Properties

Label 170.2.a.e.1.1
Level $170$
Weight $2$
Character 170.1
Self dual yes
Analytic conductor $1.357$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(1,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 170.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +2.00000 q^{7} +1.00000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +2.00000 q^{7} +1.00000 q^{8} -2.00000 q^{9} -1.00000 q^{10} +1.00000 q^{12} -1.00000 q^{13} +2.00000 q^{14} -1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} -2.00000 q^{18} -1.00000 q^{19} -1.00000 q^{20} +2.00000 q^{21} -6.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} -1.00000 q^{26} -5.00000 q^{27} +2.00000 q^{28} -3.00000 q^{29} -1.00000 q^{30} +5.00000 q^{31} +1.00000 q^{32} -1.00000 q^{34} -2.00000 q^{35} -2.00000 q^{36} +8.00000 q^{37} -1.00000 q^{38} -1.00000 q^{39} -1.00000 q^{40} +6.00000 q^{41} +2.00000 q^{42} -10.0000 q^{43} +2.00000 q^{45} -6.00000 q^{46} -3.00000 q^{47} +1.00000 q^{48} -3.00000 q^{49} +1.00000 q^{50} -1.00000 q^{51} -1.00000 q^{52} -3.00000 q^{53} -5.00000 q^{54} +2.00000 q^{56} -1.00000 q^{57} -3.00000 q^{58} +3.00000 q^{59} -1.00000 q^{60} +11.0000 q^{61} +5.00000 q^{62} -4.00000 q^{63} +1.00000 q^{64} +1.00000 q^{65} +2.00000 q^{67} -1.00000 q^{68} -6.00000 q^{69} -2.00000 q^{70} +9.00000 q^{71} -2.00000 q^{72} +11.0000 q^{73} +8.00000 q^{74} +1.00000 q^{75} -1.00000 q^{76} -1.00000 q^{78} +8.00000 q^{79} -1.00000 q^{80} +1.00000 q^{81} +6.00000 q^{82} -12.0000 q^{83} +2.00000 q^{84} +1.00000 q^{85} -10.0000 q^{86} -3.00000 q^{87} +15.0000 q^{89} +2.00000 q^{90} -2.00000 q^{91} -6.00000 q^{92} +5.00000 q^{93} -3.00000 q^{94} +1.00000 q^{95} +1.00000 q^{96} -7.00000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.00000 −0.666667
\(10\) −1.00000 −0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 2.00000 0.534522
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −2.00000 −0.471405
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −1.00000 −0.223607
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) −1.00000 −0.196116
\(27\) −5.00000 −0.962250
\(28\) 2.00000 0.377964
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) −1.00000 −0.182574
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −2.00000 −0.338062
\(36\) −2.00000 −0.333333
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −1.00000 −0.162221
\(39\) −1.00000 −0.160128
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 2.00000 0.308607
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) −6.00000 −0.884652
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) −1.00000 −0.140028
\(52\) −1.00000 −0.138675
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) −5.00000 −0.680414
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) −1.00000 −0.132453
\(58\) −3.00000 −0.393919
\(59\) 3.00000 0.390567 0.195283 0.980747i \(-0.437437\pi\)
0.195283 + 0.980747i \(0.437437\pi\)
\(60\) −1.00000 −0.129099
\(61\) 11.0000 1.40841 0.704203 0.709999i \(-0.251305\pi\)
0.704203 + 0.709999i \(0.251305\pi\)
\(62\) 5.00000 0.635001
\(63\) −4.00000 −0.503953
\(64\) 1.00000 0.125000
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −1.00000 −0.121268
\(69\) −6.00000 −0.722315
\(70\) −2.00000 −0.239046
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) −2.00000 −0.235702
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 8.00000 0.929981
\(75\) 1.00000 0.115470
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 2.00000 0.218218
\(85\) 1.00000 0.108465
\(86\) −10.0000 −1.07833
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) 2.00000 0.210819
\(91\) −2.00000 −0.209657
\(92\) −6.00000 −0.625543
\(93\) 5.00000 0.518476
\(94\) −3.00000 −0.309426
\(95\) 1.00000 0.102598
\(96\) 1.00000 0.102062
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −2.00000 −0.195180
\(106\) −3.00000 −0.291386
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −5.00000 −0.481125
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 2.00000 0.188982
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 6.00000 0.559503
\(116\) −3.00000 −0.278543
\(117\) 2.00000 0.184900
\(118\) 3.00000 0.276172
\(119\) −2.00000 −0.183340
\(120\) −1.00000 −0.0912871
\(121\) −11.0000 −1.00000
\(122\) 11.0000 0.995893
\(123\) 6.00000 0.541002
\(124\) 5.00000 0.449013
\(125\) −1.00000 −0.0894427
\(126\) −4.00000 −0.356348
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 1.00000 0.0883883
\(129\) −10.0000 −0.880451
\(130\) 1.00000 0.0877058
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 2.00000 0.172774
\(135\) 5.00000 0.430331
\(136\) −1.00000 −0.0857493
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −6.00000 −0.510754
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) −2.00000 −0.169031
\(141\) −3.00000 −0.252646
\(142\) 9.00000 0.755263
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) 3.00000 0.249136
\(146\) 11.0000 0.910366
\(147\) −3.00000 −0.247436
\(148\) 8.00000 0.657596
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 1.00000 0.0816497
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −5.00000 −0.401610
\(156\) −1.00000 −0.0800641
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 8.00000 0.636446
\(159\) −3.00000 −0.237915
\(160\) −1.00000 −0.0790569
\(161\) −12.0000 −0.945732
\(162\) 1.00000 0.0785674
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 2.00000 0.154303
\(169\) −12.0000 −0.923077
\(170\) 1.00000 0.0766965
\(171\) 2.00000 0.152944
\(172\) −10.0000 −0.762493
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) −3.00000 −0.227429
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 15.0000 1.12430
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 2.00000 0.149071
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −2.00000 −0.148250
\(183\) 11.0000 0.813143
\(184\) −6.00000 −0.442326
\(185\) −8.00000 −0.588172
\(186\) 5.00000 0.366618
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) −10.0000 −0.727393
\(190\) 1.00000 0.0725476
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 1.00000 0.0721688
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −7.00000 −0.502571
\(195\) 1.00000 0.0716115
\(196\) −3.00000 −0.214286
\(197\) −24.0000 −1.70993 −0.854965 0.518686i \(-0.826421\pi\)
−0.854965 + 0.518686i \(0.826421\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 1.00000 0.0707107
\(201\) 2.00000 0.141069
\(202\) 6.00000 0.422159
\(203\) −6.00000 −0.421117
\(204\) −1.00000 −0.0700140
\(205\) −6.00000 −0.419058
\(206\) 8.00000 0.557386
\(207\) 12.0000 0.834058
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) −2.00000 −0.138013
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) −3.00000 −0.206041
\(213\) 9.00000 0.616670
\(214\) −12.0000 −0.820303
\(215\) 10.0000 0.681994
\(216\) −5.00000 −0.340207
\(217\) 10.0000 0.678844
\(218\) 11.0000 0.745014
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) 1.00000 0.0672673
\(222\) 8.00000 0.536925
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 2.00000 0.133631
\(225\) −2.00000 −0.133333
\(226\) 9.00000 0.598671
\(227\) 3.00000 0.199117 0.0995585 0.995032i \(-0.468257\pi\)
0.0995585 + 0.995032i \(0.468257\pi\)
\(228\) −1.00000 −0.0662266
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) 2.00000 0.130744
\(235\) 3.00000 0.195698
\(236\) 3.00000 0.195283
\(237\) 8.00000 0.519656
\(238\) −2.00000 −0.129641
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) −1.00000 −0.0645497
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −11.0000 −0.707107
\(243\) 16.0000 1.02640
\(244\) 11.0000 0.704203
\(245\) 3.00000 0.191663
\(246\) 6.00000 0.382546
\(247\) 1.00000 0.0636285
\(248\) 5.00000 0.317500
\(249\) −12.0000 −0.760469
\(250\) −1.00000 −0.0632456
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −4.00000 −0.251976
\(253\) 0 0
\(254\) 11.0000 0.690201
\(255\) 1.00000 0.0626224
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) −10.0000 −0.622573
\(259\) 16.0000 0.994192
\(260\) 1.00000 0.0620174
\(261\) 6.00000 0.371391
\(262\) −18.0000 −1.11204
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) −2.00000 −0.122628
\(267\) 15.0000 0.917985
\(268\) 2.00000 0.122169
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) 5.00000 0.304290
\(271\) 32.0000 1.94386 0.971931 0.235267i \(-0.0755965\pi\)
0.971931 + 0.235267i \(0.0755965\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −2.00000 −0.121046
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 8.00000 0.479808
\(279\) −10.0000 −0.598684
\(280\) −2.00000 −0.119523
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) −3.00000 −0.178647
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 9.00000 0.534052
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) −2.00000 −0.117851
\(289\) 1.00000 0.0588235
\(290\) 3.00000 0.176166
\(291\) −7.00000 −0.410347
\(292\) 11.0000 0.643726
\(293\) −3.00000 −0.175262 −0.0876309 0.996153i \(-0.527930\pi\)
−0.0876309 + 0.996153i \(0.527930\pi\)
\(294\) −3.00000 −0.174964
\(295\) −3.00000 −0.174667
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) 6.00000 0.346989
\(300\) 1.00000 0.0577350
\(301\) −20.0000 −1.15278
\(302\) −22.0000 −1.26596
\(303\) 6.00000 0.344691
\(304\) −1.00000 −0.0573539
\(305\) −11.0000 −0.629858
\(306\) 2.00000 0.114332
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) −5.00000 −0.283981
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −1.00000 −0.0566139
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 14.0000 0.790066
\(315\) 4.00000 0.225374
\(316\) 8.00000 0.450035
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) −3.00000 −0.168232
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) −12.0000 −0.669775
\(322\) −12.0000 −0.668734
\(323\) 1.00000 0.0556415
\(324\) 1.00000 0.0555556
\(325\) −1.00000 −0.0554700
\(326\) −16.0000 −0.886158
\(327\) 11.0000 0.608301
\(328\) 6.00000 0.331295
\(329\) −6.00000 −0.330791
\(330\) 0 0
\(331\) −31.0000 −1.70391 −0.851957 0.523612i \(-0.824584\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) −12.0000 −0.658586
\(333\) −16.0000 −0.876795
\(334\) −18.0000 −0.984916
\(335\) −2.00000 −0.109272
\(336\) 2.00000 0.109109
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) −12.0000 −0.652714
\(339\) 9.00000 0.488813
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 2.00000 0.108148
\(343\) −20.0000 −1.07990
\(344\) −10.0000 −0.539164
\(345\) 6.00000 0.323029
\(346\) 18.0000 0.967686
\(347\) −15.0000 −0.805242 −0.402621 0.915367i \(-0.631901\pi\)
−0.402621 + 0.915367i \(0.631901\pi\)
\(348\) −3.00000 −0.160817
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 2.00000 0.106904
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 3.00000 0.159448
\(355\) −9.00000 −0.477670
\(356\) 15.0000 0.794998
\(357\) −2.00000 −0.105851
\(358\) −12.0000 −0.634220
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 2.00000 0.105409
\(361\) −18.0000 −0.947368
\(362\) −10.0000 −0.525588
\(363\) −11.0000 −0.577350
\(364\) −2.00000 −0.104828
\(365\) −11.0000 −0.575766
\(366\) 11.0000 0.574979
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) −6.00000 −0.312772
\(369\) −12.0000 −0.624695
\(370\) −8.00000 −0.415900
\(371\) −6.00000 −0.311504
\(372\) 5.00000 0.259238
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) −3.00000 −0.154713
\(377\) 3.00000 0.154508
\(378\) −10.0000 −0.514344
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 1.00000 0.0512989
\(381\) 11.0000 0.563547
\(382\) 12.0000 0.613973
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 20.0000 1.01666
\(388\) −7.00000 −0.355371
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 1.00000 0.0506370
\(391\) 6.00000 0.303433
\(392\) −3.00000 −0.151523
\(393\) −18.0000 −0.907980
\(394\) −24.0000 −1.20910
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 11.0000 0.551380
\(399\) −2.00000 −0.100125
\(400\) 1.00000 0.0500000
\(401\) 36.0000 1.79775 0.898877 0.438201i \(-0.144384\pi\)
0.898877 + 0.438201i \(0.144384\pi\)
\(402\) 2.00000 0.0997509
\(403\) −5.00000 −0.249068
\(404\) 6.00000 0.298511
\(405\) −1.00000 −0.0496904
\(406\) −6.00000 −0.297775
\(407\) 0 0
\(408\) −1.00000 −0.0495074
\(409\) 29.0000 1.43396 0.716979 0.697095i \(-0.245524\pi\)
0.716979 + 0.697095i \(0.245524\pi\)
\(410\) −6.00000 −0.296319
\(411\) −18.0000 −0.887875
\(412\) 8.00000 0.394132
\(413\) 6.00000 0.295241
\(414\) 12.0000 0.589768
\(415\) 12.0000 0.589057
\(416\) −1.00000 −0.0490290
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) −2.00000 −0.0975900
\(421\) −4.00000 −0.194948 −0.0974740 0.995238i \(-0.531076\pi\)
−0.0974740 + 0.995238i \(0.531076\pi\)
\(422\) 2.00000 0.0973585
\(423\) 6.00000 0.291730
\(424\) −3.00000 −0.145693
\(425\) −1.00000 −0.0485071
\(426\) 9.00000 0.436051
\(427\) 22.0000 1.06465
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) −5.00000 −0.240563
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 10.0000 0.480015
\(435\) 3.00000 0.143839
\(436\) 11.0000 0.526804
\(437\) 6.00000 0.287019
\(438\) 11.0000 0.525600
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 1.00000 0.0475651
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 8.00000 0.379663
\(445\) −15.0000 −0.711068
\(446\) −1.00000 −0.0473514
\(447\) −12.0000 −0.567581
\(448\) 2.00000 0.0944911
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −2.00000 −0.0942809
\(451\) 0 0
\(452\) 9.00000 0.423324
\(453\) −22.0000 −1.03365
\(454\) 3.00000 0.140797
\(455\) 2.00000 0.0937614
\(456\) −1.00000 −0.0468293
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) −22.0000 −1.02799
\(459\) 5.00000 0.233380
\(460\) 6.00000 0.279751
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) −3.00000 −0.139272
\(465\) −5.00000 −0.231869
\(466\) 9.00000 0.416917
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 2.00000 0.0924500
\(469\) 4.00000 0.184703
\(470\) 3.00000 0.138380
\(471\) 14.0000 0.645086
\(472\) 3.00000 0.138086
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) −1.00000 −0.0458831
\(476\) −2.00000 −0.0916698
\(477\) 6.00000 0.274721
\(478\) 6.00000 0.274434
\(479\) 27.0000 1.23366 0.616831 0.787096i \(-0.288416\pi\)
0.616831 + 0.787096i \(0.288416\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −8.00000 −0.364769
\(482\) −10.0000 −0.455488
\(483\) −12.0000 −0.546019
\(484\) −11.0000 −0.500000
\(485\) 7.00000 0.317854
\(486\) 16.0000 0.725775
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) 11.0000 0.497947
\(489\) −16.0000 −0.723545
\(490\) 3.00000 0.135526
\(491\) −39.0000 −1.76005 −0.880023 0.474932i \(-0.842473\pi\)
−0.880023 + 0.474932i \(0.842473\pi\)
\(492\) 6.00000 0.270501
\(493\) 3.00000 0.135113
\(494\) 1.00000 0.0449921
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) 18.0000 0.807410
\(498\) −12.0000 −0.537733
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −18.0000 −0.804181
\(502\) −12.0000 −0.535586
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) −4.00000 −0.178174
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 11.0000 0.488046
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 1.00000 0.0442807
\(511\) 22.0000 0.973223
\(512\) 1.00000 0.0441942
\(513\) 5.00000 0.220755
\(514\) 6.00000 0.264649
\(515\) −8.00000 −0.352522
\(516\) −10.0000 −0.440225
\(517\) 0 0
\(518\) 16.0000 0.703000
\(519\) 18.0000 0.790112
\(520\) 1.00000 0.0438529
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 6.00000 0.262613
\(523\) 2.00000 0.0874539 0.0437269 0.999044i \(-0.486077\pi\)
0.0437269 + 0.999044i \(0.486077\pi\)
\(524\) −18.0000 −0.786334
\(525\) 2.00000 0.0872872
\(526\) 9.00000 0.392419
\(527\) −5.00000 −0.217803
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 3.00000 0.130312
\(531\) −6.00000 −0.260378
\(532\) −2.00000 −0.0867110
\(533\) −6.00000 −0.259889
\(534\) 15.0000 0.649113
\(535\) 12.0000 0.518805
\(536\) 2.00000 0.0863868
\(537\) −12.0000 −0.517838
\(538\) 15.0000 0.646696
\(539\) 0 0
\(540\) 5.00000 0.215166
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 32.0000 1.37452
\(543\) −10.0000 −0.429141
\(544\) −1.00000 −0.0428746
\(545\) −11.0000 −0.471188
\(546\) −2.00000 −0.0855921
\(547\) −31.0000 −1.32546 −0.662732 0.748857i \(-0.730603\pi\)
−0.662732 + 0.748857i \(0.730603\pi\)
\(548\) −18.0000 −0.768922
\(549\) −22.0000 −0.938937
\(550\) 0 0
\(551\) 3.00000 0.127804
\(552\) −6.00000 −0.255377
\(553\) 16.0000 0.680389
\(554\) −10.0000 −0.424859
\(555\) −8.00000 −0.339581
\(556\) 8.00000 0.339276
\(557\) 39.0000 1.65248 0.826242 0.563316i \(-0.190475\pi\)
0.826242 + 0.563316i \(0.190475\pi\)
\(558\) −10.0000 −0.423334
\(559\) 10.0000 0.422955
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) 27.0000 1.13893
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) −3.00000 −0.126323
\(565\) −9.00000 −0.378633
\(566\) −13.0000 −0.546431
\(567\) 2.00000 0.0839921
\(568\) 9.00000 0.377632
\(569\) 27.0000 1.13190 0.565949 0.824440i \(-0.308510\pi\)
0.565949 + 0.824440i \(0.308510\pi\)
\(570\) 1.00000 0.0418854
\(571\) 38.0000 1.59025 0.795125 0.606445i \(-0.207405\pi\)
0.795125 + 0.606445i \(0.207405\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 12.0000 0.500870
\(575\) −6.00000 −0.250217
\(576\) −2.00000 −0.0833333
\(577\) −28.0000 −1.16566 −0.582828 0.812596i \(-0.698054\pi\)
−0.582828 + 0.812596i \(0.698054\pi\)
\(578\) 1.00000 0.0415945
\(579\) 2.00000 0.0831172
\(580\) 3.00000 0.124568
\(581\) −24.0000 −0.995688
\(582\) −7.00000 −0.290159
\(583\) 0 0
\(584\) 11.0000 0.455183
\(585\) −2.00000 −0.0826898
\(586\) −3.00000 −0.123929
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) −3.00000 −0.123718
\(589\) −5.00000 −0.206021
\(590\) −3.00000 −0.123508
\(591\) −24.0000 −0.987228
\(592\) 8.00000 0.328798
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 2.00000 0.0819920
\(596\) −12.0000 −0.491539
\(597\) 11.0000 0.450200
\(598\) 6.00000 0.245358
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 1.00000 0.0408248
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) −20.0000 −0.815139
\(603\) −4.00000 −0.162893
\(604\) −22.0000 −0.895167
\(605\) 11.0000 0.447214
\(606\) 6.00000 0.243733
\(607\) 26.0000 1.05531 0.527654 0.849460i \(-0.323072\pi\)
0.527654 + 0.849460i \(0.323072\pi\)
\(608\) −1.00000 −0.0405554
\(609\) −6.00000 −0.243132
\(610\) −11.0000 −0.445377
\(611\) 3.00000 0.121367
\(612\) 2.00000 0.0808452
\(613\) −1.00000 −0.0403896 −0.0201948 0.999796i \(-0.506429\pi\)
−0.0201948 + 0.999796i \(0.506429\pi\)
\(614\) 20.0000 0.807134
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −39.0000 −1.57008 −0.785040 0.619445i \(-0.787358\pi\)
−0.785040 + 0.619445i \(0.787358\pi\)
\(618\) 8.00000 0.321807
\(619\) −46.0000 −1.84890 −0.924448 0.381308i \(-0.875474\pi\)
−0.924448 + 0.381308i \(0.875474\pi\)
\(620\) −5.00000 −0.200805
\(621\) 30.0000 1.20386
\(622\) 0 0
\(623\) 30.0000 1.20192
\(624\) −1.00000 −0.0400320
\(625\) 1.00000 0.0400000
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) −8.00000 −0.318981
\(630\) 4.00000 0.159364
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 8.00000 0.318223
\(633\) 2.00000 0.0794929
\(634\) 0 0
\(635\) −11.0000 −0.436522
\(636\) −3.00000 −0.118958
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) −18.0000 −0.712069
\(640\) −1.00000 −0.0395285
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −12.0000 −0.473602
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) −12.0000 −0.472866
\(645\) 10.0000 0.393750
\(646\) 1.00000 0.0393445
\(647\) −33.0000 −1.29736 −0.648682 0.761060i \(-0.724679\pi\)
−0.648682 + 0.761060i \(0.724679\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −1.00000 −0.0392232
\(651\) 10.0000 0.391931
\(652\) −16.0000 −0.626608
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 11.0000 0.430134
\(655\) 18.0000 0.703318
\(656\) 6.00000 0.234261
\(657\) −22.0000 −0.858302
\(658\) −6.00000 −0.233904
\(659\) 9.00000 0.350590 0.175295 0.984516i \(-0.443912\pi\)
0.175295 + 0.984516i \(0.443912\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) −31.0000 −1.20485
\(663\) 1.00000 0.0388368
\(664\) −12.0000 −0.465690
\(665\) 2.00000 0.0775567
\(666\) −16.0000 −0.619987
\(667\) 18.0000 0.696963
\(668\) −18.0000 −0.696441
\(669\) −1.00000 −0.0386622
\(670\) −2.00000 −0.0772667
\(671\) 0 0
\(672\) 2.00000 0.0771517
\(673\) 23.0000 0.886585 0.443292 0.896377i \(-0.353810\pi\)
0.443292 + 0.896377i \(0.353810\pi\)
\(674\) −13.0000 −0.500741
\(675\) −5.00000 −0.192450
\(676\) −12.0000 −0.461538
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 9.00000 0.345643
\(679\) −14.0000 −0.537271
\(680\) 1.00000 0.0383482
\(681\) 3.00000 0.114960
\(682\) 0 0
\(683\) −3.00000 −0.114792 −0.0573959 0.998351i \(-0.518280\pi\)
−0.0573959 + 0.998351i \(0.518280\pi\)
\(684\) 2.00000 0.0764719
\(685\) 18.0000 0.687745
\(686\) −20.0000 −0.763604
\(687\) −22.0000 −0.839352
\(688\) −10.0000 −0.381246
\(689\) 3.00000 0.114291
\(690\) 6.00000 0.228416
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 18.0000 0.684257
\(693\) 0 0
\(694\) −15.0000 −0.569392
\(695\) −8.00000 −0.303457
\(696\) −3.00000 −0.113715
\(697\) −6.00000 −0.227266
\(698\) −28.0000 −1.05982
\(699\) 9.00000 0.340411
\(700\) 2.00000 0.0755929
\(701\) −36.0000 −1.35970 −0.679851 0.733351i \(-0.737955\pi\)
−0.679851 + 0.733351i \(0.737955\pi\)
\(702\) 5.00000 0.188713
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) 3.00000 0.112987
\(706\) 18.0000 0.677439
\(707\) 12.0000 0.451306
\(708\) 3.00000 0.112747
\(709\) 41.0000 1.53979 0.769894 0.638172i \(-0.220309\pi\)
0.769894 + 0.638172i \(0.220309\pi\)
\(710\) −9.00000 −0.337764
\(711\) −16.0000 −0.600047
\(712\) 15.0000 0.562149
\(713\) −30.0000 −1.12351
\(714\) −2.00000 −0.0748481
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 6.00000 0.224074
\(718\) 30.0000 1.11959
\(719\) −39.0000 −1.45445 −0.727227 0.686397i \(-0.759191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(720\) 2.00000 0.0745356
\(721\) 16.0000 0.595871
\(722\) −18.0000 −0.669891
\(723\) −10.0000 −0.371904
\(724\) −10.0000 −0.371647
\(725\) −3.00000 −0.111417
\(726\) −11.0000 −0.408248
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 13.0000 0.481481
\(730\) −11.0000 −0.407128
\(731\) 10.0000 0.369863
\(732\) 11.0000 0.406572
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) −22.0000 −0.812035
\(735\) 3.00000 0.110657
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) −12.0000 −0.441726
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) −8.00000 −0.294086
\(741\) 1.00000 0.0367359
\(742\) −6.00000 −0.220267
\(743\) 30.0000 1.10059 0.550297 0.834969i \(-0.314515\pi\)
0.550297 + 0.834969i \(0.314515\pi\)
\(744\) 5.00000 0.183309
\(745\) 12.0000 0.439646
\(746\) −22.0000 −0.805477
\(747\) 24.0000 0.878114
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) −1.00000 −0.0365148
\(751\) −25.0000 −0.912263 −0.456131 0.889912i \(-0.650765\pi\)
−0.456131 + 0.889912i \(0.650765\pi\)
\(752\) −3.00000 −0.109399
\(753\) −12.0000 −0.437304
\(754\) 3.00000 0.109254
\(755\) 22.0000 0.800662
\(756\) −10.0000 −0.363696
\(757\) −13.0000 −0.472493 −0.236247 0.971693i \(-0.575917\pi\)
−0.236247 + 0.971693i \(0.575917\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) 1.00000 0.0362738
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 11.0000 0.398488
\(763\) 22.0000 0.796453
\(764\) 12.0000 0.434145
\(765\) −2.00000 −0.0723102
\(766\) −9.00000 −0.325183
\(767\) −3.00000 −0.108324
\(768\) 1.00000 0.0360844
\(769\) −31.0000 −1.11789 −0.558944 0.829205i \(-0.688793\pi\)
−0.558944 + 0.829205i \(0.688793\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 2.00000 0.0719816
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 20.0000 0.718885
\(775\) 5.00000 0.179605
\(776\) −7.00000 −0.251285
\(777\) 16.0000 0.573997
\(778\) 12.0000 0.430221
\(779\) −6.00000 −0.214972
\(780\) 1.00000 0.0358057
\(781\) 0 0
\(782\) 6.00000 0.214560
\(783\) 15.0000 0.536056
\(784\) −3.00000 −0.107143
\(785\) −14.0000 −0.499681
\(786\) −18.0000 −0.642039
\(787\) −7.00000 −0.249523 −0.124762 0.992187i \(-0.539817\pi\)
−0.124762 + 0.992187i \(0.539817\pi\)
\(788\) −24.0000 −0.854965
\(789\) 9.00000 0.320408
\(790\) −8.00000 −0.284627
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) −11.0000 −0.390621
\(794\) 20.0000 0.709773
\(795\) 3.00000 0.106399
\(796\) 11.0000 0.389885
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) −2.00000 −0.0707992
\(799\) 3.00000 0.106132
\(800\) 1.00000 0.0353553
\(801\) −30.0000 −1.06000
\(802\) 36.0000 1.27120
\(803\) 0 0
\(804\) 2.00000 0.0705346
\(805\) 12.0000 0.422944
\(806\) −5.00000 −0.176117
\(807\) 15.0000 0.528025
\(808\) 6.00000 0.211079
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) −6.00000 −0.210559
\(813\) 32.0000 1.12229
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) −1.00000 −0.0350070
\(817\) 10.0000 0.349856
\(818\) 29.0000 1.01396
\(819\) 4.00000 0.139771
\(820\) −6.00000 −0.209529
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) −18.0000 −0.627822
\(823\) −10.0000 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 12.0000 0.417029
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) 12.0000 0.416526
\(831\) −10.0000 −0.346896
\(832\) −1.00000 −0.0346688
\(833\) 3.00000 0.103944
\(834\) 8.00000 0.277017
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) −25.0000 −0.864126
\(838\) 6.00000 0.207267
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) −2.00000 −0.0690066
\(841\) −20.0000 −0.689655
\(842\) −4.00000 −0.137849
\(843\) 27.0000 0.929929
\(844\) 2.00000 0.0688428
\(845\) 12.0000 0.412813
\(846\) 6.00000 0.206284
\(847\) −22.0000 −0.755929
\(848\) −3.00000 −0.103020
\(849\) −13.0000 −0.446159
\(850\) −1.00000 −0.0342997
\(851\) −48.0000 −1.64542
\(852\) 9.00000 0.308335
\(853\) 2.00000 0.0684787 0.0342393 0.999414i \(-0.489099\pi\)
0.0342393 + 0.999414i \(0.489099\pi\)
\(854\) 22.0000 0.752825
\(855\) −2.00000 −0.0683986
\(856\) −12.0000 −0.410152
\(857\) 33.0000 1.12726 0.563629 0.826028i \(-0.309405\pi\)
0.563629 + 0.826028i \(0.309405\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 10.0000 0.340997
\(861\) 12.0000 0.408959
\(862\) −24.0000 −0.817443
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) −5.00000 −0.170103
\(865\) −18.0000 −0.612018
\(866\) −34.0000 −1.15537
\(867\) 1.00000 0.0339618
\(868\) 10.0000 0.339422
\(869\) 0 0
\(870\) 3.00000 0.101710
\(871\) −2.00000 −0.0677674
\(872\) 11.0000 0.372507
\(873\) 14.0000 0.473828
\(874\) 6.00000 0.202953
\(875\) −2.00000 −0.0676123
\(876\) 11.0000 0.371656
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 8.00000 0.269987
\(879\) −3.00000 −0.101187
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 6.00000 0.202031
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) 1.00000 0.0336336
\(885\) −3.00000 −0.100844
\(886\) 12.0000 0.403148
\(887\) −30.0000 −1.00730 −0.503651 0.863907i \(-0.668010\pi\)
−0.503651 + 0.863907i \(0.668010\pi\)
\(888\) 8.00000 0.268462
\(889\) 22.0000 0.737856
\(890\) −15.0000 −0.502801
\(891\) 0 0
\(892\) −1.00000 −0.0334825
\(893\) 3.00000 0.100391
\(894\) −12.0000 −0.401340
\(895\) 12.0000 0.401116
\(896\) 2.00000 0.0668153
\(897\) 6.00000 0.200334
\(898\) 0 0
\(899\) −15.0000 −0.500278
\(900\) −2.00000 −0.0666667
\(901\) 3.00000 0.0999445
\(902\) 0 0
\(903\) −20.0000 −0.665558
\(904\) 9.00000 0.299336
\(905\) 10.0000 0.332411
\(906\) −22.0000 −0.730901
\(907\) 47.0000 1.56061 0.780305 0.625400i \(-0.215064\pi\)
0.780305 + 0.625400i \(0.215064\pi\)
\(908\) 3.00000 0.0995585
\(909\) −12.0000 −0.398015
\(910\) 2.00000 0.0662994
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) −1.00000 −0.0331133
\(913\) 0 0
\(914\) 26.0000 0.860004
\(915\) −11.0000 −0.363649
\(916\) −22.0000 −0.726900
\(917\) −36.0000 −1.18882
\(918\) 5.00000 0.165025
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) 6.00000 0.197814
\(921\) 20.0000 0.659022
\(922\) 30.0000 0.987997
\(923\) −9.00000 −0.296239
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) −19.0000 −0.624379
\(927\) −16.0000 −0.525509
\(928\) −3.00000 −0.0984798
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) −5.00000 −0.163956
\(931\) 3.00000 0.0983210
\(932\) 9.00000 0.294805
\(933\) 0 0
\(934\) 24.0000 0.785304
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) 44.0000 1.43742 0.718709 0.695311i \(-0.244734\pi\)
0.718709 + 0.695311i \(0.244734\pi\)
\(938\) 4.00000 0.130605
\(939\) 14.0000 0.456873
\(940\) 3.00000 0.0978492
\(941\) −15.0000 −0.488986 −0.244493 0.969651i \(-0.578622\pi\)
−0.244493 + 0.969651i \(0.578622\pi\)
\(942\) 14.0000 0.456145
\(943\) −36.0000 −1.17232
\(944\) 3.00000 0.0976417
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) 51.0000 1.65728 0.828639 0.559784i \(-0.189116\pi\)
0.828639 + 0.559784i \(0.189116\pi\)
\(948\) 8.00000 0.259828
\(949\) −11.0000 −0.357075
\(950\) −1.00000 −0.0324443
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) 6.00000 0.194257
\(955\) −12.0000 −0.388311
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) 27.0000 0.872330
\(959\) −36.0000 −1.16250
\(960\) −1.00000 −0.0322749
\(961\) −6.00000 −0.193548
\(962\) −8.00000 −0.257930
\(963\) 24.0000 0.773389
\(964\) −10.0000 −0.322078
\(965\) −2.00000 −0.0643823
\(966\) −12.0000 −0.386094
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) −11.0000 −0.353553
\(969\) 1.00000 0.0321246
\(970\) 7.00000 0.224756
\(971\) −21.0000 −0.673922 −0.336961 0.941519i \(-0.609399\pi\)
−0.336961 + 0.941519i \(0.609399\pi\)
\(972\) 16.0000 0.513200
\(973\) 16.0000 0.512936
\(974\) −22.0000 −0.704925
\(975\) −1.00000 −0.0320256
\(976\) 11.0000 0.352101
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) −16.0000 −0.511624
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) −22.0000 −0.702406
\(982\) −39.0000 −1.24454
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) 6.00000 0.191273
\(985\) 24.0000 0.764704
\(986\) 3.00000 0.0955395
\(987\) −6.00000 −0.190982
\(988\) 1.00000 0.0318142
\(989\) 60.0000 1.90789
\(990\) 0 0
\(991\) 29.0000 0.921215 0.460608 0.887604i \(-0.347632\pi\)
0.460608 + 0.887604i \(0.347632\pi\)
\(992\) 5.00000 0.158750
\(993\) −31.0000 −0.983755
\(994\) 18.0000 0.570925
\(995\) −11.0000 −0.348723
\(996\) −12.0000 −0.380235
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) −22.0000 −0.696398
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.a.e.1.1 1
3.2 odd 2 1530.2.a.g.1.1 1
4.3 odd 2 1360.2.a.d.1.1 1
5.2 odd 4 850.2.c.e.749.2 2
5.3 odd 4 850.2.c.e.749.1 2
5.4 even 2 850.2.a.b.1.1 1
7.6 odd 2 8330.2.a.q.1.1 1
8.3 odd 2 5440.2.a.r.1.1 1
8.5 even 2 5440.2.a.k.1.1 1
15.14 odd 2 7650.2.a.bo.1.1 1
17.4 even 4 2890.2.b.b.2311.1 2
17.13 even 4 2890.2.b.b.2311.2 2
17.16 even 2 2890.2.a.n.1.1 1
20.19 odd 2 6800.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.a.e.1.1 1 1.1 even 1 trivial
850.2.a.b.1.1 1 5.4 even 2
850.2.c.e.749.1 2 5.3 odd 4
850.2.c.e.749.2 2 5.2 odd 4
1360.2.a.d.1.1 1 4.3 odd 2
1530.2.a.g.1.1 1 3.2 odd 2
2890.2.a.n.1.1 1 17.16 even 2
2890.2.b.b.2311.1 2 17.4 even 4
2890.2.b.b.2311.2 2 17.13 even 4
5440.2.a.k.1.1 1 8.5 even 2
5440.2.a.r.1.1 1 8.3 odd 2
6800.2.a.t.1.1 1 20.19 odd 2
7650.2.a.bo.1.1 1 15.14 odd 2
8330.2.a.q.1.1 1 7.6 odd 2