Properties

Label 153.4.l.c.19.10
Level $153$
Weight $4$
Character 153.19
Analytic conductor $9.027$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [153,4,Mod(19,153)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(153, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("153.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 153.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.02729223088\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 19.10
Character \(\chi\) \(=\) 153.19
Dual form 153.4.l.c.145.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.79946 + 3.79946i) q^{2} +20.8719i q^{4} +(-4.62215 - 11.1589i) q^{5} +(-11.9634 + 28.8822i) q^{7} +(-48.9062 + 48.9062i) q^{8} +(24.8360 - 59.9594i) q^{10} +(-1.65275 - 0.684591i) q^{11} +10.2045i q^{13} +(-155.191 + 64.2823i) q^{14} -204.660 q^{16} +(69.4565 + 9.42288i) q^{17} +(73.3206 + 73.3206i) q^{19} +(232.906 - 96.4729i) q^{20} +(-3.67848 - 8.88064i) q^{22} +(-11.9071 - 4.93207i) q^{23} +(-14.7675 + 14.7675i) q^{25} +(-38.7718 + 38.7718i) q^{26} +(-602.824 - 249.698i) q^{28} +(-26.8811 - 64.8968i) q^{29} +(195.185 - 80.8484i) q^{31} +(-386.348 - 386.348i) q^{32} +(228.096 + 299.700i) q^{34} +377.588 q^{35} +(114.447 - 47.4057i) q^{37} +557.158i q^{38} +(771.789 + 319.685i) q^{40} +(132.677 - 320.311i) q^{41} +(-62.2795 + 62.2795i) q^{43} +(14.2887 - 34.4959i) q^{44} +(-26.5013 - 63.9798i) q^{46} +573.735i q^{47} +(-448.519 - 448.519i) q^{49} -112.217 q^{50} -212.988 q^{52} +(92.6502 + 92.6502i) q^{53} +21.6071i q^{55} +(-827.432 - 1997.60i) q^{56} +(144.439 - 348.707i) q^{58} +(-158.119 + 158.119i) q^{59} +(-106.746 + 257.708i) q^{61} +(1048.78 + 434.419i) q^{62} -1298.55i q^{64} +(113.871 - 47.1670i) q^{65} -304.748 q^{67} +(-196.673 + 1449.69i) q^{68} +(1434.63 + 1434.63i) q^{70} +(-517.248 + 214.251i) q^{71} +(-71.2818 - 172.090i) q^{73} +(614.955 + 254.723i) q^{74} +(-1530.34 + 1530.34i) q^{76} +(39.5449 - 39.5449i) q^{77} +(1195.22 + 495.076i) q^{79} +(945.968 + 2283.77i) q^{80} +(1721.11 - 712.909i) q^{82} +(-547.311 - 547.311i) q^{83} +(-215.890 - 818.610i) q^{85} -473.258 q^{86} +(114.310 - 47.3489i) q^{88} -35.1924i q^{89} +(-294.729 - 122.081i) q^{91} +(102.942 - 248.523i) q^{92} +(-2179.89 + 2179.89i) q^{94} +(479.275 - 1157.07i) q^{95} +(-322.475 - 778.524i) q^{97} -3408.26i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 32 q^{5} + 128 q^{10} - 112 q^{11} - 256 q^{14} - 1024 q^{16} + 112 q^{17} - 32 q^{19} + 640 q^{20} + 728 q^{22} - 208 q^{23} + 296 q^{25} - 1472 q^{26} - 328 q^{28} + 1272 q^{29} - 192 q^{31} + 960 q^{32}+ \cdots + 1008 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.79946 + 3.79946i 1.34331 + 1.34331i 0.892739 + 0.450575i \(0.148781\pi\)
0.450575 + 0.892739i \(0.351219\pi\)
\(3\) 0 0
\(4\) 20.8719i 2.60898i
\(5\) −4.62215 11.1589i −0.413418 0.998079i −0.984213 0.176986i \(-0.943365\pi\)
0.570796 0.821092i \(-0.306635\pi\)
\(6\) 0 0
\(7\) −11.9634 + 28.8822i −0.645962 + 1.55949i 0.172551 + 0.985001i \(0.444799\pi\)
−0.818512 + 0.574489i \(0.805201\pi\)
\(8\) −48.9062 + 48.9062i −2.16137 + 2.16137i
\(9\) 0 0
\(10\) 24.8360 59.9594i 0.785383 1.89608i
\(11\) −1.65275 0.684591i −0.0453020 0.0187647i 0.359917 0.932984i \(-0.382805\pi\)
−0.405219 + 0.914219i \(0.632805\pi\)
\(12\) 0 0
\(13\) 10.2045i 0.217710i 0.994058 + 0.108855i \(0.0347184\pi\)
−0.994058 + 0.108855i \(0.965282\pi\)
\(14\) −155.191 + 64.2823i −2.96261 + 1.22715i
\(15\) 0 0
\(16\) −204.660 −3.19781
\(17\) 69.4565 + 9.42288i 0.990922 + 0.134434i
\(18\) 0 0
\(19\) 73.3206 + 73.3206i 0.885310 + 0.885310i 0.994068 0.108758i \(-0.0346874\pi\)
−0.108758 + 0.994068i \(0.534687\pi\)
\(20\) 232.906 96.4729i 2.60397 1.07860i
\(21\) 0 0
\(22\) −3.67848 8.88064i −0.0356479 0.0860617i
\(23\) −11.9071 4.93207i −0.107948 0.0447134i 0.328056 0.944658i \(-0.393607\pi\)
−0.436004 + 0.899945i \(0.643607\pi\)
\(24\) 0 0
\(25\) −14.7675 + 14.7675i −0.118140 + 0.118140i
\(26\) −38.7718 + 38.7718i −0.292453 + 0.292453i
\(27\) 0 0
\(28\) −602.824 249.698i −4.06868 1.68530i
\(29\) −26.8811 64.8968i −0.172128 0.415553i 0.814149 0.580657i \(-0.197204\pi\)
−0.986276 + 0.165104i \(0.947204\pi\)
\(30\) 0 0
\(31\) 195.185 80.8484i 1.13085 0.468413i 0.262779 0.964856i \(-0.415361\pi\)
0.868069 + 0.496443i \(0.165361\pi\)
\(32\) −386.348 386.348i −2.13429 2.13429i
\(33\) 0 0
\(34\) 228.096 + 299.700i 1.15053 + 1.51171i
\(35\) 377.588 1.82355
\(36\) 0 0
\(37\) 114.447 47.4057i 0.508514 0.210634i −0.113649 0.993521i \(-0.536254\pi\)
0.622163 + 0.782887i \(0.286254\pi\)
\(38\) 557.158i 2.37850i
\(39\) 0 0
\(40\) 771.789 + 319.685i 3.05076 + 1.26367i
\(41\) 132.677 320.311i 0.505383 1.22010i −0.441131 0.897443i \(-0.645423\pi\)
0.946515 0.322661i \(-0.104577\pi\)
\(42\) 0 0
\(43\) −62.2795 + 62.2795i −0.220873 + 0.220873i −0.808866 0.587993i \(-0.799918\pi\)
0.587993 + 0.808866i \(0.299918\pi\)
\(44\) 14.2887 34.4959i 0.0489568 0.118192i
\(45\) 0 0
\(46\) −26.5013 63.9798i −0.0849435 0.205072i
\(47\) 573.735i 1.78059i 0.455382 + 0.890296i \(0.349503\pi\)
−0.455382 + 0.890296i \(0.650497\pi\)
\(48\) 0 0
\(49\) −448.519 448.519i −1.30763 1.30763i
\(50\) −112.217 −0.317398
\(51\) 0 0
\(52\) −212.988 −0.568002
\(53\) 92.6502 + 92.6502i 0.240122 + 0.240122i 0.816901 0.576778i \(-0.195690\pi\)
−0.576778 + 0.816901i \(0.695690\pi\)
\(54\) 0 0
\(55\) 21.6071i 0.0529727i
\(56\) −827.432 1997.60i −1.97447 4.76679i
\(57\) 0 0
\(58\) 144.439 348.707i 0.326996 0.789439i
\(59\) −158.119 + 158.119i −0.348904 + 0.348904i −0.859701 0.510797i \(-0.829350\pi\)
0.510797 + 0.859701i \(0.329350\pi\)
\(60\) 0 0
\(61\) −106.746 + 257.708i −0.224057 + 0.540921i −0.995433 0.0954580i \(-0.969568\pi\)
0.771377 + 0.636379i \(0.219568\pi\)
\(62\) 1048.78 + 434.419i 2.14831 + 0.889859i
\(63\) 0 0
\(64\) 1298.55i 2.53623i
\(65\) 113.871 47.1670i 0.217292 0.0900052i
\(66\) 0 0
\(67\) −304.748 −0.555686 −0.277843 0.960627i \(-0.589619\pi\)
−0.277843 + 0.960627i \(0.589619\pi\)
\(68\) −196.673 + 1449.69i −0.350737 + 2.58530i
\(69\) 0 0
\(70\) 1434.63 + 1434.63i 2.44959 + 2.44959i
\(71\) −517.248 + 214.251i −0.864592 + 0.358126i −0.770502 0.637438i \(-0.779994\pi\)
−0.0940900 + 0.995564i \(0.529994\pi\)
\(72\) 0 0
\(73\) −71.2818 172.090i −0.114286 0.275912i 0.856378 0.516349i \(-0.172709\pi\)
−0.970665 + 0.240437i \(0.922709\pi\)
\(74\) 614.955 + 254.723i 0.966041 + 0.400147i
\(75\) 0 0
\(76\) −1530.34 + 1530.34i −2.30976 + 2.30976i
\(77\) 39.5449 39.5449i 0.0585267 0.0585267i
\(78\) 0 0
\(79\) 1195.22 + 495.076i 1.70219 + 0.705069i 0.999976 0.00690127i \(-0.00219676\pi\)
0.702210 + 0.711970i \(0.252197\pi\)
\(80\) 945.968 + 2283.77i 1.32203 + 3.19166i
\(81\) 0 0
\(82\) 1721.11 712.909i 2.31787 0.960093i
\(83\) −547.311 547.311i −0.723797 0.723797i 0.245579 0.969377i \(-0.421022\pi\)
−0.969377 + 0.245579i \(0.921022\pi\)
\(84\) 0 0
\(85\) −215.890 818.610i −0.275489 1.04460i
\(86\) −473.258 −0.593403
\(87\) 0 0
\(88\) 114.310 47.3489i 0.138472 0.0573569i
\(89\) 35.1924i 0.0419145i −0.999780 0.0209572i \(-0.993329\pi\)
0.999780 0.0209572i \(-0.00667138\pi\)
\(90\) 0 0
\(91\) −294.729 122.081i −0.339517 0.140632i
\(92\) 102.942 248.523i 0.116657 0.281634i
\(93\) 0 0
\(94\) −2179.89 + 2179.89i −2.39189 + 2.39189i
\(95\) 479.275 1157.07i 0.517606 1.24961i
\(96\) 0 0
\(97\) −322.475 778.524i −0.337550 0.814919i −0.997950 0.0640040i \(-0.979613\pi\)
0.660399 0.750915i \(-0.270387\pi\)
\(98\) 3408.26i 3.51313i
\(99\) 0 0
\(100\) −308.225 308.225i −0.308225 0.308225i
\(101\) 217.350 0.214130 0.107065 0.994252i \(-0.465855\pi\)
0.107065 + 0.994252i \(0.465855\pi\)
\(102\) 0 0
\(103\) 805.483 0.770549 0.385275 0.922802i \(-0.374107\pi\)
0.385275 + 0.922802i \(0.374107\pi\)
\(104\) −499.065 499.065i −0.470552 0.470552i
\(105\) 0 0
\(106\) 704.042i 0.645119i
\(107\) 2.07578 + 5.01138i 0.00187545 + 0.00452774i 0.924814 0.380418i \(-0.124220\pi\)
−0.922939 + 0.384946i \(0.874220\pi\)
\(108\) 0 0
\(109\) 449.732 1085.75i 0.395197 0.954091i −0.593591 0.804767i \(-0.702290\pi\)
0.988788 0.149324i \(-0.0477097\pi\)
\(110\) −82.0953 + 82.0953i −0.0711589 + 0.0711589i
\(111\) 0 0
\(112\) 2448.42 5911.01i 2.06566 4.98695i
\(113\) 326.051 + 135.055i 0.271436 + 0.112433i 0.514250 0.857640i \(-0.328070\pi\)
−0.242814 + 0.970073i \(0.578070\pi\)
\(114\) 0 0
\(115\) 155.666i 0.126226i
\(116\) 1354.52 561.059i 1.08417 0.449078i
\(117\) 0 0
\(118\) −1201.53 −0.937374
\(119\) −1103.09 + 1893.32i −0.849747 + 1.45849i
\(120\) 0 0
\(121\) −938.896 938.896i −0.705407 0.705407i
\(122\) −1384.73 + 573.575i −1.02760 + 0.425648i
\(123\) 0 0
\(124\) 1687.46 + 4073.88i 1.22208 + 2.95036i
\(125\) −1161.81 481.238i −0.831324 0.344346i
\(126\) 0 0
\(127\) 918.768 918.768i 0.641949 0.641949i −0.309086 0.951034i \(-0.600023\pi\)
0.951034 + 0.309086i \(0.100023\pi\)
\(128\) 1843.02 1843.02i 1.27267 1.27267i
\(129\) 0 0
\(130\) 611.858 + 253.440i 0.412796 + 0.170986i
\(131\) −711.455 1717.60i −0.474505 1.14556i −0.962152 0.272515i \(-0.912145\pi\)
0.487647 0.873041i \(-0.337855\pi\)
\(132\) 0 0
\(133\) −2994.82 + 1240.49i −1.95251 + 0.808755i
\(134\) −1157.88 1157.88i −0.746460 0.746460i
\(135\) 0 0
\(136\) −3857.69 + 2936.02i −2.43231 + 1.85119i
\(137\) 2263.97 1.41186 0.705928 0.708284i \(-0.250530\pi\)
0.705928 + 0.708284i \(0.250530\pi\)
\(138\) 0 0
\(139\) 1713.19 709.625i 1.04540 0.433019i 0.207152 0.978309i \(-0.433580\pi\)
0.838248 + 0.545290i \(0.183580\pi\)
\(140\) 7880.97i 4.75760i
\(141\) 0 0
\(142\) −2779.30 1151.22i −1.64249 0.680343i
\(143\) 6.98594 16.8655i 0.00408527 0.00986271i
\(144\) 0 0
\(145\) −599.925 + 599.925i −0.343594 + 0.343594i
\(146\) 383.015 924.681i 0.217114 0.524159i
\(147\) 0 0
\(148\) 989.444 + 2388.73i 0.549539 + 1.32671i
\(149\) 159.296i 0.0875843i 0.999041 + 0.0437922i \(0.0139439\pi\)
−0.999041 + 0.0437922i \(0.986056\pi\)
\(150\) 0 0
\(151\) −2103.98 2103.98i −1.13391 1.13391i −0.989522 0.144384i \(-0.953880\pi\)
−0.144384 0.989522i \(-0.546120\pi\)
\(152\) −7171.66 −3.82696
\(153\) 0 0
\(154\) 300.499 0.157240
\(155\) −1804.35 1804.35i −0.935025 0.935025i
\(156\) 0 0
\(157\) 3909.68i 1.98743i 0.111945 + 0.993714i \(0.464292\pi\)
−0.111945 + 0.993714i \(0.535708\pi\)
\(158\) 2660.17 + 6422.22i 1.33944 + 3.23370i
\(159\) 0 0
\(160\) −2525.44 + 6096.96i −1.24784 + 3.01254i
\(161\) 284.898 284.898i 0.139460 0.139460i
\(162\) 0 0
\(163\) 701.015 1692.40i 0.336857 0.813245i −0.661156 0.750248i \(-0.729934\pi\)
0.998014 0.0629972i \(-0.0200659\pi\)
\(164\) 6685.50 + 2769.22i 3.18323 + 1.31854i
\(165\) 0 0
\(166\) 4158.98i 1.94457i
\(167\) 30.2138 12.5150i 0.0140001 0.00579902i −0.375672 0.926753i \(-0.622588\pi\)
0.389672 + 0.920954i \(0.372588\pi\)
\(168\) 0 0
\(169\) 2092.87 0.952602
\(170\) 2290.01 3930.54i 1.03315 1.77329i
\(171\) 0 0
\(172\) −1299.89 1299.89i −0.576254 0.576254i
\(173\) −958.129 + 396.870i −0.421070 + 0.174413i −0.583150 0.812365i \(-0.698180\pi\)
0.162079 + 0.986778i \(0.448180\pi\)
\(174\) 0 0
\(175\) −249.848 603.187i −0.107924 0.260552i
\(176\) 338.251 + 140.108i 0.144867 + 0.0600059i
\(177\) 0 0
\(178\) 133.712 133.712i 0.0563043 0.0563043i
\(179\) −1142.50 + 1142.50i −0.477064 + 0.477064i −0.904191 0.427128i \(-0.859526\pi\)
0.427128 + 0.904191i \(0.359526\pi\)
\(180\) 0 0
\(181\) −1635.33 677.375i −0.671563 0.278171i 0.0207319 0.999785i \(-0.493400\pi\)
−0.692295 + 0.721615i \(0.743400\pi\)
\(182\) −655.971 1583.66i −0.267164 0.644991i
\(183\) 0 0
\(184\) 823.539 341.121i 0.329957 0.136673i
\(185\) −1057.99 1057.99i −0.420458 0.420458i
\(186\) 0 0
\(187\) −108.343 63.1229i −0.0423682 0.0246845i
\(188\) −11974.9 −4.64553
\(189\) 0 0
\(190\) 6217.25 2575.27i 2.37393 0.983313i
\(191\) 3969.45i 1.50377i −0.659296 0.751883i \(-0.729146\pi\)
0.659296 0.751883i \(-0.270854\pi\)
\(192\) 0 0
\(193\) 305.738 + 126.641i 0.114028 + 0.0472321i 0.438968 0.898503i \(-0.355344\pi\)
−0.324940 + 0.945735i \(0.605344\pi\)
\(194\) 1732.74 4183.21i 0.641255 1.54813i
\(195\) 0 0
\(196\) 9361.42 9361.42i 3.41159 3.41159i
\(197\) −850.106 + 2052.34i −0.307449 + 0.742248i 0.692337 + 0.721574i \(0.256581\pi\)
−0.999786 + 0.0206740i \(0.993419\pi\)
\(198\) 0 0
\(199\) 576.145 + 1390.94i 0.205235 + 0.495482i 0.992661 0.120927i \(-0.0385867\pi\)
−0.787426 + 0.616409i \(0.788587\pi\)
\(200\) 1444.44i 0.510688i
\(201\) 0 0
\(202\) 825.815 + 825.815i 0.287644 + 0.287644i
\(203\) 2195.95 0.759238
\(204\) 0 0
\(205\) −4187.57 −1.42669
\(206\) 3060.40 + 3060.40i 1.03509 + 1.03509i
\(207\) 0 0
\(208\) 2088.46i 0.696195i
\(209\) −70.9858 171.375i −0.0234938 0.0567189i
\(210\) 0 0
\(211\) −1506.35 + 3636.65i −0.491475 + 1.18653i 0.462494 + 0.886622i \(0.346955\pi\)
−0.953969 + 0.299904i \(0.903045\pi\)
\(212\) −1933.78 + 1933.78i −0.626475 + 0.626475i
\(213\) 0 0
\(214\) −11.1537 + 26.9274i −0.00356286 + 0.00860150i
\(215\) 982.833 + 407.103i 0.311761 + 0.129136i
\(216\) 0 0
\(217\) 6604.59i 2.06612i
\(218\) 5834.01 2416.52i 1.81252 0.750769i
\(219\) 0 0
\(220\) −450.980 −0.138205
\(221\) −96.1562 + 708.772i −0.0292677 + 0.215734i
\(222\) 0 0
\(223\) 2595.93 + 2595.93i 0.779536 + 0.779536i 0.979752 0.200216i \(-0.0641643\pi\)
−0.200216 + 0.979752i \(0.564164\pi\)
\(224\) 15780.6 6536.53i 4.70707 1.94973i
\(225\) 0 0
\(226\) 725.683 + 1751.95i 0.213592 + 0.515656i
\(227\) −409.359 169.562i −0.119692 0.0495781i 0.322034 0.946728i \(-0.395634\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(228\) 0 0
\(229\) 457.635 457.635i 0.132058 0.132058i −0.637988 0.770046i \(-0.720233\pi\)
0.770046 + 0.637988i \(0.220233\pi\)
\(230\) −591.448 + 591.448i −0.169561 + 0.169561i
\(231\) 0 0
\(232\) 4488.51 + 1859.20i 1.27019 + 0.526131i
\(233\) 84.0334 + 202.875i 0.0236275 + 0.0570419i 0.935253 0.353980i \(-0.115172\pi\)
−0.911625 + 0.411022i \(0.865172\pi\)
\(234\) 0 0
\(235\) 6402.23 2651.89i 1.77717 0.736128i
\(236\) −3300.23 3300.23i −0.910284 0.910284i
\(237\) 0 0
\(238\) −11384.8 + 3002.48i −3.10069 + 0.817738i
\(239\) 5907.10 1.59874 0.799370 0.600840i \(-0.205167\pi\)
0.799370 + 0.600840i \(0.205167\pi\)
\(240\) 0 0
\(241\) 2766.01 1145.72i 0.739312 0.306233i 0.0189395 0.999821i \(-0.493971\pi\)
0.720372 + 0.693588i \(0.243971\pi\)
\(242\) 7134.61i 1.89516i
\(243\) 0 0
\(244\) −5378.85 2227.99i −1.41125 0.584560i
\(245\) −2931.83 + 7078.08i −0.764523 + 1.84572i
\(246\) 0 0
\(247\) −748.203 + 748.203i −0.192741 + 0.192741i
\(248\) −5591.78 + 13499.7i −1.43177 + 3.45659i
\(249\) 0 0
\(250\) −2585.81 6242.71i −0.654165 1.57929i
\(251\) 496.659i 0.124896i 0.998048 + 0.0624479i \(0.0198907\pi\)
−0.998048 + 0.0624479i \(0.980109\pi\)
\(252\) 0 0
\(253\) 16.3030 + 16.3030i 0.00405122 + 0.00405122i
\(254\) 6981.65 1.72468
\(255\) 0 0
\(256\) 3616.56 0.882949
\(257\) −212.203 212.203i −0.0515052 0.0515052i 0.680885 0.732390i \(-0.261595\pi\)
−0.732390 + 0.680885i \(0.761595\pi\)
\(258\) 0 0
\(259\) 3872.62i 0.929084i
\(260\) 984.462 + 2376.70i 0.234822 + 0.566911i
\(261\) 0 0
\(262\) 3822.83 9229.12i 0.901432 2.17625i
\(263\) 2190.44 2190.44i 0.513568 0.513568i −0.402050 0.915618i \(-0.631702\pi\)
0.915618 + 0.402050i \(0.131702\pi\)
\(264\) 0 0
\(265\) 605.627 1462.11i 0.140390 0.338932i
\(266\) −16091.9 6665.49i −3.70924 1.53642i
\(267\) 0 0
\(268\) 6360.67i 1.44977i
\(269\) 1789.74 741.334i 0.405659 0.168030i −0.170518 0.985355i \(-0.554544\pi\)
0.576177 + 0.817325i \(0.304544\pi\)
\(270\) 0 0
\(271\) 4708.60 1.05545 0.527725 0.849415i \(-0.323045\pi\)
0.527725 + 0.849415i \(0.323045\pi\)
\(272\) −14215.0 1928.48i −3.16878 0.429895i
\(273\) 0 0
\(274\) 8601.88 + 8601.88i 1.89656 + 1.89656i
\(275\) 34.5167 14.2973i 0.00756885 0.00313512i
\(276\) 0 0
\(277\) −2718.84 6563.85i −0.589744 1.42377i −0.883748 0.467964i \(-0.844988\pi\)
0.294004 0.955804i \(-0.405012\pi\)
\(278\) 9205.39 + 3813.00i 1.98598 + 0.822620i
\(279\) 0 0
\(280\) −18466.4 + 18466.4i −3.94135 + 3.94135i
\(281\) 2138.46 2138.46i 0.453985 0.453985i −0.442690 0.896675i \(-0.645976\pi\)
0.896675 + 0.442690i \(0.145976\pi\)
\(282\) 0 0
\(283\) −6811.77 2821.53i −1.43080 0.592658i −0.473254 0.880926i \(-0.656921\pi\)
−0.957550 + 0.288267i \(0.906921\pi\)
\(284\) −4471.82 10795.9i −0.934343 2.25570i
\(285\) 0 0
\(286\) 90.6229 37.5372i 0.0187365 0.00776092i
\(287\) 7664.01 + 7664.01i 1.57628 + 1.57628i
\(288\) 0 0
\(289\) 4735.42 + 1308.96i 0.963855 + 0.266428i
\(290\) −4558.79 −0.923108
\(291\) 0 0
\(292\) 3591.83 1487.78i 0.719849 0.298171i
\(293\) 8058.39i 1.60675i 0.595477 + 0.803373i \(0.296963\pi\)
−0.595477 + 0.803373i \(0.703037\pi\)
\(294\) 0 0
\(295\) 2495.27 + 1033.58i 0.492476 + 0.203990i
\(296\) −3278.75 + 7915.61i −0.643830 + 1.55434i
\(297\) 0 0
\(298\) −605.241 + 605.241i −0.117653 + 0.117653i
\(299\) 50.3296 121.506i 0.00973457 0.0235013i
\(300\) 0 0
\(301\) −1053.69 2543.84i −0.201774 0.487124i
\(302\) 15988.0i 3.04638i
\(303\) 0 0
\(304\) −15005.8 15005.8i −2.83105 2.83105i
\(305\) 3369.13 0.632511
\(306\) 0 0
\(307\) 726.313 0.135026 0.0675128 0.997718i \(-0.478494\pi\)
0.0675128 + 0.997718i \(0.478494\pi\)
\(308\) 825.376 + 825.376i 0.152695 + 0.152695i
\(309\) 0 0
\(310\) 13711.1i 2.51206i
\(311\) 2929.36 + 7072.10i 0.534112 + 1.28946i 0.928778 + 0.370635i \(0.120860\pi\)
−0.394667 + 0.918824i \(0.629140\pi\)
\(312\) 0 0
\(313\) −2412.82 + 5825.07i −0.435722 + 1.05193i 0.541690 + 0.840579i \(0.317785\pi\)
−0.977411 + 0.211347i \(0.932215\pi\)
\(314\) −14854.7 + 14854.7i −2.66974 + 2.66974i
\(315\) 0 0
\(316\) −10333.2 + 24946.5i −1.83951 + 4.44097i
\(317\) −1300.28 538.592i −0.230381 0.0954269i 0.264507 0.964384i \(-0.414791\pi\)
−0.494888 + 0.868957i \(0.664791\pi\)
\(318\) 0 0
\(319\) 125.661i 0.0220553i
\(320\) −14490.4 + 6002.10i −2.53136 + 1.04852i
\(321\) 0 0
\(322\) 2164.92 0.374678
\(323\) 4401.70 + 5783.48i 0.758258 + 0.996290i
\(324\) 0 0
\(325\) −150.696 150.696i −0.0257203 0.0257203i
\(326\) 9093.69 3766.73i 1.54495 0.639938i
\(327\) 0 0
\(328\) 9176.47 + 22154.0i 1.54477 + 3.72941i
\(329\) −16570.7 6863.81i −2.77681 1.15019i
\(330\) 0 0
\(331\) 918.583 918.583i 0.152537 0.152537i −0.626713 0.779250i \(-0.715600\pi\)
0.779250 + 0.626713i \(0.215600\pi\)
\(332\) 11423.4 11423.4i 1.88837 1.88837i
\(333\) 0 0
\(334\) 162.346 + 67.2460i 0.0265964 + 0.0110166i
\(335\) 1408.59 + 3400.64i 0.229730 + 0.554618i
\(336\) 0 0
\(337\) −6734.89 + 2789.68i −1.08864 + 0.450931i −0.853534 0.521038i \(-0.825545\pi\)
−0.235110 + 0.971969i \(0.575545\pi\)
\(338\) 7951.77 + 7951.77i 1.27964 + 1.27964i
\(339\) 0 0
\(340\) 17085.9 4506.02i 2.72533 0.718746i
\(341\) −377.940 −0.0600194
\(342\) 0 0
\(343\) 8413.40 3484.94i 1.32443 0.548599i
\(344\) 6091.71i 0.954775i
\(345\) 0 0
\(346\) −5148.27 2132.48i −0.799921 0.331338i
\(347\) −1607.98 + 3882.02i −0.248764 + 0.600570i −0.998100 0.0616209i \(-0.980373\pi\)
0.749336 + 0.662190i \(0.230373\pi\)
\(348\) 0 0
\(349\) −2168.42 + 2168.42i −0.332587 + 0.332587i −0.853568 0.520981i \(-0.825566\pi\)
0.520981 + 0.853568i \(0.325566\pi\)
\(350\) 1342.50 3241.07i 0.205027 0.494979i
\(351\) 0 0
\(352\) 374.045 + 903.026i 0.0566383 + 0.136737i
\(353\) 3349.30i 0.505000i −0.967597 0.252500i \(-0.918747\pi\)
0.967597 0.252500i \(-0.0812528\pi\)
\(354\) 0 0
\(355\) 4781.59 + 4781.59i 0.714875 + 0.714875i
\(356\) 734.531 0.109354
\(357\) 0 0
\(358\) −8681.77 −1.28169
\(359\) −6531.15 6531.15i −0.960170 0.960170i 0.0390667 0.999237i \(-0.487562\pi\)
−0.999237 + 0.0390667i \(0.987562\pi\)
\(360\) 0 0
\(361\) 3892.81i 0.567548i
\(362\) −3639.71 8787.03i −0.528450 1.27579i
\(363\) 0 0
\(364\) 2548.05 6151.55i 0.366908 0.885793i
\(365\) −1590.85 + 1590.85i −0.228134 + 0.228134i
\(366\) 0 0
\(367\) −956.804 + 2309.93i −0.136089 + 0.328549i −0.977202 0.212311i \(-0.931901\pi\)
0.841113 + 0.540860i \(0.181901\pi\)
\(368\) 2436.90 + 1009.40i 0.345196 + 0.142985i
\(369\) 0 0
\(370\) 8039.56i 1.12961i
\(371\) −3784.35 + 1567.53i −0.529578 + 0.219358i
\(372\) 0 0
\(373\) −6885.53 −0.955816 −0.477908 0.878410i \(-0.658605\pi\)
−0.477908 + 0.878410i \(0.658605\pi\)
\(374\) −171.813 651.480i −0.0237547 0.0900728i
\(375\) 0 0
\(376\) −28059.2 28059.2i −3.84851 3.84851i
\(377\) 662.242 274.310i 0.0904701 0.0374739i
\(378\) 0 0
\(379\) −2871.64 6932.75i −0.389198 0.939608i −0.990110 0.140293i \(-0.955196\pi\)
0.600912 0.799315i \(-0.294804\pi\)
\(380\) 24150.3 + 10003.4i 3.26022 + 1.35043i
\(381\) 0 0
\(382\) 15081.8 15081.8i 2.02003 2.02003i
\(383\) 6890.93 6890.93i 0.919348 0.919348i −0.0776340 0.996982i \(-0.524737\pi\)
0.996982 + 0.0776340i \(0.0247366\pi\)
\(384\) 0 0
\(385\) −624.058 258.493i −0.0826103 0.0342183i
\(386\) 680.472 + 1642.81i 0.0897283 + 0.216623i
\(387\) 0 0
\(388\) 16249.2 6730.65i 2.12611 0.880663i
\(389\) −8709.15 8709.15i −1.13515 1.13515i −0.989309 0.145837i \(-0.953413\pi\)
−0.145837 0.989309i \(-0.546587\pi\)
\(390\) 0 0
\(391\) −780.550 454.764i −0.100957 0.0588194i
\(392\) 43870.7 5.65256
\(393\) 0 0
\(394\) −11027.7 + 4567.83i −1.41007 + 0.584071i
\(395\) 15625.6i 1.99040i
\(396\) 0 0
\(397\) 11254.7 + 4661.86i 1.42282 + 0.589351i 0.955567 0.294774i \(-0.0952444\pi\)
0.467251 + 0.884125i \(0.345244\pi\)
\(398\) −3095.77 + 7473.86i −0.389892 + 0.941283i
\(399\) 0 0
\(400\) 3022.31 3022.31i 0.377789 0.377789i
\(401\) 2293.09 5536.01i 0.285565 0.689415i −0.714382 0.699756i \(-0.753292\pi\)
0.999947 + 0.0103417i \(0.00329194\pi\)
\(402\) 0 0
\(403\) 825.021 + 1991.78i 0.101978 + 0.246197i
\(404\) 4536.51i 0.558663i
\(405\) 0 0
\(406\) 8343.43 + 8343.43i 1.01989 + 1.01989i
\(407\) −221.606 −0.0269892
\(408\) 0 0
\(409\) −10892.4 −1.31686 −0.658431 0.752641i \(-0.728780\pi\)
−0.658431 + 0.752641i \(0.728780\pi\)
\(410\) −15910.5 15910.5i −1.91650 1.91650i
\(411\) 0 0
\(412\) 16811.9i 2.01035i
\(413\) −2675.18 6458.45i −0.318733 0.769490i
\(414\) 0 0
\(415\) −3577.61 + 8637.12i −0.423176 + 1.02164i
\(416\) 3942.50 3942.50i 0.464657 0.464657i
\(417\) 0 0
\(418\) 381.425 920.841i 0.0446318 0.107751i
\(419\) 3703.73 + 1534.13i 0.431835 + 0.178872i 0.588003 0.808859i \(-0.299914\pi\)
−0.156168 + 0.987730i \(0.549914\pi\)
\(420\) 0 0
\(421\) 7417.88i 0.858730i −0.903131 0.429365i \(-0.858737\pi\)
0.903131 0.429365i \(-0.141263\pi\)
\(422\) −19540.6 + 8093.99i −2.25408 + 0.933671i
\(423\) 0 0
\(424\) −9062.33 −1.03799
\(425\) −1164.85 + 886.547i −0.132950 + 0.101186i
\(426\) 0 0
\(427\) −6166.12 6166.12i −0.698828 0.698828i
\(428\) −104.597 + 43.3254i −0.0118128 + 0.00489302i
\(429\) 0 0
\(430\) 2187.47 + 5281.01i 0.245323 + 0.592263i
\(431\) −3268.31 1353.78i −0.365264 0.151297i 0.192500 0.981297i \(-0.438341\pi\)
−0.557764 + 0.830000i \(0.688341\pi\)
\(432\) 0 0
\(433\) 4020.07 4020.07i 0.446171 0.446171i −0.447908 0.894080i \(-0.647831\pi\)
0.894080 + 0.447908i \(0.147831\pi\)
\(434\) −25093.9 + 25093.9i −2.77545 + 2.77545i
\(435\) 0 0
\(436\) 22661.6 + 9386.74i 2.48921 + 1.03106i
\(437\) −511.411 1234.66i −0.0559820 0.135152i
\(438\) 0 0
\(439\) 5772.10 2390.88i 0.627534 0.259933i −0.0461710 0.998934i \(-0.514702\pi\)
0.673705 + 0.739001i \(0.264702\pi\)
\(440\) −1056.72 1056.72i −0.114493 0.114493i
\(441\) 0 0
\(442\) −3058.30 + 2327.61i −0.329114 + 0.250483i
\(443\) −9234.56 −0.990400 −0.495200 0.868779i \(-0.664905\pi\)
−0.495200 + 0.868779i \(0.664905\pi\)
\(444\) 0 0
\(445\) −392.707 + 162.665i −0.0418339 + 0.0173282i
\(446\) 19726.3i 2.09432i
\(447\) 0 0
\(448\) 37505.0 + 15535.1i 3.95523 + 1.63831i
\(449\) −917.097 + 2214.07i −0.0963931 + 0.232713i −0.964720 0.263280i \(-0.915196\pi\)
0.868327 + 0.495993i \(0.165196\pi\)
\(450\) 0 0
\(451\) −438.564 + 438.564i −0.0457898 + 0.0457898i
\(452\) −2818.84 + 6805.29i −0.293335 + 0.708172i
\(453\) 0 0
\(454\) −911.100 2199.59i −0.0941851 0.227383i
\(455\) 3853.12i 0.397004i
\(456\) 0 0
\(457\) 3365.78 + 3365.78i 0.344518 + 0.344518i 0.858063 0.513545i \(-0.171668\pi\)
−0.513545 + 0.858063i \(0.671668\pi\)
\(458\) 3477.54 0.354792
\(459\) 0 0
\(460\) −3249.04 −0.329321
\(461\) 13656.2 + 13656.2i 1.37968 + 1.37968i 0.845154 + 0.534523i \(0.179509\pi\)
0.534523 + 0.845154i \(0.320491\pi\)
\(462\) 0 0
\(463\) 6618.40i 0.664326i 0.943222 + 0.332163i \(0.107778\pi\)
−0.943222 + 0.332163i \(0.892222\pi\)
\(464\) 5501.48 + 13281.8i 0.550431 + 1.32886i
\(465\) 0 0
\(466\) −451.533 + 1090.10i −0.0448859 + 0.108364i
\(467\) 10395.5 10395.5i 1.03008 1.03008i 0.0305483 0.999533i \(-0.490275\pi\)
0.999533 0.0305483i \(-0.00972534\pi\)
\(468\) 0 0
\(469\) 3645.82 8801.79i 0.358952 0.866586i
\(470\) 34400.8 + 14249.3i 3.37615 + 1.39845i
\(471\) 0 0
\(472\) 15466.0i 1.50822i
\(473\) 145.568 60.2964i 0.0141506 0.00586137i
\(474\) 0 0
\(475\) −2165.52 −0.209181
\(476\) −39517.2 23023.5i −3.80518 2.21698i
\(477\) 0 0
\(478\) 22443.8 + 22443.8i 2.14761 + 2.14761i
\(479\) −10915.0 + 4521.13i −1.04117 + 0.431265i −0.836730 0.547615i \(-0.815536\pi\)
−0.204435 + 0.978880i \(0.565536\pi\)
\(480\) 0 0
\(481\) 483.753 + 1167.88i 0.0458571 + 0.110709i
\(482\) 14862.5 + 6156.23i 1.40449 + 0.581761i
\(483\) 0 0
\(484\) 19596.5 19596.5i 1.84039 1.84039i
\(485\) −7196.91 + 7196.91i −0.673804 + 0.673804i
\(486\) 0 0
\(487\) −6489.26 2687.94i −0.603812 0.250107i 0.0597682 0.998212i \(-0.480964\pi\)
−0.663580 + 0.748105i \(0.730964\pi\)
\(488\) −7382.98 17824.1i −0.684860 1.65340i
\(489\) 0 0
\(490\) −38032.3 + 15753.5i −3.50638 + 1.45239i
\(491\) 9843.17 + 9843.17i 0.904717 + 0.904717i 0.995840 0.0911225i \(-0.0290455\pi\)
−0.0911225 + 0.995840i \(0.529045\pi\)
\(492\) 0 0
\(493\) −1255.56 4760.80i −0.114701 0.434921i
\(494\) −5685.54 −0.517823
\(495\) 0 0
\(496\) −39946.5 + 16546.4i −3.61624 + 1.49789i
\(497\) 17502.4i 1.57966i
\(498\) 0 0
\(499\) −16520.2 6842.89i −1.48206 0.613887i −0.512484 0.858697i \(-0.671275\pi\)
−0.969571 + 0.244810i \(0.921275\pi\)
\(500\) 10044.3 24249.2i 0.898392 2.16891i
\(501\) 0 0
\(502\) −1887.04 + 1887.04i −0.167774 + 0.167774i
\(503\) −606.562 + 1464.37i −0.0537679 + 0.129807i −0.948481 0.316834i \(-0.897380\pi\)
0.894713 + 0.446642i \(0.147380\pi\)
\(504\) 0 0
\(505\) −1004.63 2425.38i −0.0885253 0.213719i
\(506\) 123.885i 0.0108841i
\(507\) 0 0
\(508\) 19176.4 + 19176.4i 1.67483 + 1.67483i
\(509\) −20663.8 −1.79943 −0.899713 0.436482i \(-0.856224\pi\)
−0.899713 + 0.436482i \(0.856224\pi\)
\(510\) 0 0
\(511\) 5823.09 0.504106
\(512\) −1003.17 1003.17i −0.0865901 0.0865901i
\(513\) 0 0
\(514\) 1612.51i 0.138375i
\(515\) −3723.06 8988.27i −0.318559 0.769069i
\(516\) 0 0
\(517\) 392.773 948.239i 0.0334123 0.0806644i
\(518\) −14713.9 + 14713.9i −1.24805 + 1.24805i
\(519\) 0 0
\(520\) −3262.24 + 7875.76i −0.275113 + 0.664182i
\(521\) 4720.05 + 1955.11i 0.396908 + 0.164405i 0.572204 0.820111i \(-0.306088\pi\)
−0.175296 + 0.984516i \(0.556088\pi\)
\(522\) 0 0
\(523\) 19709.6i 1.64788i −0.566679 0.823938i \(-0.691772\pi\)
0.566679 0.823938i \(-0.308228\pi\)
\(524\) 35849.6 14849.4i 2.98873 1.23797i
\(525\) 0 0
\(526\) 16645.0 1.37977
\(527\) 14318.7 3776.24i 1.18355 0.312136i
\(528\) 0 0
\(529\) −8485.91 8485.91i −0.697453 0.697453i
\(530\) 7856.31 3254.19i 0.643880 0.266704i
\(531\) 0 0
\(532\) −25891.4 62507.4i −2.11003 5.09406i
\(533\) 3268.63 + 1353.91i 0.265629 + 0.110027i
\(534\) 0 0
\(535\) 46.3267 46.3267i 0.00374370 0.00374370i
\(536\) 14904.1 14904.1i 1.20104 1.20104i
\(537\) 0 0
\(538\) 9616.72 + 3983.38i 0.770644 + 0.319211i
\(539\) 434.237 + 1048.34i 0.0347011 + 0.0837759i
\(540\) 0 0
\(541\) 4756.67 1970.28i 0.378013 0.156578i −0.185583 0.982629i \(-0.559417\pi\)
0.563596 + 0.826050i \(0.309417\pi\)
\(542\) 17890.1 + 17890.1i 1.41780 + 1.41780i
\(543\) 0 0
\(544\) −23193.9 30474.9i −1.82799 2.40184i
\(545\) −14194.5 −1.11564
\(546\) 0 0
\(547\) 8574.26 3551.57i 0.670217 0.277613i −0.0215135 0.999769i \(-0.506848\pi\)
0.691731 + 0.722155i \(0.256848\pi\)
\(548\) 47253.3i 3.68351i
\(549\) 0 0
\(550\) 185.467 + 76.8229i 0.0143788 + 0.00595589i
\(551\) 2787.33 6729.21i 0.215507 0.520279i
\(552\) 0 0
\(553\) −28597.7 + 28597.7i −2.19909 + 2.19909i
\(554\) 14609.0 35269.3i 1.12036 2.70478i
\(555\) 0 0
\(556\) 14811.2 + 35757.4i 1.12974 + 2.72743i
\(557\) 6892.53i 0.524319i 0.965025 + 0.262159i \(0.0844347\pi\)
−0.965025 + 0.262159i \(0.915565\pi\)
\(558\) 0 0
\(559\) −635.534 635.534i −0.0480863 0.0480863i
\(560\) −77277.1 −5.83135
\(561\) 0 0
\(562\) 16250.0 1.21969
\(563\) 1892.65 + 1892.65i 0.141680 + 0.141680i 0.774389 0.632709i \(-0.218057\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(564\) 0 0
\(565\) 4262.60i 0.317396i
\(566\) −15160.8 36601.4i −1.12589 2.71814i
\(567\) 0 0
\(568\) 14818.4 35774.8i 1.09466 2.64274i
\(569\) 3661.33 3661.33i 0.269756 0.269756i −0.559246 0.829002i \(-0.688909\pi\)
0.829002 + 0.559246i \(0.188909\pi\)
\(570\) 0 0
\(571\) 4983.44 12031.1i 0.365237 0.881761i −0.629279 0.777179i \(-0.716650\pi\)
0.994516 0.104581i \(-0.0333503\pi\)
\(572\) 352.015 + 145.810i 0.0257316 + 0.0106584i
\(573\) 0 0
\(574\) 58238.3i 4.23488i
\(575\) 248.672 103.003i 0.0180354 0.00747051i
\(576\) 0 0
\(577\) 5485.73 0.395795 0.197898 0.980223i \(-0.436589\pi\)
0.197898 + 0.980223i \(0.436589\pi\)
\(578\) 13018.7 + 22965.4i 0.936863 + 1.65266i
\(579\) 0 0
\(580\) −12521.6 12521.6i −0.896430 0.896430i
\(581\) 22355.2 9259.83i 1.59630 0.661209i
\(582\) 0 0
\(583\) −89.7000 216.555i −0.00637220 0.0153839i
\(584\) 11902.4 + 4930.12i 0.843362 + 0.349332i
\(585\) 0 0
\(586\) −30617.6 + 30617.6i −2.15836 + 2.15836i
\(587\) −12590.9 + 12590.9i −0.885315 + 0.885315i −0.994069 0.108753i \(-0.965314\pi\)
0.108753 + 0.994069i \(0.465314\pi\)
\(588\) 0 0
\(589\) 20238.9 + 8383.24i 1.41584 + 0.586461i
\(590\) 5553.67 + 13407.7i 0.387527 + 0.935573i
\(591\) 0 0
\(592\) −23422.8 + 9702.03i −1.62613 + 0.673566i
\(593\) −417.771 417.771i −0.0289305 0.0289305i 0.692494 0.721424i \(-0.256512\pi\)
−0.721424 + 0.692494i \(0.756512\pi\)
\(594\) 0 0
\(595\) 26226.0 + 3557.97i 1.80699 + 0.245147i
\(596\) −3324.81 −0.228506
\(597\) 0 0
\(598\) 652.885 270.434i 0.0446462 0.0184931i
\(599\) 20309.7i 1.38537i 0.721243 + 0.692683i \(0.243571\pi\)
−0.721243 + 0.692683i \(0.756429\pi\)
\(600\) 0 0
\(601\) −21675.3 8978.19i −1.47114 0.609364i −0.504017 0.863693i \(-0.668145\pi\)
−0.967118 + 0.254329i \(0.918145\pi\)
\(602\) 5661.76 13668.7i 0.383316 0.925406i
\(603\) 0 0
\(604\) 43914.0 43914.0i 2.95834 2.95834i
\(605\) −6137.29 + 14816.7i −0.412424 + 0.995679i
\(606\) 0 0
\(607\) 226.222 + 546.148i 0.0151270 + 0.0365197i 0.931263 0.364349i \(-0.118708\pi\)
−0.916136 + 0.400869i \(0.868708\pi\)
\(608\) 56654.5i 3.77902i
\(609\) 0 0
\(610\) 12800.9 + 12800.9i 0.849660 + 0.849660i
\(611\) −5854.70 −0.387653
\(612\) 0 0
\(613\) 20834.7 1.37277 0.686383 0.727241i \(-0.259198\pi\)
0.686383 + 0.727241i \(0.259198\pi\)
\(614\) 2759.60 + 2759.60i 0.181382 + 0.181382i
\(615\) 0 0
\(616\) 3867.98i 0.252996i
\(617\) −1305.29 3151.24i −0.0851684 0.205615i 0.875557 0.483114i \(-0.160494\pi\)
−0.960726 + 0.277499i \(0.910494\pi\)
\(618\) 0 0
\(619\) 5112.48 12342.6i 0.331967 0.801440i −0.666469 0.745533i \(-0.732195\pi\)
0.998436 0.0559069i \(-0.0178050\pi\)
\(620\) 37660.2 37660.2i 2.43947 2.43947i
\(621\) 0 0
\(622\) −15740.2 + 38000.2i −1.01467 + 2.44963i
\(623\) 1016.43 + 421.020i 0.0653652 + 0.0270751i
\(624\) 0 0
\(625\) 17799.4i 1.13916i
\(626\) −31299.6 + 12964.7i −1.99838 + 0.827755i
\(627\) 0 0
\(628\) −81602.3 −5.18517
\(629\) 8395.82 2214.21i 0.532215 0.140360i
\(630\) 0 0
\(631\) −1711.75 1711.75i −0.107993 0.107993i 0.651045 0.759039i \(-0.274331\pi\)
−0.759039 + 0.651045i \(0.774331\pi\)
\(632\) −82665.9 + 34241.3i −5.20296 + 2.15514i
\(633\) 0 0
\(634\) −2893.99 6986.71i −0.181286 0.437662i
\(635\) −14499.1 6005.72i −0.906108 0.375322i
\(636\) 0 0
\(637\) 4576.93 4576.93i 0.284685 0.284685i
\(638\) −477.443 + 477.443i −0.0296272 + 0.0296272i
\(639\) 0 0
\(640\) −29084.7 12047.3i −1.79637 0.744079i
\(641\) −738.568 1783.06i −0.0455096 0.109870i 0.899490 0.436941i \(-0.143938\pi\)
−0.945000 + 0.327071i \(0.893938\pi\)
\(642\) 0 0
\(643\) 12138.4 5027.88i 0.744464 0.308367i 0.0219837 0.999758i \(-0.493002\pi\)
0.722481 + 0.691391i \(0.243002\pi\)
\(644\) 5946.35 + 5946.35i 0.363849 + 0.363849i
\(645\) 0 0
\(646\) −5250.03 + 38698.2i −0.319752 + 2.35691i
\(647\) 20951.6 1.27310 0.636549 0.771237i \(-0.280361\pi\)
0.636549 + 0.771237i \(0.280361\pi\)
\(648\) 0 0
\(649\) 369.577 153.084i 0.0223531 0.00925897i
\(650\) 1145.13i 0.0691008i
\(651\) 0 0
\(652\) 35323.5 + 14631.5i 2.12174 + 0.878855i
\(653\) 6116.19 14765.8i 0.366532 0.884886i −0.627782 0.778390i \(-0.716037\pi\)
0.994313 0.106496i \(-0.0339631\pi\)
\(654\) 0 0
\(655\) −15878.0 + 15878.0i −0.947186 + 0.947186i
\(656\) −27153.7 + 65554.8i −1.61612 + 3.90166i
\(657\) 0 0
\(658\) −36881.0 89038.6i −2.18506 5.27520i
\(659\) 28685.6i 1.69565i −0.530277 0.847825i \(-0.677912\pi\)
0.530277 0.847825i \(-0.322088\pi\)
\(660\) 0 0
\(661\) −8359.02 8359.02i −0.491874 0.491874i 0.417023 0.908896i \(-0.363074\pi\)
−0.908896 + 0.417023i \(0.863074\pi\)
\(662\) 6980.25 0.409811
\(663\) 0 0
\(664\) 53533.8 3.12879
\(665\) 27685.0 + 27685.0i 1.61440 + 1.61440i
\(666\) 0 0
\(667\) 905.311i 0.0525544i
\(668\) 261.210 + 630.617i 0.0151295 + 0.0365259i
\(669\) 0 0
\(670\) −7568.73 + 18272.5i −0.436426 + 1.05363i
\(671\) 352.849 352.849i 0.0203004 0.0203004i
\(672\) 0 0
\(673\) −8493.22 + 20504.4i −0.486463 + 1.17443i 0.470025 + 0.882653i \(0.344245\pi\)
−0.956488 + 0.291772i \(0.905755\pi\)
\(674\) −36188.3 14989.7i −2.06813 0.856648i
\(675\) 0 0
\(676\) 43682.0i 2.48532i
\(677\) −1225.95 + 507.803i −0.0695966 + 0.0288279i −0.417210 0.908810i \(-0.636992\pi\)
0.347614 + 0.937638i \(0.386992\pi\)
\(678\) 0 0
\(679\) 26343.3 1.48890
\(680\) 50593.4 + 29476.7i 2.85319 + 1.66232i
\(681\) 0 0
\(682\) −1435.97 1435.97i −0.0806248 0.0806248i
\(683\) 9607.17 3979.42i 0.538226 0.222940i −0.0969760 0.995287i \(-0.530917\pi\)
0.635202 + 0.772346i \(0.280917\pi\)
\(684\) 0 0
\(685\) −10464.4 25263.3i −0.583686 1.40914i
\(686\) 45207.3 + 18725.5i 2.51607 + 1.04219i
\(687\) 0 0
\(688\) 12746.1 12746.1i 0.706309 0.706309i
\(689\) −945.453 + 945.453i −0.0522771 + 0.0522771i
\(690\) 0 0
\(691\) 17774.8 + 7362.56i 0.978560 + 0.405333i 0.813892 0.581016i \(-0.197345\pi\)
0.164668 + 0.986349i \(0.447345\pi\)
\(692\) −8283.41 19997.9i −0.455041 1.09857i
\(693\) 0 0
\(694\) −20859.1 + 8640.11i −1.14092 + 0.472585i
\(695\) −15837.2 15837.2i −0.864374 0.864374i
\(696\) 0 0
\(697\) 12233.6 20997.5i 0.664820 1.14109i
\(698\) −16477.7 −0.893537
\(699\) 0 0
\(700\) 12589.6 5214.79i 0.679776 0.281572i
\(701\) 21509.8i 1.15894i 0.814994 + 0.579469i \(0.196740\pi\)
−0.814994 + 0.579469i \(0.803260\pi\)
\(702\) 0 0
\(703\) 11867.2 + 4915.54i 0.636669 + 0.263717i
\(704\) −888.977 + 2146.18i −0.0475917 + 0.114897i
\(705\) 0 0
\(706\) 12725.5 12725.5i 0.678374 0.678374i
\(707\) −2600.25 + 6277.55i −0.138320 + 0.333934i
\(708\) 0 0
\(709\) −5891.43 14223.2i −0.312070 0.753403i −0.999628 0.0272737i \(-0.991317\pi\)
0.687558 0.726129i \(-0.258683\pi\)
\(710\) 36335.0i 1.92060i
\(711\) 0 0
\(712\) 1721.13 + 1721.13i 0.0905926 + 0.0905926i
\(713\) −2722.84 −0.143017
\(714\) 0 0
\(715\) −220.490 −0.0115327
\(716\) −23846.1 23846.1i −1.24465 1.24465i
\(717\) 0 0
\(718\) 49629.8i 2.57962i
\(719\) 9395.23 + 22682.1i 0.487320 + 1.17649i 0.956063 + 0.293160i \(0.0947068\pi\)
−0.468744 + 0.883334i \(0.655293\pi\)
\(720\) 0 0
\(721\) −9636.30 + 23264.1i −0.497745 + 1.20166i
\(722\) −14790.6 + 14790.6i −0.762395 + 0.762395i
\(723\) 0 0
\(724\) 14138.1 34132.3i 0.725742 1.75210i
\(725\) 1355.33 + 561.396i 0.0694286 + 0.0287583i
\(726\) 0 0
\(727\) 8805.07i 0.449191i −0.974452 0.224595i \(-0.927894\pi\)
0.974452 0.224595i \(-0.0721061\pi\)
\(728\) 20384.6 8443.57i 1.03778 0.429862i
\(729\) 0 0
\(730\) −12088.7 −0.612910
\(731\) −4912.57 + 3738.87i −0.248561 + 0.189175i
\(732\) 0 0
\(733\) −17154.5 17154.5i −0.864416 0.864416i 0.127432 0.991847i \(-0.459327\pi\)
−0.991847 + 0.127432i \(0.959327\pi\)
\(734\) −12411.8 + 5141.15i −0.624155 + 0.258533i
\(735\) 0 0
\(736\) 2694.78 + 6505.77i 0.134960 + 0.325823i
\(737\) 503.672 + 208.628i 0.0251737 + 0.0104273i
\(738\) 0 0
\(739\) −27543.6 + 27543.6i −1.37105 + 1.37105i −0.512160 + 0.858890i \(0.671155\pi\)
−0.858890 + 0.512160i \(0.828845\pi\)
\(740\) 22082.1 22082.1i 1.09697 1.09697i
\(741\) 0 0
\(742\) −20334.3 8422.72i −1.00606 0.416722i
\(743\) −10772.7 26007.7i −0.531916 1.28416i −0.930253 0.366919i \(-0.880413\pi\)
0.398337 0.917239i \(-0.369587\pi\)
\(744\) 0 0
\(745\) 1777.56 736.291i 0.0874160 0.0362089i
\(746\) −26161.3 26161.3i −1.28396 1.28396i
\(747\) 0 0
\(748\) 1317.49 2261.33i 0.0644015 0.110538i
\(749\) −169.573 −0.00827244
\(750\) 0 0
\(751\) −32521.4 + 13470.8i −1.58019 + 0.654537i −0.988444 0.151587i \(-0.951562\pi\)
−0.591748 + 0.806123i \(0.701562\pi\)
\(752\) 117420.i 5.69399i
\(753\) 0 0
\(754\) 3558.40 + 1473.94i 0.171869 + 0.0711904i
\(755\) −13753.1 + 33203.0i −0.662950 + 1.60050i
\(756\) 0 0
\(757\) −17080.4 + 17080.4i −0.820078 + 0.820078i −0.986119 0.166041i \(-0.946902\pi\)
0.166041 + 0.986119i \(0.446902\pi\)
\(758\) 15430.0 37251.4i 0.739373 1.78500i
\(759\) 0 0
\(760\) 33148.5 + 80027.5i 1.58213 + 3.81961i
\(761\) 25612.3i 1.22003i 0.792388 + 0.610017i \(0.208837\pi\)
−0.792388 + 0.610017i \(0.791163\pi\)
\(762\) 0 0
\(763\) 25978.5 + 25978.5i 1.23261 + 1.23261i
\(764\) 82849.8 3.92330
\(765\) 0 0
\(766\) 52363.7 2.46994
\(767\) −1613.53 1613.53i −0.0759599 0.0759599i
\(768\) 0 0
\(769\) 1349.23i 0.0632699i −0.999499 0.0316350i \(-0.989929\pi\)
0.999499 0.0316350i \(-0.0100714\pi\)
\(770\) −1388.95 3353.22i −0.0650056 0.156937i
\(771\) 0 0
\(772\) −2643.23 + 6381.31i −0.123228 + 0.297498i
\(773\) 2254.38 2254.38i 0.104896 0.104896i −0.652711 0.757607i \(-0.726369\pi\)
0.757607 + 0.652711i \(0.226369\pi\)
\(774\) 0 0
\(775\) −1688.47 + 4076.33i −0.0782602 + 0.188937i
\(776\) 53845.6 + 22303.6i 2.49091 + 1.03177i
\(777\) 0 0
\(778\) 66180.2i 3.04971i
\(779\) 33213.4 13757.4i 1.52759 0.632749i
\(780\) 0 0
\(781\) 1001.55 0.0458879
\(782\) −1237.81 4693.53i −0.0566038 0.214630i
\(783\) 0 0
\(784\) 91793.7 + 91793.7i 4.18156 + 4.18156i
\(785\) 43627.5 18071.1i 1.98361 0.821638i
\(786\) 0 0
\(787\) −1041.32 2513.97i −0.0471652 0.113867i 0.898541 0.438890i \(-0.144628\pi\)
−0.945706 + 0.325023i \(0.894628\pi\)
\(788\) −42836.1 17743.3i −1.93651 0.802130i
\(789\) 0 0
\(790\) 59368.9 59368.9i 2.67374 2.67374i
\(791\) −7801.34 + 7801.34i −0.350675 + 0.350675i
\(792\) 0 0
\(793\) −2629.80 1089.30i −0.117764 0.0487794i
\(794\) 25049.4 + 60474.5i 1.11961 + 2.70297i
\(795\) 0 0
\(796\) −29031.5 + 12025.2i −1.29270 + 0.535456i
\(797\) 22381.4 + 22381.4i 0.994716 + 0.994716i 0.999986 0.00526978i \(-0.00167743\pi\)
−0.00526978 + 0.999986i \(0.501677\pi\)
\(798\) 0 0
\(799\) −5406.24 + 39849.6i −0.239373 + 1.76443i
\(800\) 11410.8 0.504290
\(801\) 0 0
\(802\) 29746.4 12321.4i 1.30970 0.542497i
\(803\) 333.220i 0.0146439i
\(804\) 0 0
\(805\) −4495.98 1862.29i −0.196848 0.0815369i
\(806\) −4433.05 + 10702.3i −0.193731 + 0.467709i
\(807\) 0 0
\(808\) −10629.8 + 10629.8i −0.462815 + 0.462815i
\(809\) −12127.9 + 29279.4i −0.527064 + 1.27244i 0.406375 + 0.913706i \(0.366793\pi\)
−0.933438 + 0.358738i \(0.883207\pi\)
\(810\) 0 0
\(811\) −13033.1 31464.7i −0.564309 1.36236i −0.906290 0.422656i \(-0.861098\pi\)
0.341981 0.939707i \(-0.388902\pi\)
\(812\) 45833.5i 1.98084i
\(813\) 0 0
\(814\) −841.985 841.985i −0.0362550 0.0362550i
\(815\) −22125.4 −0.950945
\(816\) 0 0
\(817\) −9132.74 −0.391082
\(818\) −41385.5 41385.5i −1.76896 1.76896i
\(819\) 0 0
\(820\) 87402.3i 3.72222i
\(821\) −14611.3 35274.8i −0.621117 1.49951i −0.850393 0.526148i \(-0.823636\pi\)
0.229275 0.973362i \(-0.426364\pi\)
\(822\) 0 0
\(823\) −7680.56 + 18542.5i −0.325307 + 0.785360i 0.673621 + 0.739077i \(0.264738\pi\)
−0.998928 + 0.0462837i \(0.985262\pi\)
\(824\) −39393.1 + 39393.1i −1.66544 + 1.66544i
\(825\) 0 0
\(826\) 14374.4 34702.9i 0.605508 1.46183i
\(827\) −1706.74 706.956i −0.0717645 0.0297258i 0.346512 0.938045i \(-0.387366\pi\)
−0.418277 + 0.908320i \(0.637366\pi\)
\(828\) 0 0
\(829\) 3383.13i 0.141738i −0.997486 0.0708691i \(-0.977423\pi\)
0.997486 0.0708691i \(-0.0225773\pi\)
\(830\) −46409.4 + 19223.4i −1.94084 + 0.803921i
\(831\) 0 0
\(832\) 13251.1 0.552164
\(833\) −26926.2 35378.9i −1.11997 1.47156i
\(834\) 0 0
\(835\) −279.305 279.305i −0.0115758 0.0115758i
\(836\) 3576.92 1481.61i 0.147979 0.0612948i
\(837\) 0 0
\(838\) 8243.29 + 19901.1i 0.339809 + 0.820371i
\(839\) −33283.7 13786.6i −1.36958 0.567300i −0.427908 0.903822i \(-0.640749\pi\)
−0.941676 + 0.336522i \(0.890749\pi\)
\(840\) 0 0
\(841\) 13756.6 13756.6i 0.564051 0.564051i
\(842\) 28184.0 28184.0i 1.15354 1.15354i
\(843\) 0 0
\(844\) −75903.6 31440.3i −3.09563 1.28225i
\(845\) −9673.55 23354.0i −0.393823 0.950772i
\(846\) 0 0
\(847\) 38349.7 15885.0i 1.55574 0.644409i
\(848\) −18961.8 18961.8i −0.767865 0.767865i
\(849\) 0 0
\(850\) −7794.22 1057.41i −0.314517 0.0426692i
\(851\) −1596.54 −0.0643111
\(852\) 0 0
\(853\) 24460.9 10132.0i 0.981859 0.406699i 0.166745 0.986000i \(-0.446674\pi\)
0.815114 + 0.579301i \(0.196674\pi\)
\(854\) 46855.9i 1.87749i
\(855\) 0 0
\(856\) −346.606 143.569i −0.0138397 0.00573258i
\(857\) 14988.5 36185.4i 0.597429 1.44232i −0.278763 0.960360i \(-0.589924\pi\)
0.876192 0.481962i \(-0.160076\pi\)
\(858\) 0 0
\(859\) −9624.53 + 9624.53i −0.382287 + 0.382287i −0.871926 0.489638i \(-0.837129\pi\)
0.489638 + 0.871926i \(0.337129\pi\)
\(860\) −8497.00 + 20513.6i −0.336913 + 0.813380i
\(861\) 0 0
\(862\) −7274.20 17561.5i −0.287425 0.693905i
\(863\) 27577.7i 1.08778i −0.839156 0.543892i \(-0.816950\pi\)
0.839156 0.543892i \(-0.183050\pi\)
\(864\) 0 0
\(865\) 8857.23 + 8857.23i 0.348156 + 0.348156i
\(866\) 30548.2 1.19870
\(867\) 0 0
\(868\) −137850. −5.39048
\(869\) −1636.47 1636.47i −0.0638821 0.0638821i
\(870\) 0 0
\(871\) 3109.82i 0.120978i
\(872\) 31105.2 + 75094.5i 1.20797 + 2.91631i
\(873\) 0 0
\(874\) 2747.94 6634.12i 0.106351 0.256754i
\(875\) 27798.4 27798.4i 1.07401 1.07401i
\(876\) 0 0
\(877\) −336.298 + 811.895i −0.0129487 + 0.0312608i −0.930222 0.366998i \(-0.880385\pi\)
0.917273 + 0.398259i \(0.130385\pi\)
\(878\) 31015.0 + 12846.8i 1.19215 + 0.493803i
\(879\) 0 0
\(880\) 4422.09i 0.169396i
\(881\) −9639.60 + 3992.85i −0.368634 + 0.152693i −0.559307 0.828960i \(-0.688933\pi\)
0.190674 + 0.981653i \(0.438933\pi\)
\(882\) 0 0
\(883\) 26952.0 1.02719 0.513595 0.858033i \(-0.328313\pi\)
0.513595 + 0.858033i \(0.328313\pi\)
\(884\) −14793.4 2006.96i −0.562846 0.0763590i
\(885\) 0 0
\(886\) −35086.4 35086.4i −1.33042 1.33042i
\(887\) −15399.1 + 6378.52i −0.582922 + 0.241454i −0.654602 0.755974i \(-0.727164\pi\)
0.0716804 + 0.997428i \(0.477164\pi\)
\(888\) 0 0
\(889\) 15544.4 + 37527.6i 0.586438 + 1.41579i
\(890\) −2110.12 874.038i −0.0794733 0.0329189i
\(891\) 0 0
\(892\) −54182.0 + 54182.0i −2.03380 + 2.03380i
\(893\) −42066.6 + 42066.6i −1.57638 + 1.57638i
\(894\) 0 0
\(895\) 18029.8 + 7468.18i 0.673374 + 0.278921i
\(896\) 31181.6 + 75279.1i 1.16262 + 2.80681i
\(897\) 0 0
\(898\) −11896.8 + 4927.80i −0.442093 + 0.183121i
\(899\) −10493.6 10493.6i −0.389300 0.389300i
\(900\) 0 0
\(901\) 5562.13 + 7308.19i 0.205662 + 0.270223i
\(902\) −3332.62 −0.123020
\(903\) 0 0
\(904\) −22550.9 + 9340.90i −0.829682 + 0.343665i
\(905\) 21379.3i 0.785274i
\(906\) 0 0
\(907\) −30759.4 12740.9i −1.12607 0.466435i −0.259628 0.965709i \(-0.583600\pi\)
−0.866444 + 0.499274i \(0.833600\pi\)
\(908\) 3539.07 8544.08i 0.129348 0.312274i
\(909\) 0 0
\(910\) −14639.8 + 14639.8i −0.533301 + 0.533301i
\(911\) −8045.04 + 19422.5i −0.292584 + 0.706361i −1.00000 0.000437010i \(-0.999861\pi\)
0.707416 + 0.706798i \(0.249861\pi\)
\(912\) 0 0
\(913\) 529.883 + 1279.25i 0.0192076 + 0.0463713i
\(914\) 25576.3i 0.925591i
\(915\) 0 0
\(916\) 9551.70 + 9551.70i 0.344538 + 0.344538i
\(917\) 58119.5 2.09299
\(918\) 0 0
\(919\) −47653.1 −1.71048 −0.855240 0.518232i \(-0.826590\pi\)
−0.855240 + 0.518232i \(0.826590\pi\)
\(920\) −7613.04 7613.04i −0.272820 0.272820i
\(921\) 0 0
\(922\) 103772.i 3.70668i
\(923\) −2186.33 5278.28i −0.0779676 0.188230i
\(924\) 0 0
\(925\) −990.039 + 2390.17i −0.0351917 + 0.0849602i
\(926\) −25146.4 + 25146.4i −0.892398 + 0.892398i
\(927\) 0 0
\(928\) −14687.3 + 35458.2i −0.519540 + 1.25428i
\(929\) −37240.7 15425.6i −1.31521 0.544777i −0.388808 0.921319i \(-0.627113\pi\)
−0.926399 + 0.376542i \(0.877113\pi\)
\(930\) 0 0
\(931\) 65771.3i 2.31532i
\(932\) −4234.37 + 1753.93i −0.148821 + 0.0616438i
\(933\) 0 0
\(934\) 78995.0 2.76745
\(935\) −203.601 + 1500.75i −0.00712135 + 0.0524918i
\(936\) 0 0
\(937\) 8379.91 + 8379.91i 0.292166 + 0.292166i 0.837935 0.545769i \(-0.183763\pi\)
−0.545769 + 0.837935i \(0.683763\pi\)
\(938\) 47294.3 19589.9i 1.64628 0.681912i
\(939\) 0 0
\(940\) 55349.9 + 133626.i 1.92055 + 4.63661i
\(941\) 5584.59 + 2313.21i 0.193467 + 0.0801367i 0.477314 0.878733i \(-0.341611\pi\)
−0.283846 + 0.958870i \(0.591611\pi\)
\(942\) 0 0
\(943\) −3159.60 + 3159.60i −0.109110 + 0.109110i
\(944\) 32360.6 32360.6i 1.11573 1.11573i
\(945\) 0 0
\(946\) 782.175 + 323.988i 0.0268824 + 0.0111350i
\(947\) 8928.00 + 21554.1i 0.306358 + 0.739614i 0.999817 + 0.0191180i \(0.00608582\pi\)
−0.693459 + 0.720496i \(0.743914\pi\)
\(948\) 0 0
\(949\) 1756.10 727.399i 0.0600688 0.0248813i
\(950\) −8227.83 8227.83i −0.280996 0.280996i
\(951\) 0 0
\(952\) −38647.5 146543.i −1.31573 4.98896i
\(953\) −31114.9 −1.05762 −0.528810 0.848740i \(-0.677362\pi\)
−0.528810 + 0.848740i \(0.677362\pi\)
\(954\) 0 0
\(955\) −44294.6 + 18347.4i −1.50088 + 0.621684i
\(956\) 123292.i 4.17108i
\(957\) 0 0
\(958\) −58649.0 24293.2i −1.97793 0.819287i
\(959\) −27084.8 + 65388.4i −0.912005 + 2.20177i
\(960\) 0 0
\(961\) 10495.4 10495.4i 0.352301 0.352301i
\(962\) −2599.33 + 6275.34i −0.0871162 + 0.210317i
\(963\) 0 0
\(964\) 23913.3 + 57731.7i 0.798956 + 1.92885i
\(965\) 3997.03i 0.133336i
\(966\) 0 0
\(967\) 21337.7 + 21337.7i 0.709591 + 0.709591i 0.966449 0.256858i \(-0.0826873\pi\)
−0.256858 + 0.966449i \(0.582687\pi\)
\(968\) 91835.7 3.04929
\(969\) 0 0
\(970\) −54688.8 −1.81026
\(971\) 1502.19 + 1502.19i 0.0496473 + 0.0496473i 0.731495 0.681847i \(-0.238823\pi\)
−0.681847 + 0.731495i \(0.738823\pi\)
\(972\) 0 0
\(973\) 57970.0i 1.91000i
\(974\) −14443.0 34868.4i −0.475137 1.14708i
\(975\) 0 0
\(976\) 21846.7 52742.5i 0.716490 1.72976i
\(977\) 35415.1 35415.1i 1.15970 1.15970i 0.175165 0.984539i \(-0.443954\pi\)
0.984539 0.175165i \(-0.0560459\pi\)
\(978\) 0 0
\(979\) −24.0924 + 58.1642i −0.000786513 + 0.00189881i
\(980\) −147733. 61192.8i −4.81545 1.99463i
\(981\) 0 0
\(982\) 74797.6i 2.43064i
\(983\) −48582.3 + 20123.4i −1.57633 + 0.652938i −0.987827 0.155556i \(-0.950283\pi\)
−0.588505 + 0.808494i \(0.700283\pi\)
\(984\) 0 0
\(985\) 26831.1 0.867927
\(986\) 13318.1 22858.9i 0.430156 0.738313i
\(987\) 0 0
\(988\) −15616.4 15616.4i −0.502858 0.502858i
\(989\) 1048.73 434.400i 0.0337187 0.0139668i
\(990\) 0 0
\(991\) −9906.88 23917.3i −0.317560 0.766659i −0.999382 0.0351406i \(-0.988812\pi\)
0.681822 0.731518i \(-0.261188\pi\)
\(992\) −106645. 44173.8i −3.41329 1.41383i
\(993\) 0 0
\(994\) 66499.7 66499.7i 2.12197 2.12197i
\(995\) 12858.2 12858.2i 0.409682 0.409682i
\(996\) 0 0
\(997\) −719.995 298.232i −0.0228711 0.00947352i 0.371219 0.928546i \(-0.378940\pi\)
−0.394090 + 0.919072i \(0.628940\pi\)
\(998\) −36768.6 88767.2i −1.16622 2.81551i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.4.l.c.19.10 40
3.2 odd 2 51.4.h.a.19.1 40
17.9 even 8 inner 153.4.l.c.145.10 40
51.14 even 16 867.4.a.v.1.2 20
51.20 even 16 867.4.a.w.1.2 20
51.26 odd 8 51.4.h.a.43.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.h.a.19.1 40 3.2 odd 2
51.4.h.a.43.1 yes 40 51.26 odd 8
153.4.l.c.19.10 40 1.1 even 1 trivial
153.4.l.c.145.10 40 17.9 even 8 inner
867.4.a.v.1.2 20 51.14 even 16
867.4.a.w.1.2 20 51.20 even 16