
\(50\) 231.019 0.653419
\(51\) 0 0
\(52\) 41.9371 0.111839
\(53\) −157.349 157.349i −0.407803 0.407803i 0.473169 0.880972i \(-0.343110\pi\)
−0.880972 + 0.473169i \(0.843110\pi\)
\(54\) 0 0
\(55\) 351.028i 0.860592i
\(56\) −538.966 + 223.247i −1.28611 + 0.532726i
\(57\) 0 0
\(58\) −728.937 301.935i −1.65024 0.683553i
\(59\) −135.454 + 135.454i −0.298892 + 0.298892i −0.840580 0.541688i \(-0.817786\pi\)
0.541688 + 0.840580i \(0.317786\pi\)
\(60\) 0 0
\(61\) 441.840 + 183.016i 0.927406 + 0.384144i 0.794694 0.607011i \(-0.207631\pi\)
0.132712 + 0.991155i \(0.457631\pi\)
\(62\) −225.265 + 543.837i −0.461429 + 1.11399i
\(63\) 0 0
\(64\) 402.418i 0.785973i
\(65\) 172.856 + 417.312i 0.329849 + 0.796326i
\(66\) 0 0
\(67\) 254.007 0.463163 0.231581 0.972816i \(-0.425610\pi\)
0.231581 + 0.972816i \(0.425610\pi\)
\(68\) −49.3797 77.8519i −0.0880613 0.138837i
\(69\) 0 0
\(70\) 874.204 + 874.204i 1.49268 + 1.49268i
\(71\) −364.361 879.646i −0.609038 1.47035i −0.864048 0.503410i \(-0.832079\pi\)
0.255010 0.966939i \(-0.417921\pi\)
\(72\) 0 0
\(73\) −1058.45 + 438.426i −1.69702 + 0.702930i −0.999902 0.0140222i \(-0.995536\pi\)
−0.697122 + 0.716952i \(0.745536\pi\)
\(74\) 399.656 964.854i 0.627825 1.51570i
\(75\) 0 0
\(76\) 87.2421 87.2421i 0.131676 0.131676i
\(77\) −500.987 + 500.987i −0.741465 + 0.741465i
\(78\) 0 0
\(79\) −76.8385 + 185.504i −0.109430 + 0.264188i −0.969103 0.246658i \(-0.920668\pi\)
0.859672 + 0.510846i \(0.170668\pi\)
\(80\) −952.720 + 394.630i −1.33147 + 0.551512i
\(81\) 0 0
\(82\) 316.063 + 763.043i 0.425650 + 1.02761i
\(83\) 169.307 + 169.307i 0.223902 + 0.223902i 0.810139 0.586238i \(-0.199391\pi\)
−0.586238 + 0.810139i \(0.699391\pi\)
\(84\) 0 0
\(85\) 571.164 812.263i 0.728840 1.03650i
\(86\) 1044.55 1.30973
\(87\) 0 0
\(88\) −193.463 467.061i −0.234355 0.565782i
\(89\) 627.144i 0.746934i −0.927643 0.373467i \(-0.878169\pi\)
0.927643 0.373467i \(-0.121831\pi\)
\(90\) 0 0
\(91\) −348.887 + 842.289i −0.401905 + 0.970284i
\(92\) −75.0156 31.0725i −0.0850099 0.0352123i
\(93\) 0 0
\(94\) −103.550 + 103.550i −0.113621 + 0.113621i
\(95\) 1227.73 + 508.544i 1.32592 + 0.549216i
\(96\) 0 0
\(97\) 1165.39 482.720i 1.21987 0.505287i 0.322502 0.946569i \(-0.395476\pi\)
0.897369 + 0.441282i \(0.145476\pi\)
\(98\) 1448.46i 1.49303i
\(99\) 0 0
\(100\) 70.3966 + 70.3966i 0.0703966 + 0.0703966i
\(101\) −84.2445 −0.0829965 −0.0414982 0.999139i \(-0.513213\pi\)
−0.0414982 + 0.999139i \(0.513213\pi\)
\(102\) 0 0
\(103\) −223.403 −0.213714 −0.106857 0.994274i \(-0.534079\pi\)
−0.106857 + 0.994274i \(0.534079\pi\)
\(104\) −459.988 459.988i −0.433707 0.433707i
\(105\) 0 0
\(106\) 679.168i 0.622327i
\(107\) 669.306 277.236i 0.604713 0.250480i −0.0592534 0.998243i \(-0.518872\pi\)
0.663966 + 0.747763i \(0.268872\pi\)
\(108\) 0 0
\(109\) −587.022 243.152i −0.515839 0.213668i 0.109549 0.993981i \(-0.465059\pi\)
−0.625388 + 0.780314i \(0.715059\pi\)
\(110\) −757.573 + 757.573i −0.656652 + 0.656652i
\(111\) 0 0
\(112\) −1922.94 796.508i −1.62233 0.671990i
\(113\) 389.316 939.892i 0.324104 0.782457i −0.674903 0.737907i \(-0.735815\pi\)
0.999007 0.0445502i \(-0.0141855\pi\)
\(114\) 0 0
\(115\) 874.547i 0.709147i
\(116\) −130.117 314.130i −0.104147 0.251433i
\(117\) 0 0
\(118\) −584.663 −0.456124
\(119\) 1974.43 344.097i 1.52097 0.265070i
\(120\) 0 0
\(121\) 507.011 + 507.011i 0.380925 + 0.380925i
\(122\) 558.582 + 1348.54i 0.414522 + 1.00074i
\(123\) 0 0
\(124\) −234.363 + 97.0761i −0.169729 + 0.0703040i
\(125\) 267.315 645.355i 0.191275 0.461779i
\(126\) 0 0
\(127\) 1014.08 1014.08i 0.708547 0.708547i −0.257683 0.966230i \(-0.582959\pi\)
0.966230 + 0.257683i \(0.0829589\pi\)
\(128\) 1201.95 1201.95i 0.829988 0.829988i
\(129\) 0 0
\(130\) −527.574 + 1273.68i −0.355933 + 0.859298i
\(131\) −223.796 + 92.6993i −0.149261 + 0.0618258i −0.456063 0.889947i \(-0.650741\pi\)
0.306803 + 0.951773i \(0.400741\pi\)
\(132\) 0 0
\(133\) 1026.43 + 2478.02i 0.669192 + 1.61557i
\(134\) 548.187 + 548.187i 0.353404 + 0.353404i
\(135\) 0 0
\(136\) −312.298 + 1395.54i −0.196907 + 0.879904i
\(137\) −3062.95 −1.91012 −0.955058 0.296420i \(-0.904207\pi\)
−0.955058 + 0.296420i \(0.904207\pi\)
\(138\) 0 0
\(139\) −472.386 1140.44i −0.288254 0.695906i 0.711725 0.702458i \(-0.247914\pi\)
−0.999979 + 0.00655249i \(0.997914\pi\)
\(140\) 532.779i 0.321629i
\(141\) 0 0
\(142\) 1112.06 2684.76i 0.657200 1.58662i
\(143\) −729.915 302.341i −0.426843 0.176804i
\(144\) 0 0
\(145\) 2589.56 2589.56i 1.48311 1.48311i
\(146\) −3230.50 1338.12i −1.83122 0.758517i
\(147\) 0 0
\(148\) 415.797 172.229i 0.230934 0.0956562i
\(149\) 401.154i 0.220563i −0.993900 0.110281i \(-0.964825\pi\)
0.993900 0.110281i \(-0.0351752\pi\)
\(150\) 0 0
\(151\) −1717.83 1717.83i −0.925792 0.925792i 0.0716384 0.997431i \(-0.477177\pi\)
−0.997431 + 0.0716384i \(0.977177\pi\)
\(152\) −1913.84 −1.02127
\(153\) 0 0
\(154\) −2162.42 −1.13151
\(155\) −1931.99 1931.99i −1.00117 1.00117i
\(156\) 0 0
\(157\) 1806.56i 0.918340i −0.888348 0.459170i \(-0.848147\pi\)
0.888348 0.459170i \(-0.151853\pi\)
\(158\) −566.177 + 234.518i −0.285080 + 0.118084i
\(159\) 0 0
\(160\) −771.545 319.585i −0.381225 0.157909i
\(161\) 1248.15 1248.15i 0.610984 0.610984i
\(162\) 0 0
\(163\) −191.843 79.4641i −0.0921860 0.0381847i 0.336114 0.941821i \(-0.390887\pi\)
−0.428300 + 0.903637i \(0.640887\pi\)
\(164\) −136.205 + 328.828i −0.0648526 + 0.156568i
\(165\) 0 0
\(166\) 730.781i 0.341685i
\(167\) 402.027 + 970.580i 0.186286 + 0.449735i 0.989239 0.146308i \(-0.0467389\pi\)
−0.802953 + 0.596043i \(0.796739\pi\)
\(168\) 0 0
\(169\) 1180.37 0.537266
\(170\) 2985.65 520.329i 1.34699 0.234750i
\(171\) 0 0
\(172\) 318.298 + 318.298i 0.141105 + 0.141105i
\(173\) −620.586 1498.23i −0.272730 0.658428i 0.726868 0.686777i \(-0.240975\pi\)
−0.999598 + 0.0283487i \(0.990975\pi\)
\(174\) 0 0
\(175\) −1999.54 + 828.235i −0.863719 + 0.357764i
\(176\) 690.242 1666.39i 0.295619 0.713688i
\(177\) 0 0
\(178\) 1353.47 1353.47i 0.569928 0.569928i
\(179\) −803.119 + 803.119i −0.335352 + 0.335352i −0.854615 0.519263i \(-0.826207\pi\)
0.519263 + 0.854615i \(0.326207\pi\)
\(180\) 0 0
\(181\) −1324.73 + 3198.17i −0.544012 + 1.31336i 0.377859 + 0.925863i \(0.376660\pi\)
−0.921871 + 0.387497i \(0.873340\pi\)
\(182\) −2570.74 + 1064.84i −1.04701 + 0.433687i
\(183\) 0 0
\(184\) 481.991 + 1163.63i 0.193114 + 0.466217i
\(185\) 3427.66 + 3427.66i 1.36220 + 1.36220i
\(186\) 0 0
\(187\) 298.189 + 1711.01i 0.116608 + 0.669099i
\(188\) −63.1081 −0.0244821
\(189\) 0 0
\(190\) 1552.12 + 3747.16i 0.592647 + 1.43078i
\(191\) 3577.24i 1.35518i 0.735438 + 0.677592i \(0.236976\pi\)
−0.735438 + 0.677592i \(0.763024\pi\)
\(192\) 0 0
\(193\) 330.669 798.305i 0.123327 0.297737i −0.850143 0.526551i \(-0.823485\pi\)
0.973470 + 0.228814i \(0.0734848\pi\)
\(194\) 3556.88 + 1473.31i 1.31634 + 0.545244i
\(195\) 0 0
\(196\) −441.379 + 441.379i −0.160852 + 0.160852i
\(197\) −1416.44 586.710i −0.512271 0.212190i 0.111547 0.993759i \(-0.464419\pi\)
−0.623818 + 0.781570i \(0.714419\pi\)
\(198\) 0 0
\(199\) −4195.39 + 1737.79i −1.49449 + 0.619038i −0.972288 0.233785i \(-0.924889\pi\)
−0.522200 + 0.852823i \(0.674889\pi\)
\(200\) 1544.30i 0.545991i
\(201\) 0 0
\(202\) −181.813 181.813i −0.0633283 0.0633283i
\(203\) 7391.65 2.55563
\(204\) 0 0
\(205\) −3833.55 −1.30608
\(206\) −482.138 482.138i −0.163069 0.163069i
\(207\) 0 0
\(208\) 2320.95i 0.773697i
\(209\) −2147.41 + 889.488i −0.710716 + 0.294388i
\(210\) 0 0
\(211\) 5246.53 + 2173.18i 1.71178 + 0.709043i 0.999978 + 0.00666523i \(0.00212162\pi\)
0.711804 + 0.702378i \(0.247878\pi\)
\(212\) 206.958 206.958i 0.0670468 0.0670468i
\(213\) 0 0
\(214\) 2042.78 + 846.149i 0.652532 + 0.270288i
\(215\) −1855.39 + 4479.31i −0.588543 + 1.42087i
\(216\) 0 0
\(217\) 5514.68i 1.72516i
\(218\) −742.124 1791.65i −0.230564 0.556631i
\(219\) 0 0
\(220\) −461.699 −0.141490
\(221\) 1197.05 + 1887.26i 0.364354 + 0.574439i
\(222\) 0 0
\(223\) 3095.56 + 3095.56i 0.929571 + 0.929571i 0.997678 0.0681070i \(-0.0216959\pi\)
−0.0681070 + 0.997678i \(0.521696\pi\)
\(224\) −645.039 1557.26i −0.192404 0.464504i
\(225\) 0 0
\(226\) 2868.64 1188.23i 0.844332 0.349734i
\(227\) 333.945 806.214i 0.0976418 0.235728i −0.867510 0.497421i \(-0.834281\pi\)
0.965151 + 0.261692i \(0.0842806\pi\)
\(228\) 0 0
\(229\) 614.382 614.382i 0.177290 0.177290i −0.612883 0.790174i \(-0.709990\pi\)
0.790174 + 0.612883i \(0.209990\pi\)
\(230\) 1887.41 1887.41i 0.541096 0.541096i
\(231\) 0 0
\(232\) −2018.35 + 4872.74i −0.571170 + 1.37893i
\(233\) 4206.17 1742.25i 1.18264 0.489866i 0.297289 0.954788i \(-0.403917\pi\)
0.885352 + 0.464922i \(0.153917\pi\)
\(234\) 0 0
\(235\) −260.119 627.982i −0.0722054 0.174319i
\(236\) −178.160 178.160i −0.0491408 0.0491408i
\(237\) 0 0
\(238\) 5003.74 + 3518.51i 1.36279 + 0.958282i
\(239\) −6181.53 −1.67301 −0.836507 0.547957i \(-0.815406\pi\)
−0.836507 + 0.547957i \(0.815406\pi\)
\(240\) 0 0
\(241\) −2305.23 5565.33i −0.616154 1.48753i −0.856136 0.516751i \(-0.827141\pi\)
0.239981 0.970777i \(-0.422859\pi\)
\(242\) 2188.42i 0.581309i
\(243\) 0 0
\(244\) −240.717 + 581.142i −0.0631570 + 0.152475i
\(245\) −6211.39 2572.84i −1.61972 0.670910i
\(246\) 0 0
\(247\) −2114.90 + 2114.90i −0.544809 + 0.544809i
\(248\) 3635.40 + 1505.83i 0.930838 + 0.385566i
\(249\) 0 0
\(250\) 1969.69 815.870i 0.498295 0.206401i
\(251\) 5937.89i 1.49321i 0.665267 + 0.746606i \(0.268318\pi\)
−0.665267 + 0.746606i \(0.731682\pi\)
\(252\) 0 0
\(253\) 1081.63 + 1081.63i 0.268781 + 0.268781i
\(254\) 4377.11 1.08128
\(255\) 0 0
\(256\) 1968.65 0.480628
\(257\) −1537.77 1537.77i −0.373242 0.373242i 0.495414 0.868657i \(-0.335016\pi\)
−0.868657 + 0.495414i \(0.835016\pi\)
\(258\) 0 0
\(259\) 9783.93i 2.34727i
\(260\) −548.881 + 227.354i −0.130924 + 0.0542304i
\(261\) 0 0
\(262\) −683.046 282.927i −0.161064 0.0667149i
\(263\) 2078.34 2078.34i 0.487284 0.487284i −0.420164 0.907448i \(-0.638027\pi\)
0.907448 + 0.420164i \(0.138027\pi\)
\(264\) 0 0
\(265\) 2912.46 + 1206.38i 0.675135 + 0.279650i
\(266\) −3132.75 + 7563.14i −0.722111 + 1.74333i
\(267\) 0 0
\(268\) 334.090i 0.0761485i
\(269\) −1135.69 2741.80i −0.257413 0.621451i 0.741353 0.671116i \(-0.234185\pi\)
−0.998766 + 0.0496648i \(0.984185\pi\)
\(270\) 0 0
\(271\) 108.879 0.0244056 0.0122028 0.999926i \(-0.496116\pi\)
0.0122028 + 0.999926i \(0.496116\pi\)
\(272\) −4308.61 + 2732.85i −0.960470 + 0.609204i
\(273\) 0 0
\(274\) −6610.33 6610.33i −1.45746 1.45746i
\(275\) −717.737 1732.77i −0.157386 0.379964i
\(276\) 0 0
\(277\) −7705.62 + 3191.77i −1.67143 + 0.692329i −0.998861 0.0477059i \(-0.984809\pi\)
−0.672569 + 0.740035i \(0.734809\pi\)
\(278\) 1441.77 3480.73i 0.311048 0.750937i
\(279\) 0 0
\(280\) 5843.81 5843.81i 1.24727 1.24727i
\(281\) 48.7818 48.7818i 0.0103561 0.0103561i −0.701910 0.712266i \(-0.747669\pi\)
0.712266 + 0.701910i \(0.247669\pi\)
\(282\) 0 0
\(283\) 23.7003 57.2176i 0.00497822 0.0120185i −0.921371 0.388685i \(-0.872930\pi\)
0.926349 + 0.376666i \(0.122930\pi\)
\(284\) 1156.98 479.236i 0.241740 0.100132i
\(285\) 0 0
\(286\) −922.773 2227.77i −0.190786 0.460597i
\(287\) −5471.24 5471.24i −1.12529 1.12529i
\(288\) 0 0
\(289\) 2094.02 4444.39i 0.426220 0.904619i
\(290\) 11177.4 2.26330
\(291\) 0 0
\(292\) −576.652 1392.16i −0.115569 0.279007i
\(293\) 1524.73i 0.304013i 0.988379 + 0.152007i \(0.0485735\pi\)
−0.988379 + 0.152007i \(0.951427\pi\)
\(294\) 0 0
\(295\) 1038.51 2507.19i 0.204965 0.494829i
\(296\) −6449.78 2671.59i −1.26651 0.524604i
\(297\) 0 0
\(298\) 865.753 865.753i 0.168294 0.168294i
\(299\) 1818.50 + 753.249i 0.351729 + 0.145691i
\(300\) 0 0
\(301\) −9040.90 + 3744.86i −1.73126 + 0.717110i
\(302\) 7414.67i 1.41280i
\(303\) 0 0
\(304\) −4828.30 4828.30i −0.910927 0.910927i
\(305\) −6775.08 −1.27193
\(306\) 0 0
\(307\) 3344.78 0.621814 0.310907 0.950440i \(-0.399367\pi\)
0.310907 + 0.950440i \(0.399367\pi\)
\(308\) −658.937 658.937i −0.121904 0.121904i
\(309\) 0 0
\(310\) 8339.08i 1.52783i
\(311\) −6452.97 + 2672.91i −1.17657 + 0.487353i −0.883361 0.468694i \(-0.844725\pi\)
−0.293213 + 0.956047i \(0.594725\pi\)
\(312\) 0 0
\(313\) −9500.05 3935.05i −1.71557 0.710614i −0.999926 0.0121525i \(-0.996132\pi\)
−0.715648 0.698461i \(-0.753868\pi\)
\(314\) 3898.84 3898.84i 0.700715 0.700715i
\(315\) 0 0
\(316\) −243.990 101.064i −0.0434351 0.0179914i
\(317\) 2018.33 4872.67i 0.357604 0.863332i −0.638032 0.770010i \(-0.720251\pi\)
0.995636 0.0933224i \(-0.0297487\pi\)
\(318\) 0 0
\(319\) 6405.50i 1.12426i
\(320\) 2181.64 + 5266.93i 0.381116 + 0.920096i
\(321\) 0 0
\(322\) 5387.43 0.932390
\(323\) 6416.32 + 1435.86i 1.10531 + 0.247348i
\(324\) 0 0
\(325\) −1706.53 1706.53i −0.291266 0.291266i
\(326\) −242.532 585.524i −0.0412043 0.0994759i
\(327\) 0 0
\(328\) 5100.73 2112.79i 0.858661 0.355669i
\(329\) 525.015 1267.50i 0.0879788 0.212400i
\(330\) 0 0
\(331\) −1495.50 + 1495.50i −0.248338 + 0.248338i −0.820288 0.571950i \(-0.806187\pi\)
0.571950 + 0.820288i \(0.306187\pi\)
\(332\) −222.686 + 222.686i −0.0368116 + 0.0368116i
\(333\) 0 0
\(334\) −1227.03 + 2962.30i −0.201017 + 0.485299i
\(335\) −3324.50 + 1377.05i −0.542199 + 0.224586i
\(336\) 0 0
\(337\) −2396.19 5784.92i −0.387326 0.935089i −0.990504 0.137482i \(-0.956099\pi\)
0.603178 0.797607i \(-0.293901\pi\)
\(338\) 2547.43 + 2547.43i 0.409947 + 0.409947i
\(339\) 0 0
\(340\) 1068.35 + 751.239i 0.170410 + 0.119828i
\(341\) 4778.94 0.758927
\(342\) 0 0
\(343\) −1439.77 3475.91i −0.226648 0.547176i
\(344\) 6982.52i 1.09440i
\(345\) 0 0
\(346\) 1894.09 4572.73i 0.294297 0.710496i
\(347\) −248.118 102.774i −0.0383851 0.0158996i 0.363408 0.931630i \(-0.381613\pi\)
−0.401793 + 0.915730i \(0.631613\pi\)
\(348\) 0 0
\(349\) −1232.94 + 1232.94i −0.189106 + 0.189106i −0.795310 0.606203i \(-0.792692\pi\)
0.606203 + 0.795310i \(0.292692\pi\)
\(350\) −6102.78 2527.85i −0.932020 0.386055i
\(351\) 0 0
\(352\) 1349.50 558.982i 0.204343 0.0846415i
\(353\) 6175.36i 0.931108i 0.885020 + 0.465554i \(0.154145\pi\)
−0.885020 + 0.465554i \(0.845855\pi\)
\(354\) 0 0
\(355\) 9537.67 + 9537.67i 1.42594 + 1.42594i
\(356\) 824.869 0.122803
\(357\) 0 0
\(358\) −3466.51 −0.511763
\(359\) 2296.76 + 2296.76i 0.337655 + 0.337655i 0.855484 0.517829i \(-0.173260\pi\)
−0.517829 + 0.855484i \(0.673260\pi\)
\(360\) 0 0
\(361\) 1940.29i 0.282882i
\(362\) −9761.12 + 4043.19i −1.41722 + 0.587031i
\(363\) 0 0
\(364\) −1107.84 458.884i −0.159524 0.0660771i
\(365\) 11476.4 11476.4i 1.64576 1.64576i
\(366\) 0 0
\(367\) −2451.85 1015.59i −0.348735 0.144451i 0.201439 0.979501i \(-0.435438\pi\)
−0.550173 + 0.835050i \(0.685438\pi\)
\(368\) −1719.66 + 4151.63i −0.243597 + 0.588095i
\(369\) 0 0
\(370\) 14794.9i 2.07878i
\(371\) 2434.92 + 5878.41i 0.340740 + 0.822619i
\(372\) 0 0
\(373\) 6982.38 0.969260 0.484630 0.874719i \(-0.338954\pi\)
0.484630 + 0.874719i \(0.338954\pi\)
\(374\) −3049.09 + 4336.17i −0.421563 + 0.599513i
\(375\) 0 0
\(376\) 692.203 + 692.203i 0.0949405 + 0.0949405i
\(377\) 3154.25 + 7615.04i 0.430908 + 1.04030i
\(378\) 0 0
\(379\) 7696.61 3188.04i 1.04314 0.432081i 0.205699 0.978615i \(-0.434053\pi\)
0.837437 + 0.546534i \(0.184053\pi\)
\(380\) −668.876 + 1614.81i −0.0902964 + 0.217995i
\(381\) 0 0
\(382\) −7720.24 + 7720.24i −1.03404 + 1.03404i
\(383\) 336.493 336.493i 0.0448929 0.0448929i −0.684304 0.729197i \(-0.739894\pi\)
0.729197 + 0.684304i \(0.239894\pi\)
\(384\) 0 0
\(385\) 3841.02 9273.03i 0.508458 1.22753i
\(386\) 2436.50 1009.23i 0.321281 0.133079i
\(387\) 0 0
\(388\) 634.912 + 1532.81i 0.0830741 + 0.200559i
\(389\) −2888.32 2888.32i −0.376461 0.376461i 0.493363 0.869824i \(-0.335768\pi\)
−0.869824 + 0.493363i \(0.835768\pi\)
\(390\) 0 0
\(391\) −742.906 4262.80i −0.0960880 0.551353i
\(392\) 9682.56 1.24756
\(393\) 0 0
\(394\) −1790.69 4323.12i −0.228969 0.552780i
\(395\) 2844.49i 0.362333i
\(396\) 0 0
\(397\) 1582.16 3819.66i 0.200015 0.482880i −0.791766 0.610825i \(-0.790838\pi\)
0.991781 + 0.127945i \(0.0408380\pi\)
\(398\) −12804.7 5303.89i −1.61267 0.667990i
\(399\) 0 0
\(400\) 3896.00 3896.00i 0.487000 0.487000i
\(401\) 2599.23 + 1076.64i 0.323690 + 0.134077i 0.538611 0.842555i \(-0.318949\pi\)
−0.214921 + 0.976631i \(0.568949\pi\)
\(402\) 0 0
\(403\) 5681.34 2353.29i 0.702253 0.290883i
\(404\) 110.805i 0.0136454i
\(405\) 0 0
\(406\) 15952.3 + 15952.3i 1.95000 + 1.95000i
\(407\) −8478.61 −1.03260
\(408\) 0 0
\(409\) 1513.09 0.182928 0.0914638 0.995808i \(-0.470845\pi\)
0.0914638 + 0.995808i \(0.470845\pi\)
\(410\) −8273.39 8273.39i −0.996570 0.996570i
\(411\) 0 0
\(412\) 293.837i 0.0351366i
\(413\) 5060.44 2096.10i 0.602925 0.249740i
\(414\) 0 0
\(415\) −3133.79 1298.06i −0.370679 0.153540i
\(416\) 1329.07 1329.07i 0.156641 0.156641i
\(417\) 0 0
\(418\) −6554.11 2714.80i −0.766918 0.317668i
\(419\) −5278.30 + 12742.9i −0.615422 + 1.48576i 0.241545 + 0.970390i \(0.422346\pi\)
−0.856967 + 0.515371i \(0.827654\pi\)
\(420\) 0 0
\(421\) 960.953i 0.111245i 0.998452 + 0.0556223i \(0.0177143\pi\)
−0.998452 + 0.0556223i \(0.982286\pi\)
\(422\) 6632.76 + 16012.9i 0.765113 + 1.84715i
\(423\) 0 0
\(424\) −4540.05 −0.520010
\(425\) −1158.61 + 5177.40i −0.132237 + 0.590919i
\(426\) 0 0
\(427\) −9669.39 9669.39i −1.09587 1.09587i
\(428\) 364.642 + 880.323i 0.0411814 + 0.0994206i
\(429\) 0 0
\(430\) −13671.3 + 5662.83i −1.53323 + 0.635084i
\(431\) 4143.40 10003.0i 0.463064 1.11793i −0.504069 0.863663i \(-0.668164\pi\)
0.967133 0.254271i \(-0.0818356\pi\)
\(432\) 0 0
\(433\) −2177.03 + 2177.03i −0.241620 + 0.241620i −0.817520 0.575900i \(-0.804652\pi\)
0.575900 + 0.817520i \(0.304652\pi\)
\(434\) 11901.5 11901.5i 1.31634 1.31634i
\(435\) 0 0
\(436\) 319.813 772.097i 0.0351290 0.0848090i
\(437\) 5350.05 2216.06i 0.585646 0.242583i
\(438\) 0 0
\(439\) 5415.21 + 13073.5i 0.588733 + 1.42133i 0.884715 + 0.466133i \(0.154353\pi\)
−0.295982 + 0.955194i \(0.595647\pi\)
\(440\) 5064.16 + 5064.16i 0.548692 + 0.548692i
\(441\) 0 0
\(442\) −1489.59 + 6656.42i −0.160300 + 0.716321i
\(443\) 682.598 0.0732081 0.0366041 0.999330i \(-0.488346\pi\)
0.0366041 + 0.999330i \(0.488346\pi\)
\(444\) 0 0
\(445\) 3399.94 + 8208.19i 0.362186 + 0.874394i
\(446\) 13361.4i 1.41857i
\(447\) 0 0
\(448\) −4403.34 + 10630.6i −0.464371 + 1.12109i
\(449\) −6827.10 2827.88i −0.717574 0.297229i −0.00613945 0.999981i \(-0.501954\pi\)
−0.711435 + 0.702752i \(0.751954\pi\)
\(450\) 0 0
\(451\) 4741.30 4741.30i 0.495031 0.495031i
\(452\) 1236.22 + 512.059i 0.128644 + 0.0532859i
\(453\) 0 0
\(454\) 2460.64 1019.23i 0.254369 0.105363i
\(455\) 12915.5i 1.33074i
\(456\) 0 0
\(457\) −5514.99 5514.99i −0.564508 0.564508i 0.366077 0.930585i \(-0.380701\pi\)
−0.930585 + 0.366077i \(0.880701\pi\)
\(458\) 2651.86 0.270553
\(459\) 0 0
\(460\) 1150.27 0.116591
\(461\) 3026.09 + 3026.09i 0.305725 + 0.305725i 0.843249 0.537524i \(-0.180640\pi\)
−0.537524 + 0.843249i \(0.680640\pi\)
\(462\) 0 0
\(463\) 17748.4i 1.78151i 0.454488 + 0.890753i \(0.349822\pi\)
−0.454488 + 0.890753i \(0.650178\pi\)
\(464\) −17385.1 + 7201.14i −1.73940 + 0.720484i
\(465\) 0 0
\(466\) 12837.6 + 5317.52i 1.27616 + 0.528604i
\(467\) 5468.93 5468.93i 0.541910 0.541910i −0.382178 0.924089i \(-0.624826\pi\)
0.924089 + 0.382178i \(0.124826\pi\)
\(468\) 0 0
\(469\) −6710.06 2779.40i −0.660643 0.273647i
\(470\) 793.907 1916.66i 0.0779153 0.188104i
\(471\) 0 0
\(472\) 3908.31i 0.381133i
\(473\) −3245.24 7834.71i −0.315468 0.761608i
\(474\) 0 0
\(475\) −7100.24 −0.685855
\(476\) 452.583 + 2596.92i 0.0435801 + 0.250062i
\(477\) 0 0
\(478\) −13340.7 13340.7i −1.27655 1.27655i
\(479\) 2316.69 + 5592.98i 0.220986 + 0.533506i 0.995024 0.0996317i \(-0.0317665\pi\)
−0.774039 + 0.633138i \(0.781766\pi\)
\(480\) 0 0
\(481\) −10079.6 + 4175.12i −0.955491 + 0.395777i
\(482\) 7035.79 16985.9i 0.664879 1.60516i
\(483\) 0 0
\(484\) −666.860 + 666.860i −0.0626277 + 0.0626277i
\(485\) −12635.9 + 12635.9i −1.18302 + 1.18302i
\(486\) 0 0
\(487\) 1675.08 4044.00i 0.155863 0.376286i −0.826588 0.562807i \(-0.809721\pi\)
0.982451 + 0.186521i \(0.0597213\pi\)
\(488\) 9014.59 3733.96i 0.836211 0.346370i
\(489\) 0 0
\(490\) −7852.56 18957.8i −0.723964 1.74780i
\(491\) −4596.83 4596.83i −0.422510 0.422510i 0.463557 0.886067i \(-0.346573\pi\)
−0.886067 + 0.463557i \(0.846573\pi\)
\(492\) 0 0
\(493\) 10422.5 14822.1i 0.952143 1.35406i
\(494\) −9128.56 −0.831403
\(495\) 0 0
\(496\) 5372.55 + 12970.5i 0.486360 + 1.17418i
\(497\) 27224.3i 2.45710i
\(498\) 0 0
\(499\) 3843.03 9277.90i 0.344765 0.832336i −0.652455 0.757827i \(-0.726261\pi\)
0.997220 0.0745090i \(-0.0237390\pi\)
\(500\) 848.822 + 351.593i 0.0759209 + 0.0314475i
\(501\) 0 0
\(502\) −12814.9 + 12814.9i −1.13936 + 1.13936i
\(503\) −6828.90 2828.62i −0.605339 0.250740i 0.0588953 0.998264i \(-0.481242\pi\)
−0.664234 + 0.747525i \(0.731242\pi\)
\(504\) 0 0
\(505\) 1102.61 456.716i 0.0971594 0.0402447i
\(506\) 4668.67i 0.410173i
\(507\) 0 0
\(508\) 1333.80 + 1333.80i 0.116492 + 0.116492i
\(509\) −3442.25 −0.299755 −0.149877 0.988705i \(-0.547888\pi\)
−0.149877 + 0.988705i \(0.547888\pi\)
\(510\) 0 0
\(511\) 32758.3 2.83590
\(512\) −5366.95 5366.95i −0.463258 0.463258i
\(513\) 0 0
\(514\) 6637.48i 0.569585i
\(515\) 2923.94 1211.14i 0.250183 0.103629i
\(516\) 0 0
\(517\) 1098.40 + 454.971i 0.0934380 + 0.0387033i
\(518\) −21115.2 + 21115.2i −1.79102 + 1.79102i
\(519\) 0 0
\(520\) 8514.16 + 3526.68i 0.718021 + 0.297414i
\(521\) 5880.96 14197.9i 0.494529 1.19390i −0.457863 0.889023i \(-0.651385\pi\)
0.952392 0.304876i \(-0.0986151\pi\)
\(522\) 0 0
\(523\) 11007.6i 0.920321i −0.887836 0.460161i \(-0.847792\pi\)
0.887836 0.460161i \(-0.152208\pi\)
\(524\) −121.925 294.354i −0.0101648 0.0245399i
\(525\) 0 0
\(526\) 8970.75 0.743618
\(527\) −11058.3 7775.91i −0.914052 0.642740i
\(528\) 0 0
\(529\) 5908.60 + 5908.60i 0.485625 + 0.485625i
\(530\) 3681.98 + 8889.09i 0.301764 + 0.728523i
\(531\) 0 0
\(532\) −3259.28 + 1350.04i −0.265616 + 0.110022i
\(533\) 3301.84 7971.35i 0.268328 0.647800i
\(534\) 0 0
\(535\) −7257.03 + 7257.03i −0.586447 + 0.586447i
\(536\) 3664.48 3664.48i 0.295301 0.295301i
\(537\) 0 0
\(538\) 3466.23 8368.22i 0.277769 0.670594i
\(539\) 10864.3 4500.13i 0.868196 0.359618i
\(540\) 0 0
\(541\) 5199.82 + 12553.5i 0.413231 + 0.997628i 0.984265 + 0.176701i \(0.0565426\pi\)
−0.571034 + 0.820927i \(0.693457\pi\)
\(542\) 234.978 + 234.978i 0.0186221 + 0.0186221i
\(543\) 0 0
\(544\) −4032.22 902.339i −0.317794 0.0711167i
\(545\) 9001.27 0.707471
\(546\) 0 0
\(547\) 2595.23 + 6265.45i 0.202860 + 0.489746i 0.992267 0.124124i \(-0.0396119\pi\)
−0.789407 + 0.613870i \(0.789612\pi\)
\(548\) 4028.64i 0.314042i
\(549\) 0 0
\(550\) 2190.60 5288.58i 0.169832 0.410010i
\(551\) 22403.5 + 9279.83i 1.73216 + 0.717485i
\(552\) 0 0
\(553\) 4059.65 4059.65i 0.312177 0.312177i
\(554\) −23518.3 9741.59i −1.80360 0.747077i
\(555\) 0 0
\(556\) 1500.00 621.319i 0.114414 0.0473917i
\(557\) 7966.39i 0.606009i −0.952989 0.303004i \(-0.902010\pi\)
0.952989 0.303004i \(-0.0979896\pi\)
\(558\) 0 0
\(559\) −7716.08 7716.08i −0.583820 0.583820i
\(560\) 29485.9 2.22502
\(561\) 0 0
\(562\) 210.557 0.0158040
\(563\) −10295.8 10295.8i −0.770718 0.770718i 0.207514 0.978232i \(-0.433463\pi\)
−0.978232 + 0.207514i \(0.933463\pi\)
\(564\) 0 0
\(565\) 14412.1i 1.07314i
\(566\) 174.634 72.3356i 0.0129689 0.00537189i
\(567\) 0 0
\(568\) −17946.9 7433.84i −1.32576 0.549150i
\(569\) 1095.22 1095.22i 0.0806928 0.0806928i −0.665608 0.746301i \(-0.731828\pi\)
0.746301 + 0.665608i \(0.231828\pi\)
\(570\) 0 0
\(571\) 7405.14 + 3067.31i 0.542724 + 0.224804i 0.637166 0.770727i \(-0.280107\pi\)
−0.0944417 + 0.995530i \(0.530107\pi\)
\(572\) 397.662 960.042i 0.0290683 0.0701772i
\(573\) 0 0
\(574\) 23615.6i 1.71724i
\(575\) 1788.16 + 4317.01i 0.129690 + 0.313099i
\(576\) 0 0
\(577\) −13182.6 −0.951127 −0.475564 0.879681i \(-0.657756\pi\)
−0.475564 + 0.879681i \(0.657756\pi\)
\(578\) 14110.9 5072.47i 1.01546 0.365030i
\(579\) 0 0
\(580\) 3406.00 + 3406.00i 0.243838 + 0.243838i
\(581\) −2619.96 6325.14i −0.187081 0.451654i
\(582\) 0 0
\(583\) −5094.14 + 2110.06i −0.361883 + 0.149897i
\(584\) −8944.95 + 21595.0i −0.633809 + 1.53015i
\(585\) 0 0
\(586\) −3290.61 + 3290.61i −0.231969 + 0.231969i
\(587\) 12823.3 12823.3i 0.901659 0.901659i −0.0939204 0.995580i \(-0.529940\pi\)
0.995580 + 0.0939204i \(0.0299399\pi\)
\(588\) 0 0
\(589\) 6923.39 16714.5i 0.484335 1.16929i
\(590\) 7652.19 3169.64i 0.533959 0.221173i
\(591\) 0 0
\(592\) −9531.76 23011.7i −0.661745 1.59759i
\(593\) 5570.08 + 5570.08i 0.385726 + 0.385726i 0.873160 0.487434i \(-0.162067\pi\)
−0.487434 + 0.873160i \(0.662067\pi\)
\(594\) 0 0
\(595\) −23976.3 + 15207.6i −1.65199 + 1.04782i
\(596\) 527.629 0.0362626
\(597\) 0 0
\(598\) 2298.99 + 5550.25i 0.157212 + 0.379543i
\(599\) 20932.7i 1.42786i 0.700218 + 0.713929i \(0.253086\pi\)
−0.700218 + 0.713929i \(0.746914\pi\)
\(600\) 0 0
\(601\) 10107.5 24401.6i 0.686012 1.65618i −0.0666541 0.997776i \(-0.521232\pi\)
0.752666 0.658403i \(-0.228768\pi\)
\(602\) −27593.7 11429.7i −1.86816 0.773818i
\(603\) 0 0
\(604\) 2259.42 2259.42i 0.152209 0.152209i
\(605\) −9384.53 3887.20i −0.630637 0.261218i
\(606\) 0 0
\(607\) 3002.43 1243.65i 0.200766 0.0831599i −0.280035 0.959990i \(-0.590346\pi\)
0.480801 + 0.876830i \(0.340346\pi\)
\(608\) 5529.74i 0.368850i
\(609\) 0 0
\(610\) −14621.7 14621.7i −0.970515 0.970515i
\(611\) 1529.85 0.101295
\(612\) 0 0
\(613\) 2187.56 0.144135 0.0720676 0.997400i \(-0.477040\pi\)
0.0720676 + 0.997400i \(0.477040\pi\)
\(614\) 7218.57 + 7218.57i 0.474459 + 0.474459i
\(615\) 0 0
\(616\) 14455.2i 0.945479i
\(617\) 9976.71 4132.49i 0.650968 0.269640i −0.0326642 0.999466i \(-0.510399\pi\)
0.683632 + 0.729827i \(0.260399\pi\)
\(618\) 0 0
\(619\) 4670.26 + 1934.48i 0.303253 + 0.125611i 0.529121 0.848546i \(-0.322522\pi\)
−0.225868 + 0.974158i \(0.572522\pi\)
\(620\) 2541.11 2541.11i 0.164602 0.164602i
\(621\) 0 0
\(622\) −19695.1 8157.97i −1.26962 0.525892i
\(623\) −6862.33 + 16567.1i −0.441306 + 1.06541i
\(624\) 0 0
\(625\) 19357.2i 1.23886i
\(626\) −12010.1 28995.0i −0.766808 1.85124i
\(627\) 0 0
\(628\) 2376.13 0.150984
\(629\) 19619.1 + 13795.7i 1.24367 + 0.874517i
\(630\) 0 0
\(631\) −15620.9 15620.9i −0.985514 0.985514i 0.0143826 0.999897i \(-0.495422\pi\)
−0.999897 + 0.0143826i \(0.995422\pi\)
\(632\) 1567.69 + 3784.74i 0.0986698 + 0.238210i
\(633\) 0 0
\(634\) 14871.8 6160.12i 0.931603 0.385883i
\(635\) −7774.88 + 18770.2i −0.485885 + 1.17303i
\(636\) 0 0
\(637\) 10699.8 10699.8i 0.665526 0.665526i
\(638\) −13824.1 + 13824.1i −0.857837 + 0.857837i
\(639\) 0 0
\(640\) −9215.23 + 22247.5i −0.569163 + 1.37408i
\(641\) −19700.4 + 8160.17i −1.21391 + 0.502820i −0.895470 0.445122i \(-0.853160\pi\)
−0.318444 + 0.947942i \(0.603160\pi\)
\(642\) 0 0
\(643\) 5956.95 + 14381.3i 0.365348 + 0.882029i 0.994499 + 0.104746i \(0.0334029\pi\)
−0.629151 + 0.777283i \(0.716597\pi\)
\(644\) 1641.67 + 1641.67i 0.100452 + 0.100452i
\(645\) 0 0
\(646\) 10748.6 + 16946.2i 0.654642 + 1.03211i
\(647\) 15308.2 0.930179 0.465090 0.885264i \(-0.346022\pi\)
0.465090 + 0.885264i \(0.346022\pi\)
\(648\) 0 0
\(649\) 1816.45 + 4385.30i 0.109864 + 0.265236i
\(650\) 7365.93i 0.444485i
\(651\) 0 0
\(652\) 104.517 252.327i 0.00627794 0.0151563i
\(653\) −4429.33 1834.69i −0.265441 0.109949i 0.245994 0.969271i \(-0.420886\pi\)
−0.511435 + 0.859322i \(0.670886\pi\)
\(654\) 0 0
\(655\) 2426.54 2426.54i 0.144752 0.144752i
\(656\) 18198.5 + 7538.08i 1.08313 + 0.448647i
\(657\) 0 0
\(658\) 3868.53 1602.40i 0.229196 0.0949360i
\(659\) 6281.68i 0.371319i 0.982614 + 0.185660i \(0.0594422\pi\)
−0.982614 + 0.185660i \(0.940558\pi\)
\(660\) 0 0
\(661\) −5609.86 5609.86i −0.330103 0.330103i 0.522522 0.852626i \(-0.324991\pi\)
−0.852626 + 0.522522i \(0.824991\pi\)
\(662\) −6455.03 −0.378976
\(663\) 0 0
\(664\) 4885.07 0.285508
\(665\) −26868.2 26868.2i −1.56677 1.56677i
\(666\) 0 0
\(667\) 15958.6i 0.926416i
\(668\) −1276.58 + 528.778i −0.0739408 + 0.0306273i
\(669\) 0 0
\(670\) −10146.7 4202.89i −0.585075 0.242346i
\(671\) 8379.36 8379.36i 0.482089 0.482089i
\(672\) 0 0
\(673\) 6275.87 + 2599.55i 0.359461 + 0.148893i 0.555102 0.831782i \(-0.312679\pi\)
−0.195642 + 0.980675i \(0.562679\pi\)
\(674\) 7313.41 17656.1i 0.417955 1.00903i
\(675\) 0 0
\(676\) 1552.52i 0.0883318i
\(677\) −7822.14 18884.3i −0.444061 1.07206i −0.974511 0.224342i \(-0.927977\pi\)
0.530450 0.847716i \(-0.322023\pi\)
\(678\) 0 0
\(679\) −36067.9 −2.03853
\(680\) −3478.26 19958.2i −0.196155 1.12554i
\(681\) 0 0
\(682\) 10313.7 + 10313.7i 0.579079 + 0.579079i
\(683\) −5929.52 14315.1i −0.332191 0.801981i −0.998418 0.0562312i \(-0.982092\pi\)
0.666227 0.745749i \(-0.267908\pi\)
\(684\) 0 0
\(685\) 40088.6 16605.2i 2.23607 0.926209i
\(686\) 4394.31 10608.8i 0.244571 0.590446i
\(687\) 0 0
\(688\) 17615.8 17615.8i 0.976155 0.976155i
\(689\) −5017.01 + 5017.01i −0.277406 + 0.277406i
\(690\) 0 0
\(691\) −3714.04 + 8966.47i −0.204470 + 0.493634i −0.992535 0.121958i \(-0.961083\pi\)
0.788066 + 0.615591i \(0.211083\pi\)
\(692\) 1970.59 816.243i 0.108252 0.0448395i
\(693\) 0 0
\(694\) −313.675 757.278i −0.0171570 0.0414206i
\(695\) 12365.4 + 12365.4i 0.674885 + 0.674885i
\(696\) 0 0
\(697\) −18685.8 + 3256.50i −1.01546 + 0.176971i
\(698\) −5321.78 −0.288585
\(699\) 0 0
\(700\) −1089.36 2629.95i −0.0588199 0.142004i
\(701\) 30452.5i 1.64076i −0.571817 0.820381i \(-0.693761\pi\)
0.571817 0.820381i \(-0.306239\pi\)
\(702\) 0 0
\(703\) −12283.2 + 29654.3i −0.658990 + 1.59094i
\(704\) −9212.33 3815.87i −0.493186 0.204284i
\(705\) 0 0
\(706\) −13327.4 + 13327.4i −0.710457 + 0.710457i
\(707\) 2225.47 + 921.821i 0.118384 + 0.0490363i
\(708\) 0 0
\(709\) 5263.37 2180.16i 0.278801 0.115483i −0.238902 0.971044i \(-0.576787\pi\)
0.517703 + 0.855561i \(0.326787\pi\)
\(710\) 41167.6i 2.17604i
\(711\) 0 0
\(712\) −9047.60 9047.60i −0.476226 0.476226i
\(713\) −11906.2 −0.625373
\(714\) 0 0
\(715\) 11192.4 0.585414
\(716\) −1056.33 1056.33i −0.0551351 0.0551351i
\(717\) 0 0
\(718\) 9913.52i 0.515278i
\(719\) −11159.0 + 4622.22i −0.578806 + 0.239749i −0.652827 0.757507i \(-0.726417\pi\)
0.0740206 + 0.997257i \(0.476417\pi\)
\(720\) 0 0
\(721\) 5901.59 + 2444.52i 0.304836 + 0.126267i
\(722\) −4187.44 + 4187.44i −0.215846 + 0.215846i
\(723\) 0 0
\(724\) −4206.49 1742.38i −0.215929 0.0894408i
\(725\) −7487.99 + 18077.6i −0.383582 + 0.926049i
\(726\) 0 0
\(727\) 8425.17i 0.429810i −0.976635 0.214905i \(-0.931056\pi\)
0.976635 0.214905i \(-0.0689443\pi\)
\(728\) 7118.14 + 17184.7i 0.362384 + 0.874873i
\(729\) 0 0
\(730\) 49535.9 2.51151
\(731\) −5238.65 + 23409.6i −0.265060 + 1.18445i
\(732\) 0 0
\(733\) 565.689 + 565.689i 0.0285050 + 0.0285050i 0.721216 0.692711i \(-0.243584\pi\)
−0.692711 + 0.721216i \(0.743584\pi\)
\(734\) −3099.68 7483.29i −0.155874 0.376312i
\(735\) 0 0
\(736\) −3362.13 + 1392.64i −0.168383 + 0.0697465i
\(737\) 2408.59 5814.84i 0.120382 0.290627i
\(738\) 0 0
\(739\) −543.927 + 543.927i −0.0270753 + 0.0270753i −0.720515 0.693440i \(-0.756094\pi\)
0.693440 + 0.720515i \(0.256094\pi\)
\(740\) −4508.33 + 4508.33i −0.223959 + 0.223959i
\(741\) 0 0
\(742\) −7431.59 + 17941.4i −0.367685 + 0.887670i
\(743\) −15615.9 + 6468.30i −0.771050 + 0.319379i −0.733298 0.679908i \(-0.762020\pi\)
−0.0377524 + 0.999287i \(0.512020\pi\)
\(744\) 0 0
\(745\) 2174.78 + 5250.39i 0.106950 + 0.258200i
\(746\) 15069.1 + 15069.1i 0.739568 + 0.739568i
\(747\) 0 0
\(748\) −2250.46 + 392.202i −0.110006 + 0.0191716i
\(749\) −20714.5 −1.01054
\(750\) 0 0
\(751\) 7431.35 + 17940.9i 0.361084 + 0.871733i 0.995142 + 0.0984478i \(0.0313878\pi\)
−0.634059 + 0.773285i \(0.718612\pi\)
\(752\) 3492.63i 0.169366i
\(753\) 0 0
\(754\) −9627.08 + 23241.8i −0.464984 + 1.12257i
\(755\) 31796.1 + 13170.4i 1.53269 + 0.634860i
\(756\) 0 0
\(757\) −25663.7 + 25663.7i −1.23218 + 1.23218i −0.269058 + 0.963124i \(0.586712\pi\)
−0.963124 + 0.269058i \(0.913288\pi\)
\(758\) 23490.8 + 9730.20i 1.12563 + 0.466249i
\(759\) 0 0
\(760\) 25048.7 10375.5i 1.19554 0.495210i
\(761\) 31667.1i 1.50845i 0.656615 + 0.754226i \(0.271988\pi\)
−0.656615 + 0.754226i \(0.728012\pi\)
\(762\) 0 0
\(763\) 12846.6 + 12846.6i 0.609540 + 0.609540i
\(764\) −4705.07 −0.222805
\(765\) 0 0
\(766\) 1452.41 0.0685087
\(767\) 4318.90 + 4318.90i 0.203320 + 0.203320i
\(768\) 0 0
\(769\) 13702.7i 0.642562i −0.946984 0.321281i \(-0.895887\pi\)
0.946984 0.321281i \(-0.104113\pi\)
\(770\) 28302.2 11723.1i 1.32460 0.548666i
\(771\) 0 0
\(772\) 1049.99 + 434.921i 0.0489509 + 0.0202761i
\(773\) 11122.5 11122.5i 0.517529 0.517529i −0.399294 0.916823i \(-0.630745\pi\)
0.916823 + 0.399294i \(0.130745\pi\)
\(774\) 0 0
\(775\) 13487.1 + 5586.55i 0.625125 + 0.258935i
\(776\) 9848.65 23776.8i 0.455601 1.09992i
\(777\) 0 0
\(778\) 12466.9i 0.574497i
\(779\) −9714.03 23451.7i −0.446779 1.07862i
\(780\) 0 0
\(781\) −23592.2 −1.08092
\(782\) 7596.48 10803.1i 0.347378 0.494013i
\(783\) 0 0
\(784\) 24427.5 + 24427.5i 1.11277 + 1.11277i
\(785\) 9793.94 + 23644.7i 0.445300 + 1.07505i
\(786\) 0 0
\(787\) 7222.24 2991.55i 0.327122 0.135498i −0.213078 0.977035i \(-0.568349\pi\)
0.540200 + 0.841537i \(0.318349\pi\)
\(788\) 771.687 1863.02i 0.0348860 0.0842223i
\(789\) 0 0
\(790\) 6138.85 6138.85i 0.276469 0.276469i
\(791\) −20569.0 + 20569.0i −0.924587 + 0.924587i
\(792\) 0 0
\(793\) 5835.38 14087.9i 0.261312 0.630863i
\(794\) 11658.0 4828.89i 0.521065 0.215832i
\(795\) 0 0
\(796\) −2285.67 5518.10i −0.101776 0.245709i
\(797\) −5541.68 5541.68i −0.246294 0.246294i 0.573154 0.819448i \(-0.305720\pi\)
−0.819448 + 0.573154i \(0.805720\pi\)
\(798\) 0 0
\(799\) −1801.35 2840.00i −0.0797587 0.125747i
\(800\) 4462.01 0.197195
\(801\) 0 0
\(802\) 3286.00 + 7933.10i 0.144679 + 0.349286i
\(803\) 28387.9i 1.24756i
\(804\) 0 0
\(805\) −9569.47 + 23102.7i −0.418981 + 1.01151i
\(806\) 17340.0 + 7182.46i 0.757786 + 0.313885i
\(807\) 0 0
\(808\) −1215.37 + 1215.37i −0.0529165 + 0.0529165i
\(809\) 28656.9 + 11870.1i 1.24539 + 0.515859i 0.905397 0.424567i \(-0.139574\pi\)
0.339998 + 0.940426i \(0.389574\pi\)
\(810\) 0 0
\(811\) 1192.77 494.063i 0.0516448 0.0213920i −0.356712 0.934215i \(-0.616102\pi\)
0.408356 + 0.912823i \(0.366102\pi\)
\(812\) 9722.08i 0.420170i
\(813\) 0 0
\(814\) −18298.2 18298.2i −0.787900 0.787900i
\(815\) 2941.68 0.126433
\(816\) 0 0
\(817\) −32103.7 −1.37474
\(818\) 3265.48 + 3265.48i 0.139578 + 0.139578i
\(819\) 0 0
\(820\) 5042.18i 0.214732i
\(821\) 30591.6 12671.4i 1.30043 0.538656i 0.378353 0.925661i \(-0.376491\pi\)
0.922077 + 0.387006i \(0.126491\pi\)
\(822\) 0 0
\(823\) −24159.3 10007.1i −1.02326 0.423847i −0.192984 0.981202i \(-0.561816\pi\)
−0.830275 + 0.557354i \(0.811816\pi\)
\(824\) −3222.96 + 3222.96i −0.136259 + 0.136259i
\(825\) 0 0
\(826\) 15444.9 + 6397.50i 0.650603 + 0.269488i
\(827\) 13700.4 33075.7i 0.576069 1.39075i −0.320245 0.947335i \(-0.603765\pi\)
0.896314 0.443419i \(-0.146235\pi\)
\(828\) 0 0
\(829\) 11205.6i 0.469465i 0.972060 + 0.234733i \(0.0754215\pi\)
−0.972060 + 0.234733i \(0.924579\pi\)
\(830\) −3961.79 9564.62i −0.165682 0.399991i
\(831\) 0 0
\(832\) −12830.9 −0.534655
\(833\) −32461.7 7264.36i −1.35022 0.302155i
\(834\) 0 0
\(835\) −10523.6 10523.6i −0.436150 0.436150i
\(836\) −1169.92 2824.45i −0.0484003 0.116849i
\(837\) 0 0
\(838\) −38892.7 + 16109.9i −1.60325 + 0.664089i
\(839\) 10303.4 24874.7i 0.423974 1.02356i −0.557189 0.830386i \(-0.688120\pi\)
0.981164 0.193179i \(-0.0618798\pi\)
\(840\) 0 0
\(841\) 30008.3 30008.3i 1.23040 1.23040i
\(842\) −2073.89 + 2073.89i −0.0848823 + 0.0848823i
\(843\) 0 0
\(844\) −2858.34 + 6900.65i −0.116574 + 0.281434i
\(845\) −15449.0 + 6399.18i −0.628948 + 0.260519i
\(846\) 0 0
\(847\) −7845.79 18941.4i −0.318282 0.768400i
\(848\) −11453.8 11453.8i −0.463827 0.463827i
\(849\) 0 0
\(850\) −13674.1 + 8673.17i −0.551786 + 0.349985i
\(851\) 21123.5 0.850888
\(852\) 0 0
\(853\) −4129.59 9969.72i −0.165762 0.400184i 0.819071 0.573692i \(-0.194490\pi\)
−0.984832 + 0.173509i \(0.944490\pi\)
\(854\) 41736.1i 1.67234i
\(855\) 0 0
\(856\) 5656.27 13655.4i 0.225850 0.545249i
\(857\) −11053.3 4578.42i −0.440575 0.182492i 0.151359 0.988479i \(-0.451635\pi\)
−0.591933 + 0.805987i \(0.701635\pi\)
\(858\) 0 0
\(859\) 21946.1 21946.1i 0.871699 0.871699i −0.120958 0.992658i \(-0.538597\pi\)
0.992658 + 0.120958i \(0.0385968\pi\)
\(860\) −5891.54 2440.36i −0.233605 0.0967622i
\(861\) 0 0
\(862\) 30530.2 12646.0i 1.20634 0.499682i
\(863\) 25781.2i 1.01692i −0.861086 0.508460i \(-0.830215\pi\)
0.861086 0.508460i \(-0.169785\pi\)
\(864\) 0 0
\(865\) 16244.7 + 16244.7i 0.638540 + 0.638540i
\(866\) −9396.74 −0.368723
\(867\) 0 0
\(868\) 7253.34 0.283634
\(869\) 3518.04 + 3518.04i 0.137332 + 0.137332i
\(870\) 0 0
\(871\) 8098.91i 0.315064i
\(872\) −11976.7 + 4960.89i −0.465115 + 0.192657i
\(873\) 0 0
\(874\) 16328.8 + 6763.63i 0.631958 + 0.261766i
\(875\) −14123.2 + 14123.2i −0.545659 + 0.545659i
\(876\) 0 0
\(877\) 1002.54 + 415.266i 0.0386014 + 0.0159892i 0.401901 0.915683i \(-0.368350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(878\) −16527.7 + 39901.4i −0.635289 + 1.53372i
\(879\) 0 0
\(880\) 25552.1i 0.978820i
\(881\) 19397.5 + 46829.6i 0.741790 + 1.79084i 0.598438 + 0.801169i \(0.295788\pi\)
0.143352 + 0.989672i \(0.454212\pi\)
\(882\) 0 0
\(883\) 8717.22 0.332229 0.166114 0.986106i \(-0.446878\pi\)
0.166114 + 0.986106i \(0.446878\pi\)
\(884\) −2482.27 + 1574.45i −0.0944434 + 0.0599033i
\(885\) 0 0
\(886\) 1473.15 + 1473.15i 0.0558595 + 0.0558595i
\(887\) −8163.91 19709.4i −0.309039 0.746085i −0.999737 0.0229422i \(-0.992697\pi\)
0.690698 0.723143i \(-0.257303\pi\)
\(888\) 0 0
\(889\) −37885.2 + 15692.6i −1.42928 + 0.592027i
\(890\) −10376.9 + 25052.2i −0.390827 + 0.943540i
\(891\) 0 0
\(892\) −4071.53 + 4071.53i −0.152831 + 0.152831i
\(893\) 3182.56 3182.56i 0.119261 0.119261i
\(894\) 0 0
\(895\) 6157.43 14865.4i 0.229967 0.555189i
\(896\) −44903.7 + 18599.7i −1.67425 + 0.693497i
\(897\) 0 0
\(898\) −8630.95 20837.0i −0.320733 0.774319i
\(899\) −35254.7 35254.7i −1.30791 1.30791i
\(900\) 0 0
\(901\) 15220.9 + 3406.18i 0.562801 + 0.125945i
\(902\) 20464.9 0.755441
\(903\) 0 0
\(904\) −7942.98 19176.1i −0.292234 0.705516i
\(905\) 49040.1i 1.80127i
\(906\) 0 0
\(907\) −573.574 + 1384.73i −0.0209980 + 0.0506937i −0.934031 0.357193i \(-0.883734\pi\)
0.913033 + 0.407886i \(0.133734\pi\)
\(908\) 1060.39 + 439.230i 0.0387560 + 0.0160533i
\(909\) 0 0
\(910\) 27873.6 27873.6i 1.01539 1.01539i
\(911\) 19906.2 + 8245.42i 0.723953 + 0.299871i 0.714065 0.700080i \(-0.246852\pi\)
0.00988880 + 0.999951i \(0.496852\pi\)
\(912\) 0 0
\(913\) 5481.27 2270.42i 0.198690 0.0823000i
\(914\) 23804.4i 0.861466i
\(915\) 0 0
\(916\) 808.083 + 808.083i 0.0291483 + 0.0291483i
\(917\) 6926.31 0.249430
\(918\) 0 0
\(919\) −28763.1 −1.03244 −0.516218 0.856457i \(-0.672660\pi\)
−0.516218 + 0.856457i \(0.672660\pi\)
\(920\) −12616.8 12616.8i −0.452135 0.452135i
\(921\) 0 0
\(922\) 13061.6i 0.466551i
\(923\) −28047.1 + 11617.5i −1.00020 + 0.414295i
\(924\) 0 0
\(925\) −23928.3 9911.45i −0.850551 0.352310i
\(926\) −38303.8 + 38303.8i −1.35933 + 1.35933i
\(927\) 0 0
\(928\) −14079.0 5831.73i −0.498025 0.206289i
\(929\) 2451.91 5919.45i 0.0865928 0.209054i −0.874651 0.484753i \(-0.838909\pi\)
0.961244 + 0.275700i \(0.0889095\pi\)
\(930\) 0 0
\(931\) 44517.7i 1.56714i
\(932\) 2291.55 + 5532.28i 0.0805387 + 0.194438i
\(933\) 0 0
\(934\) 23605.6 0.826980
\(935\) −13178.7 20777.5i −0.460951 0.726734i
\(936\) 0 0
\(937\) 22219.0 + 22219.0i 0.774668 + 0.774668i 0.978919 0.204251i \(-0.0654759\pi\)
−0.204251 + 0.978919i \(0.565476\pi\)
\(938\) −8482.98 20479.7i −0.295287 0.712886i
\(939\) 0 0
\(940\) 825.971 342.129i 0.0286598 0.0118713i
\(941\) 238.278 575.254i 0.00825466 0.0199285i −0.919698 0.392625i \(-0.871567\pi\)
0.927953 + 0.372697i \(0.121567\pi\)
\(942\) 0 0
\(943\) −11812.4 + 11812.4i −0.407917 + 0.407917i
\(944\) −9860.02 + 9860.02i −0.339954 + 0.339954i
\(945\) 0 0
\(946\) 9904.79 23912.3i 0.340415 0.821834i
\(947\) −13515.5 + 5598.31i −0.463775 + 0.192102i −0.602321 0.798254i \(-0.705757\pi\)
0.138546 + 0.990356i \(0.455757\pi\)
\(948\) 0 0
\(949\) 13979.0 + 33748.4i 0.478165 + 1.15439i
\(950\) −15323.4 15323.4i −0.523324 0.523324i
\(951\) 0 0
\(952\) 23520.3 33448.6i 0.800731 1.13873i
\(953\) −26989.7 −0.917400 −0.458700 0.888591i \(-0.651685\pi\)
−0.458700 + 0.888591i \(0.651685\pi\)
\(954\) 0 0
\(955\) −19393.3 46819.7i −0.657124 1.58644i
\(956\) 8130.44i 0.275060i
\(957\) 0 0
\(958\) −7070.75 + 17070.3i −0.238461 + 0.575695i
\(959\) 80913.4 + 33515.4i 2.72454 + 1.12854i
\(960\) 0 0
\(961\) −5236.98 + 5236.98i −0.175791 + 0.175791i
\(962\) −30764.0 12742.8i −1.03105 0.427075i
\(963\) 0 0
\(964\) 7319.96 3032.02i 0.244564 0.101302i
\(965\) 12241.0i 0.408345i
\(966\) 0 0
\(967\) −19597.4 19597.4i −0.651716 0.651716i 0.301690 0.953406i \(-0.402449\pi\)
−0.953406 + 0.301690i \(0.902449\pi\)
\(968\) 14629.0 0.485736
\(969\) 0 0
\(970\) −54540.5 −1.80535
\(971\) −2578.82 2578.82i −0.0852298 0.0852298i 0.663207 0.748436i \(-0.269195\pi\)
−0.748436 + 0.663207i \(0.769195\pi\)
\(972\) 0 0
\(973\) 35295.7i 1.16293i
\(974\) 12342.7 5112.51i 0.406042 0.168188i
\(975\) 0 0
\(976\) 32162.5 + 13322.1i 1.05481 + 0.436917i
\(977\) 2187.08 2187.08i 0.0716181 0.0716181i −0.670390 0.742009i \(-0.733873\pi\)
0.742009 + 0.670390i \(0.233873\pi\)
\(978\) 0 0
\(979\) −14356.8 5946.80i −0.468689 0.194137i
\(980\) 3384.01 8169.71i 0.110304 0.266298i
\(981\) 0 0
\(982\) 19841.4i 0.644770i
\(983\) −22875.0 55225.3i −0.742218 1.79187i −0.596609 0.802532i \(-0.703486\pi\)
−0.145609 0.989342i \(-0.546514\pi\)
\(984\) 0 0
\(985\) 21719.4 0.702577
\(986\) 54481.7 9494.89i 1.75969 0.306672i
\(987\) 0 0
\(988\) −2781.68 2781.68i −0.0895718 0.0895718i
\(989\) 8085.17 + 19519.3i 0.259953 + 0.627582i
\(990\) 0 0
\(991\) 23466.0 9719.93i 0.752192 0.311568i 0.0265561 0.999647i \(-0.491546\pi\)
0.725635 + 0.688079i \(0.241546\pi\)
\(992\) −4350.87 + 10503.9i −0.139254 + 0.336190i
\(993\) 0 0
\(994\) −58754.4 + 58754.4i −1.87483 + 1.87483i
\(995\) 45489.0 45489.0i 1.44935 1.44935i
\(996\) 0 0
\(997\) 2523.61 6092.54i 0.0801642 0.193533i −0.878716 0.477345i \(-0.841599\pi\)
0.958880 + 0.283812i \(0.0915991\pi\)
\(998\) 28317.0 11729.3i 0.898156 0.372028i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.l.c.100.7 40
3.2 odd 2 51.4.h.a.49.4 yes 40
17.8 even 8 inner 153.4.l.c.127.7 40
51.5 even 16 867.4.a.w.1.15 20
51.8 odd 8 51.4.h.a.25.4 40
51.29 even 16 867.4.a.v.1.15 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.h.a.25.4 40 51.8 odd 8
51.4.h.a.49.4 yes 40 3.2 odd 2
153.4.l.c.100.7 40 1.1 even 1 trivial
153.4.l.c.127.7 40 17.8 even 8 inner
867.4.a.v.1.15 20 51.29 even 16
867.4.a.w.1.15 20 51.5 even 16