Properties

Label 1530.2.a.g.1.1
Level $1530$
Weight $2$
Character 1530.1
Self dual yes
Analytic conductor $12.217$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(1,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1530.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +2.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +2.00000 q^{7} -1.00000 q^{8} -1.00000 q^{10} -1.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{19} +1.00000 q^{20} +6.00000 q^{23} +1.00000 q^{25} +1.00000 q^{26} +2.00000 q^{28} +3.00000 q^{29} +5.00000 q^{31} -1.00000 q^{32} -1.00000 q^{34} +2.00000 q^{35} +8.00000 q^{37} +1.00000 q^{38} -1.00000 q^{40} -6.00000 q^{41} -10.0000 q^{43} -6.00000 q^{46} +3.00000 q^{47} -3.00000 q^{49} -1.00000 q^{50} -1.00000 q^{52} +3.00000 q^{53} -2.00000 q^{56} -3.00000 q^{58} -3.00000 q^{59} +11.0000 q^{61} -5.00000 q^{62} +1.00000 q^{64} -1.00000 q^{65} +2.00000 q^{67} +1.00000 q^{68} -2.00000 q^{70} -9.00000 q^{71} +11.0000 q^{73} -8.00000 q^{74} -1.00000 q^{76} +8.00000 q^{79} +1.00000 q^{80} +6.00000 q^{82} +12.0000 q^{83} +1.00000 q^{85} +10.0000 q^{86} -15.0000 q^{89} -2.00000 q^{91} +6.00000 q^{92} -3.00000 q^{94} -1.00000 q^{95} -7.00000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 11.0000 1.40841 0.704203 0.709999i \(-0.251305\pi\)
0.704203 + 0.709999i \(0.251305\pi\)
\(62\) −5.00000 −0.635001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) −9.00000 −1.06810 −0.534052 0.845452i \(-0.679331\pi\)
−0.534052 + 0.845452i \(0.679331\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 10.0000 1.07833
\(87\) 0 0
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −3.00000 −0.309426
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −3.00000 −0.291386
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −9.00000 −0.846649 −0.423324 0.905978i \(-0.639137\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) 3.00000 0.276172
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −11.0000 −0.995893
\(123\) 0 0
\(124\) 5.00000 0.449013
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.00000 0.0877058
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) 9.00000 0.755263
\(143\) 0 0
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) 1.00000 0.0811107
\(153\) 0 0
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −1.00000 −0.0766965
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 15.0000 1.12430
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) 3.00000 0.218797
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 7.00000 0.502571
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 3.00000 0.206041
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) −11.0000 −0.745014
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00000 −0.0672673
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 9.00000 0.598671
\(227\) −3.00000 −0.199117 −0.0995585 0.995032i \(-0.531743\pi\)
−0.0995585 + 0.995032i \(0.531743\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) −3.00000 −0.195283
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 11.0000 0.707107
\(243\) 0 0
\(244\) 11.0000 0.704203
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 1.00000 0.0636285
\(248\) −5.00000 −0.317500
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −11.0000 −0.690201
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) −1.00000 −0.0620174
\(261\) 0 0
\(262\) −18.0000 −1.11204
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) 32.0000 1.94386 0.971931 0.235267i \(-0.0755965\pi\)
0.971931 + 0.235267i \(0.0755965\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −8.00000 −0.479808
\(279\) 0 0
\(280\) −2.00000 −0.119523
\(281\) −27.0000 −1.61068 −0.805342 0.592810i \(-0.798019\pi\)
−0.805342 + 0.592810i \(0.798019\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) −9.00000 −0.534052
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −3.00000 −0.176166
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) 3.00000 0.175262 0.0876309 0.996153i \(-0.472070\pi\)
0.0876309 + 0.996153i \(0.472070\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 22.0000 1.26596
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 11.0000 0.629858
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5.00000 −0.283981
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −12.0000 −0.668734
\(323\) −1.00000 −0.0556415
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 16.0000 0.886158
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −31.0000 −1.70391 −0.851957 0.523612i \(-0.824584\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 10.0000 0.539164
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 15.0000 0.805242 0.402621 0.915367i \(-0.368099\pi\)
0.402621 + 0.915367i \(0.368099\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) −15.0000 −0.794998
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 11.0000 0.575766
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) −8.00000 −0.415900
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) 9.00000 0.459879 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −7.00000 −0.355371
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −24.0000 −1.20910
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) −11.0000 −0.551380
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −36.0000 −1.79775 −0.898877 0.438201i \(-0.855616\pi\)
−0.898877 + 0.438201i \(0.855616\pi\)
\(402\) 0 0
\(403\) −5.00000 −0.249068
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) 0 0
\(408\) 0 0
\(409\) 29.0000 1.43396 0.716979 0.697095i \(-0.245524\pi\)
0.716979 + 0.697095i \(0.245524\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −4.00000 −0.194948 −0.0974740 0.995238i \(-0.531076\pi\)
−0.0974740 + 0.995238i \(0.531076\pi\)
\(422\) −2.00000 −0.0973585
\(423\) 0 0
\(424\) −3.00000 −0.145693
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 22.0000 1.06465
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) −10.0000 −0.480015
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.00000 0.0475651
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −15.0000 −0.711068
\(446\) 1.00000 0.0473514
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −9.00000 −0.423324
\(453\) 0 0
\(454\) 3.00000 0.140797
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 6.00000 0.279751
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) 9.00000 0.416917
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) −3.00000 −0.138380
\(471\) 0 0
\(472\) 3.00000 0.138086
\(473\) 0 0
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) −27.0000 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) −11.0000 −0.497947
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) 39.0000 1.76005 0.880023 0.474932i \(-0.157527\pi\)
0.880023 + 0.474932i \(0.157527\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) −1.00000 −0.0449921
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) −18.0000 −0.807410
\(498\) 0 0
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 0 0
\(508\) 11.0000 0.488046
\(509\) 36.0000 1.59567 0.797836 0.602875i \(-0.205978\pi\)
0.797836 + 0.602875i \(0.205978\pi\)
\(510\) 0 0
\(511\) 22.0000 0.973223
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) −16.0000 −0.703000
\(519\) 0 0
\(520\) 1.00000 0.0438529
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 0 0
\(523\) 2.00000 0.0874539 0.0437269 0.999044i \(-0.486077\pi\)
0.0437269 + 0.999044i \(0.486077\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 9.00000 0.392419
\(527\) 5.00000 0.217803
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −3.00000 −0.130312
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 15.0000 0.646696
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) −32.0000 −1.37452
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 11.0000 0.471188
\(546\) 0 0
\(547\) −31.0000 −1.32546 −0.662732 0.748857i \(-0.730603\pi\)
−0.662732 + 0.748857i \(0.730603\pi\)
\(548\) 18.0000 0.768922
\(549\) 0 0
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) −39.0000 −1.65248 −0.826242 0.563316i \(-0.809525\pi\)
−0.826242 + 0.563316i \(0.809525\pi\)
\(558\) 0 0
\(559\) 10.0000 0.422955
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 27.0000 1.13893
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 13.0000 0.546431
\(567\) 0 0
\(568\) 9.00000 0.377632
\(569\) −27.0000 −1.13190 −0.565949 0.824440i \(-0.691490\pi\)
−0.565949 + 0.824440i \(0.691490\pi\)
\(570\) 0 0
\(571\) 38.0000 1.59025 0.795125 0.606445i \(-0.207405\pi\)
0.795125 + 0.606445i \(0.207405\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 12.0000 0.500870
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −28.0000 −1.16566 −0.582828 0.812596i \(-0.698054\pi\)
−0.582828 + 0.812596i \(0.698054\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 3.00000 0.124568
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 0 0
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) −3.00000 −0.123929
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 3.00000 0.123508
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 2.00000 0.0819920
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) 6.00000 0.245358
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 20.0000 0.815139
\(603\) 0 0
\(604\) −22.0000 −0.895167
\(605\) −11.0000 −0.447214
\(606\) 0 0
\(607\) 26.0000 1.05531 0.527654 0.849460i \(-0.323072\pi\)
0.527654 + 0.849460i \(0.323072\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) −11.0000 −0.445377
\(611\) −3.00000 −0.121367
\(612\) 0 0
\(613\) −1.00000 −0.0403896 −0.0201948 0.999796i \(-0.506429\pi\)
−0.0201948 + 0.999796i \(0.506429\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) 39.0000 1.57008 0.785040 0.619445i \(-0.212642\pi\)
0.785040 + 0.619445i \(0.212642\pi\)
\(618\) 0 0
\(619\) −46.0000 −1.84890 −0.924448 0.381308i \(-0.875474\pi\)
−0.924448 + 0.381308i \(0.875474\pi\)
\(620\) 5.00000 0.200805
\(621\) 0 0
\(622\) 0 0
\(623\) −30.0000 −1.20192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 0 0
\(635\) 11.0000 0.436522
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) 1.00000 0.0393445
\(647\) 33.0000 1.29736 0.648682 0.761060i \(-0.275321\pi\)
0.648682 + 0.761060i \(0.275321\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.00000 0.0392232
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) −9.00000 −0.350590 −0.175295 0.984516i \(-0.556088\pi\)
−0.175295 + 0.984516i \(0.556088\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) 31.0000 1.20485
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 18.0000 0.696441
\(669\) 0 0
\(670\) −2.00000 −0.0772667
\(671\) 0 0
\(672\) 0 0
\(673\) 23.0000 0.886585 0.443292 0.896377i \(-0.353810\pi\)
0.443292 + 0.896377i \(0.353810\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) −1.00000 −0.0383482
\(681\) 0 0
\(682\) 0 0
\(683\) 3.00000 0.114792 0.0573959 0.998351i \(-0.481720\pi\)
0.0573959 + 0.998351i \(0.481720\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) −10.0000 −0.381246
\(689\) −3.00000 −0.114291
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −15.0000 −0.569392
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 28.0000 1.05982
\(699\) 0 0
\(700\) 2.00000 0.0755929
\(701\) 36.0000 1.35970 0.679851 0.733351i \(-0.262045\pi\)
0.679851 + 0.733351i \(0.262045\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) 41.0000 1.53979 0.769894 0.638172i \(-0.220309\pi\)
0.769894 + 0.638172i \(0.220309\pi\)
\(710\) 9.00000 0.337764
\(711\) 0 0
\(712\) 15.0000 0.562149
\(713\) 30.0000 1.12351
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 30.0000 1.11959
\(719\) 39.0000 1.45445 0.727227 0.686397i \(-0.240809\pi\)
0.727227 + 0.686397i \(0.240809\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 18.0000 0.669891
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 3.00000 0.111417
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) −11.0000 −0.407128
\(731\) −10.0000 −0.369863
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 22.0000 0.812035
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) 0 0
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 22.0000 0.805477
\(747\) 0 0
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) −25.0000 −0.912263 −0.456131 0.889912i \(-0.650765\pi\)
−0.456131 + 0.889912i \(0.650765\pi\)
\(752\) 3.00000 0.109399
\(753\) 0 0
\(754\) 3.00000 0.109254
\(755\) −22.0000 −0.800662
\(756\) 0 0
\(757\) −13.0000 −0.472493 −0.236247 0.971693i \(-0.575917\pi\)
−0.236247 + 0.971693i \(0.575917\pi\)
\(758\) −8.00000 −0.290573
\(759\) 0 0
\(760\) 1.00000 0.0362738
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 22.0000 0.796453
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −9.00000 −0.325183
\(767\) 3.00000 0.108324
\(768\) 0 0
\(769\) −31.0000 −1.11789 −0.558944 0.829205i \(-0.688793\pi\)
−0.558944 + 0.829205i \(0.688793\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) 5.00000 0.179605
\(776\) 7.00000 0.251285
\(777\) 0 0
\(778\) 12.0000 0.430221
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) −6.00000 −0.214560
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −7.00000 −0.249523 −0.124762 0.992187i \(-0.539817\pi\)
−0.124762 + 0.992187i \(0.539817\pi\)
\(788\) 24.0000 0.854965
\(789\) 0 0
\(790\) −8.00000 −0.284627
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) −11.0000 −0.390621
\(794\) −20.0000 −0.709773
\(795\) 0 0
\(796\) 11.0000 0.389885
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 3.00000 0.106132
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 36.0000 1.27120
\(803\) 0 0
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 5.00000 0.176117
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 6.00000 0.210559
\(813\) 0 0
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) −29.0000 −1.01396
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −15.0000 −0.523504 −0.261752 0.965135i \(-0.584300\pi\)
−0.261752 + 0.965135i \(0.584300\pi\)
\(822\) 0 0
\(823\) −10.0000 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 6.00000 0.207267
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 4.00000 0.137849
\(843\) 0 0
\(844\) 2.00000 0.0688428
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) 48.0000 1.64542
\(852\) 0 0
\(853\) 2.00000 0.0684787 0.0342393 0.999414i \(-0.489099\pi\)
0.0342393 + 0.999414i \(0.489099\pi\)
\(854\) −22.0000 −0.752825
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −33.0000 −1.12726 −0.563629 0.826028i \(-0.690595\pi\)
−0.563629 + 0.826028i \(0.690595\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) −10.0000 −0.340997
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 34.0000 1.15537
\(867\) 0 0
\(868\) 10.0000 0.339422
\(869\) 0 0
\(870\) 0 0
\(871\) −2.00000 −0.0677674
\(872\) −11.0000 −0.372507
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) −1.00000 −0.0336336
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) 30.0000 1.00730 0.503651 0.863907i \(-0.331990\pi\)
0.503651 + 0.863907i \(0.331990\pi\)
\(888\) 0 0
\(889\) 22.0000 0.737856
\(890\) 15.0000 0.502801
\(891\) 0 0
\(892\) −1.00000 −0.0334825
\(893\) −3.00000 −0.100391
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 0 0
\(899\) 15.0000 0.500278
\(900\) 0 0
\(901\) 3.00000 0.0999445
\(902\) 0 0
\(903\) 0 0
\(904\) 9.00000 0.299336
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 47.0000 1.56061 0.780305 0.625400i \(-0.215064\pi\)
0.780305 + 0.625400i \(0.215064\pi\)
\(908\) −3.00000 −0.0995585
\(909\) 0 0
\(910\) 2.00000 0.0662994
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 36.0000 1.18882
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) −6.00000 −0.197814
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 9.00000 0.296239
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 19.0000 0.624379
\(927\) 0 0
\(928\) −3.00000 −0.0984798
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) −9.00000 −0.294805
\(933\) 0 0
\(934\) 24.0000 0.785304
\(935\) 0 0
\(936\) 0 0
\(937\) 44.0000 1.43742 0.718709 0.695311i \(-0.244734\pi\)
0.718709 + 0.695311i \(0.244734\pi\)
\(938\) −4.00000 −0.130605
\(939\) 0 0
\(940\) 3.00000 0.0978492
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) −36.0000 −1.17232
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 0 0
\(947\) −51.0000 −1.65728 −0.828639 0.559784i \(-0.810884\pi\)
−0.828639 + 0.559784i \(0.810884\pi\)
\(948\) 0 0
\(949\) −11.0000 −0.357075
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) −12.0000 −0.388311
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) 27.0000 0.872330
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 8.00000 0.257930
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 7.00000 0.224756
\(971\) 21.0000 0.673922 0.336961 0.941519i \(-0.390601\pi\)
0.336961 + 0.941519i \(0.390601\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 22.0000 0.704925
\(975\) 0 0
\(976\) 11.0000 0.352101
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) −39.0000 −1.24454
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) −3.00000 −0.0955395
\(987\) 0 0
\(988\) 1.00000 0.0318142
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) 29.0000 0.921215 0.460608 0.887604i \(-0.347632\pi\)
0.460608 + 0.887604i \(0.347632\pi\)
\(992\) −5.00000 −0.158750
\(993\) 0 0
\(994\) 18.0000 0.570925
\(995\) 11.0000 0.348723
\(996\) 0 0
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) 22.0000 0.696398
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.a.g.1.1 1
3.2 odd 2 170.2.a.e.1.1 1
5.4 even 2 7650.2.a.bo.1.1 1
12.11 even 2 1360.2.a.d.1.1 1
15.2 even 4 850.2.c.e.749.2 2
15.8 even 4 850.2.c.e.749.1 2
15.14 odd 2 850.2.a.b.1.1 1
21.20 even 2 8330.2.a.q.1.1 1
24.5 odd 2 5440.2.a.k.1.1 1
24.11 even 2 5440.2.a.r.1.1 1
51.38 odd 4 2890.2.b.b.2311.1 2
51.47 odd 4 2890.2.b.b.2311.2 2
51.50 odd 2 2890.2.a.n.1.1 1
60.59 even 2 6800.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.a.e.1.1 1 3.2 odd 2
850.2.a.b.1.1 1 15.14 odd 2
850.2.c.e.749.1 2 15.8 even 4
850.2.c.e.749.2 2 15.2 even 4
1360.2.a.d.1.1 1 12.11 even 2
1530.2.a.g.1.1 1 1.1 even 1 trivial
2890.2.a.n.1.1 1 51.50 odd 2
2890.2.b.b.2311.1 2 51.38 odd 4
2890.2.b.b.2311.2 2 51.47 odd 4
5440.2.a.k.1.1 1 24.5 odd 2
5440.2.a.r.1.1 1 24.11 even 2
6800.2.a.t.1.1 1 60.59 even 2
7650.2.a.bo.1.1 1 5.4 even 2
8330.2.a.q.1.1 1 21.20 even 2